
Received August 9, 2020, accepted September 6, 2020, date of publication September 15, 2020,
date of current version September 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3024292

Stroke Screening Feature Selection for Arm
Weakness Using a Mobile Application
PHONGPHAN PHIENPHANICH1,2, (Student Member, IEEE),
NATTAKIT TANKONGCHAMRUSKUL1,3, (Associate Member, IEEE),
WASAN AKARATHANAWAT4, AURAUMA CHUTINET4, ROSSUKON NIMNUAL4,
CHARTURONG TANTIBUNDHIT 1,2, (Member, IEEE),
AND NIJASRI CHARNNARONG SUWANWELA4
1Center of Excellence in Intelligent Informatics, Speech and Language Technology, and Service Innovation (CILS), Thammasat University, Rangsit 12120,
Thailand
2Department of Electrical and Computer Engineering, Faculty of Engineering, Thammasat University, Rangsit 12120, Thailand
3Ruamrudee International School, Bangkok 10510, Thailand
4Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Corresponding author: Charturong Tantibundhit (tchartur@engr.tu.ac.th)

This work was supported in part by the Thailand Research Fund (TRF), and in part by the Faculty of Engineering, Thammasat University,
under Grant RSA6080084.

ABSTRACT This work studies the features of a proposed automated stroke self-screening application that
utilizes the gyroscope and accelerometer devices in smartphones to determine the possible onset of a stroke
by assessing armmuscle weakness. The application requires users to perform two armmovements to evaluate
arm weakness and pronation: Curl-up and Raise-up. For the purpose of the study, 68 subjects, consisting
of 36 stroke patients with symptoms of arm weakness and 32 healthy subjects, consented to participate.
A total of 78 handcrafted features were proposed, 26 of which were extracted from Curl-up and Raise-up
for each arm. Then, the differences between corresponding features for each arm were calculated. These
features were then tested on 63 combinations of three classical feature selection methods, three feature
sets (i.e., Curl-up-only features, Raise-up-only features, and both-exercises combined features) and seven
well-known classification methods. The results from ten runs of 10-fold cross-validation showed that Curl-
up-only features achieved an average sensitivity of 83.3%, significantly higher than those of the Raise-
up-only features or both-exercises features. From all possible combinations, the random forest classification
based on information gain feature selection fromCurl-up-only features achieved the most efficient results for
arm-weakness-stroke screening. It achieved an average sensitivity of 94.8%, an average specificity of 75.2%,
an average accuracy of 84.1%, and an average area under the receiver operating characteristic curve of 85.0%.
Our work proposes a novel accessible method to screen symptoms of arm weakness that may indicate the
onset of a stroke using a single mobile device. In the future, we can combine this method with other methods
of evaluating facial drooping and slurred speech to create a complete Face, Arm, Speech, Time (FAST)
assessment application.

INDEX TERMS Arm weakness, handcrafted features, stroke screening, FAST, curl-up, raise-up.

I. INTRODUCTION
According to the World Health Organization, 15 million peo-
ple worldwide are diagnosed with strokes each year, 6.2 mil-
lion of which die. Stroke is the leading cause of disability
in the United States and the second leading cause of death
globally [1]. Annually, approximately 800,000 people in the
United States alone suffer from this illness. Globally, more
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than 10% of deaths are due to stroke, making stroke the third
leading cause of death worldwide. A stroke is a condition
that causes brain death due to poor blood flow to the cells
present inside the brain [2]. There are two main types of
strokes: ischemic stroke and hemorrhagic stroke. Ischemic
stroke occurs due to the stoppage of blood flow to the brain,
while hemorrhagic stroke occurs due to bleeding in the brain
[3]. A stroke causes abnormal functioning of the brain and,
thus, the entire body.
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All signs and symptoms related to a stroke are quick and
unexpected. There are mainly five severe signs that, if noticed
on time, can save a substantial number of lives and decrease
the severity of the effects of the attack. Immediate action is
required or there would be a risk of loss in brain function. The
signs are as follows [4]:

1) Immediate numbness in the face, leg or arm region
2) Numbness can occur only on one side of the body
3) Inability to speak or understand speech
4) Immediate vision issues
5) Abrupt disorientation or dizziness along with loss of

balance
6) Intense headache with no plausible reason

Treatment is imperative once a stroke occurs; the victims
need immediate and proper medical treatment before the
effects are permanently damaging. Early detection of stroke
symptoms can prevent much more severe problems. As an
alternative, to reduce the effects, the symptoms of a stroke
were developed so that people could identify strokes and
receive treatment immediately after developing the disease.

In 1998, a method to improve stroke symptom identifica-
tion, FAST, was developed. FAST (Face, Arm, Speech, and
Time) is a stroke early-identification method that assesses
the patient’s capability of performing certain tasks associated
with stroke symptoms [5]. This method of identification pri-
marily consists of four tasks. First, the patient is asked to
smile to examine signs of facial drooping, an indicator of
muscle weakness. Second, the patients are asked to raise both
of their arms, parallel to the floor, to determine whether they
encounter muscle weakness. Third, the patients are instructed
to repeat a certain phrase in order to recognize speech difficul-
ties. Finally, if the patients show any of these symptoms, they
should call the ambulance immediately to have the shortest
possible treatment delay [5].

A. STROKE SCREENING METHODS
Aroor et al.’s study results reflected an interesting aspect of
the relationship between age and FAST symptom coverage
[6]. The study showed that stroke patients who are younger
tend to be missed when using the FAST method compared
to older patients who showed FAST symptoms. Corrobo-
rating this information, another study was conducted using
5,023 stroke patients aged 18–55 years, aiming to evaluate the
effectiveness of FAST for younger patients with stroke. The
results of the study showed that at least one FAST symptom
is identified in 69.1% of young patients (18–24 years old),
74% of middle-aged patients (25–34 years), 75.4% of those
between 35 and 44 years, and 77.8% of 45–55 year-old
patients. The proportion of stroke patients identified by the
FASTmethod is very low for younger patients compared with
older patients [7].

To improve the identification accuracy of FAST,
researchers revised the mnemonic and added twomore symp-
tom indicators, B (Balance) and E (Eye-vision), to create
BE-FAST. According to a study conducted by Aroor et al.,

14.1% of patients who suffered from strokes did not pos-
sess any FAST symptoms. However, this proportion of
missed patients significantly decreased by 9.6%when aspects
of balance loss (B) and ocular complications (E) were
added [6]. In another similar study, Berglund et al. ana-
lyzed the effectiveness of the FAST method for stroke
identification. The research was conducted using a sample
of 179 emergency calls from patients who reported conditions
of strokes. Of the 179 patients, 64% were actually reported
to have strokes; however, only 90% of them exhibited FAST
symptoms [8].

Another type of stroke-screening scale is known as the
RACE scale (Rapid Arterial Occlusion Evaluation) [9]. It is
used for stroke detection and is simpler to use. It is mainly
used for acute stroke patients. It is a simple scale with more
inclination towards occlusion. It has five main items, with a
score ranging from zero to nine. Zero means that the patient
is normal, and nine indicates that occlusion is present and a
severe stroke has occurred [9].

CPSS, also known as the Cincinnati Prehospital Stroke
Scale, is a system used to diagnose the onset of a stroke
without the presence of a medical examiner [10]. It is used
to evaluate three major signs of a stroke: facial palsy, arm
weakness, and speech abnormalities. If the abnormal sighting
of these three signs has occurred, then the patient needs to be
immediately taken to a medical center for immediate care.
The victims detected by this test have a seventy-two percent
chance of having an ischemic type stroke if only one of the
signs is shown [11].

Another useful tool to detect the possible onset of a stroke
is transcranial Doppler ultrasound (TCD). TCD is a medical
imaging tool that allowsmeasurement of the velocity of blood
flow in intracranial arteries. It can be used to detect circu-
lating cerebral emboli and could enable rapid treatment and
prevention of embolus-related stroke. However, while using
TCD, the embolic signals (ES) share very similar character-
istics with those of artifacts (AF) caused by patient move-
ments. Therefore, human experts are required to analyze the
audio and spectral characteristics, making it prone to human
errors. An efficient automated algorithm to distinguish ES
is greatly desired, but no systems have been unanimously
agreed upon for routine clinical use. In our previous works
[12]–[14], we proposed an automated algorithm based on an
adaptive neuro-fuzzy inference system (ANFIS) that allows
for real-time detection of embolic signals (ES) when used
with TCD. The system achieved results of 91.5% sensitiv-
ity, 90.0% specificity, and 90.5% accuracy. Prior to that,
we reported on the use of ANFIS as a classifier.We performed
feature extraction on captured ES candidates using the adap-
tive wavelet packet transform (AWPT) and the fast Fourier
transform (FFT) and proposed the seven best features for the
system. ANFIS was then used to classify the extracted fea-
tures as non-ES or ES. The results of this study significantly
outperformed the results from the combination of features
and algorithms of Karahoca and Tunga [15]. In another prior
study, we investigated the use of a deep convolutional neural
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network (CNN) as a tool for cerebral ES detection [13]. The
study did not yield better results compared to using ANFIS.

B. STROKE DETECTION USING MOBILE DEVICES
Even though tools such as CPSS are available for diagnosing
the severity and probability of a stroke, the detection of stroke
symptoms has been more focused on for mobile applica-
tions. Compared to wireless medical devices, mobile appli-
cations on smartphones offer a more efficient, portable, and
accessible alternative that could help detect FAST symptoms.
Nougeira et al.’s study developed an application that incorpo-
rates an automated decision-making algorithm in combina-
tion with a series of clinical questions to assess the likelihood
of a patient experiencing a stroke. Upon detection, the appli-
cation analyzes its database of all regional stroke centers and
directs Emergency Medical Services (EMS) to the most suit-
able stroke center for a given case. However, the application
is only targeted for EMS physicians to handle and not the
general public [16]. With every smartphone’s gyroscope and
accelerometer, an application can be developed to measure
the movement of a patient’s arm to allow detection of arm
weakness. Applications also allow users to pinpoint their
exact location to help find nearby emergency hospitals in case
of a stroke. The American Stroke Association has developed
a mobile application known as ‘‘Spot a Stroke F.A.S.T.’’ This
application allows the user to recognize the signs of a stroke
and respond quickly by getting in touch with the emergency
services [17].

Accelerometers are instruments that quantitatively mea-
sure the acceleration of a body in movement of any
form. They are unique tools to measure physical activities.
In mobile phones, accelerometers are used to detect the ori-
entation of the mobile device, as well as the pressure applied
to fingerprint scanners and touch screens [18].

Nam et al. used mobile phone devices as a qualitative
method for detecting arm weakness, drift, and pronation
caused by the onset of a stroke. Two mobile devices were
placed on each forearm and held firmly in place with straps
above the wrists. A support system was developed as a
part of the application for decision-making situations and
emergencies [17]. Mukherjee and Arvind proposed a method
to classify muscle strength. The method uses a wearable
device that combines a triaxial gyroscope, an accelerom-
eter, and a magnetometer. Ten healthy subjects simulated
four levels of muscle strength of the biceps brachii by per-
forming the biceps curl motion with different resistance
loads [19].

A gyroscope is a device that spins around freely on its
axis and can alter the direction in which it is spinning. If the
device is tilted, this does not affect the axis orientation. This
allows the device to provide stability. A gyroscope is used as
a reference when finding the direction by navigation systems.
Gyroscopes are used in mobile phones to detect when users
change orientation, such as tilting the screen during gaming
and shaking [20].

Gyroscopes and accelerometers are inexpensive and small
enough for easy transportation. Capela and Lemaire carried
out a study that utilized a wearable smartphone for physical
activity detection in stroke patients [21]. A comparison was
also made with other stroke-free individuals in the populace.
Certain parameters were chosen to be tested for each popu-
lace. Physical activity detection outside the medical center is
a valuable parameter to be monitored after a stroke. The use
of accelerometers and gyroscopes hasmade it easier andmore
affordable to shift studies outside of controlled environments.
The study measured the total activity per day of the subjects
through the body-worn sensors. Physical activity included
walking on flat ground, standing, sitting on furniture, climb-
ing staircases, etc. Other mundane tasks were also taken into
account, such as washing dishes, doing laundry, combing hair
and brushing teeth. A control sensor was used as a standard,
and videos of activities were recorded. The data collected
were processed. A mean and a standard deviation were given
for each populace. The results showed that the gyroscope was
capable of distinguishing between phases of idle sitting and
standing up. Accelerometers measured movement and accel-
eration of the subjects. Moreover, the gyroscope detected
minutemovements by the subjects, making it suitable for neu-
rological examination. Additionally, the accelerometer could
detect changes in acceleration when climbing up and down
stairs [21]. This confirms the validity and reliability of both
sensors.

Previous works [22]–[24] attempted to utilize the
gyroscope and accelerometer as separate wearable devices.
However, using these miniaturized wearable devices raises
concerns regarding battery life and signal fusion.Maximizing
energy efficiency to extend battery life is vital for medical
media technologies, especially due to the emerging trends in
miniaturized wearable devices. Various wireless body sensor
networks have different requirements regarding power, data
rate, and other parameters. Conventional approaches with
constant transmission power are inappropriate for use in
healthcare purposes due to their inefficient power manage-
ment and energy-saving capability. Sodhro et al. proposed
a transmission power control (TPC)-based energy-efficient
algorithm (EEA) for use in wireless body sensor devices
that track a subject in three different postures (i.e., walk-
ing, running, and standing). Compared with the previous
adaptive TPC (ATPC) method, their experimental results
showed that EEA achieved 42.5% energy savings with an
acceptable packet loss ratio (PLR). Despite enhanced energy
savings, the main limitations of the newly proposed EEA
are its higher packet loss ratio and high standard deviation.
Zhang et al. proposed a self-adaptive power control-based
enhanced efficient-aware approach (EEA) to reduce energy
consumption, extend battery lifetime, and improve battery
reliability. They evaluated the proposed method by analyz-
ing real-time data traces of static and dynamic postures,
comparing it to conventional constant TPC methods. Their
experimental results showed that the proposed EEA enhances

170900 VOLUME 8, 2020



P. Phienphanich et al.: Stroke Screening Feature Selection for Arm Weakness

the energy efficiency, reliability, and sustainability, while
constant TPC does not.

When using wearable wireless body sensors, data may be
obtained from multiple devices. However, data may be less
meaningful when derived from an array of individual signals.
This highlights the need for a multisensor fusion method to
connect data from a multitude of sensor sources and trans-
form them into high quality fused data that can predict events
with higher confidence. Muzammal et al. proposed a data
fusion enabled ensemble approach to fuse together medical
data obtained from a collection of wireless body sensor net-
works (BSNs) to predict the presence of heart disease. They
developed a fog-based computing environment that facilitates
communication between thewearable sensors and the system.
For classification, a kernel random forest ensemble was used,
which produced better quality results than random forest.
Given these limitations, we strive to find a more efficient and
accessible method to utilize the gyroscope and accelerometer
in measuring arm weakness in one device.

In our recent work [25], we utilized the gyroscope and
accelerometer in mobile devices to collect arm movement
data, aiming to detect early symptoms of arm weakness for
stroke patients. The novelty of this method is the utilization of
the gyroscope and accelerometer signals in creating an acces-
sible self-screening application that detects arm weakness to
screen the possible onset of a stroke. Focusing on detecting
the arm factor of FAST, subjects were asked to perform two
arm exercises while carrying a mobile device and using the
MAWD application. The application has been designed to
appear as a game so that patients would not be stressed during
data collection. With only results from the arm factor of
FAST, the study yielded an accuracy of 61.7%–74.1% and an
average area under the ROC curve (AUC) of 66.2%–81.5%.

C. AIM OF THIS STUDY
The primary objective of this study is to further develop the
information and analysis presented in our previous work [25].
We aim to follow the same methods as in our previous work
[25], with the addition of increased numbers of subjects,
feature selection methods, and classification methods. More-
over, a more in-depth graphical analysis will be presented.

The main contributions of this study are as follows:

1) A novel stroke-screening method is proposed. The pro-
posed method analyzes the gyroscope and accelerom-
eter signals of a smartphone, collected from patients
performing two armmovement exercises (Raise-up and
Curl-up), and assesses arm muscle weakness. The data
from these signals are extracted into 78 features. Due
to the low complexity of these features, most modern
smartphones are able to calculate them independently.
The novelty of this method lies in the utilization of
gyroscopes and accelerometer devices, available in
most modern smartphones, to detect arm muscle weak-
ness and predict the possible onset of a stroke. By using
measuring tools that are commonly available in mobile

FIGURE 1. A diagram of the complete FAST stroke screening application.
The proposed approach of this particular study is boxed in red. The blue
box includes features that are planned to be added in future studies to
create the complete application.

phones, we are able to diagnose arm muscle weak-
ness by using a single device. This contributes to the
accessibility of our proposed method, as most peo-
ple have access to some type of smartphone. Ulti-
mately, we plan to combine features of facial drooping
and slurred speech factors to craft a complete FAST
stroke-screening application as illustrated in Fig. 1.

2) Two arm exercises (Raise-up and Curl-up) were crafted
to detect arm weakness and pronation. The study
focuses on assessing arm weakness as a possible
indicator of a stroke (different nerves). The Curl-up
movement is designed to measure muscle strength of
the biceps brachii [19]. The Raise-up movement is
designed to evaluate pronator drift, an indicator of mild
arm weakness.

3) The highest accuracy achieved from this study, despite
only assessing the arm weakness symptom as an indi-
cator of a stroke, is better than that achieved from
the assessment of normal witnesses. From all possible
combinations investigated in this study, the random
forest classification based on information gain feature
selection from Curl-up-only features achieved 84.1%
accuracy. In the general population, people are able to
identify whether an observed symptom is an indicator
of stroke only approximately 60 to 80 percent of the
time [26].

Table 1 summarizes four distinct stroke screening methods
and highlights the advantages and disadvantages of the pro-
posed approach in comparison to previous relevant methods.
Section II describes some related theories of feature extrac-
tion. Section III proposes our handcrafted feature extraction.
Section IV describes the process of data collection and the
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TABLE 1. A summary of the proposed stroke screening method including its advantages and disadvantages in comparison to other relevant stroke
detection methods.
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use of the numerous results for cross-validation and multi-
ple types of feature selection and classification. Section V
presents the results. Section VI presents the discussion and
conclusion of this study. Lastly, Section VII proposes future
works and possible developments.

II. RELEVANT METHODS
A. VELOCITY AND DISPLACEMENT CALCULATION
Acceleration data were measured with the accelerometer sen-
sor module. In general, the velocity is the first and the acceler-
ation is the second derivative of displacement. In a continuous
time system, the acceleration value must be integrated to
be able to compute the velocity. However, the data were
collected in a discrete time system. Therefore, we used the
trapezoidal method to estimate the velocity from the retrieved
acceleration data a[n] with sampling interval T [27] as

v[n+ 1] = v[n]+ a[n]+
a[n]− a[n− 1]

2
T . (1)

However, one concern that arose was that the acceleration
value may include noise. As a solution, we set the value to
zero if the absolute value of the acceleration was less than
the noise level threshold (εa) [27]. Our selected threshold is
εa = 0.5 m2/s.
Another concern arose as the noise from the acceleration

caused unwanted ramping. To adjust this, the velocity was
integrated using the Omega Arithmetic method [28]. The
Omega Arithmetic method applies the discrete-time Fourier
transform (DTFT) and integrates the frequency domain to
adjust the signal. The acceleration can be defined by

a[n] ≈
∞∑

f=−∞

A[f ]ej2π fn, (2)

a[n] =
dv[n]
dn
=

d
dn

(
∞∑

f=−∞

V [f ]ej2π fn)

=

∞∑
f=−∞

(j2π f )V [f ]ej2π fn. (3)

Eq. (2) and Eq. (3) give

V [f ] = A[f ]/(j2π f ), (4)

v[n] =
∞∑

f=−∞

V [f ]ej2π fn, (5)

where a[n] and A[f ] are the acceleration in the time domain
and the frequency domain, respectively. Meanwhile, v[n] and
V [f ] are the velocity in the time domain and the frequency
domain, respectively.

This method is not suitable for some low-frequency signals
due to the appearance of interference signals, called ‘‘1/f
noise’’, and we assume that no subject can Curl-up over ten
times per second. To ameliorate this issue, we added cutoff
frequencies (fcL for the lower cutoff frequency and fcH for the

upper cutoff frequency) into Eq. (4) as

V [f ] =

{
A[f ]/(j2π f ) fcL ≤ |f | ≤ fcH
0 else

. (6)

Based on the preliminary experiment, we suggested using
1 Hz for the lower cutoff frequency and 10 Hz for the upper
cutoff frequency.

The relationship between displacement and velocity is the
same as the relationship between velocity and acceleration.
They can be described as

s[n] =

−fcL∑
f=−fcH

V [f ]ej2π fn

j2π f
+

fcH∑
f=fcL

V [f ]ej2π fn

j2π f
. (7)

B. GYROSCOPE SIGNAL ADJUSTMENT
Due to a limitation of the gyroscope, the output of the
gyroscope will be limited to (−π/2, π/2] for yaw (α) and
roll (γ ) and limited to (−π/2, π/2] for pitch (β). However,
the gyroscope signals must be normalized due to the varying
initial angles, θ , at which users hold their mobile phones
while performing the Raise-up or Curl-up exercises. After
normalizing the gyroscope signals, incorrect angles occasion-
ally occurred, as shown in Fig. 2. To replace the incorrect
angle shift, we used the arctan and arctan2 functions after the
gyroscope signal normalization [29] as follows:

θ ′[n] = fn(θ [n]−
1
N

n∑
i=n−N+1

(θ [i])), (8)

where

fn(θ ) =

{
arctan(θ) θ ∈ β

arctan2(θ) θ ∈ α ∨ θ ∈ γ.
(9)

FIGURE 2. Examples of a normalized gyroscope signal with and without
replacing incorrect angles by arctan and arctan2 methods.

C. FINDING THE PERIODICITY
A correlation signal is an indicator tool that shows the rela-

tionship or similarity of a signal. An autocorrelation signal
(Rxx) is the correlation of a signal with a delayed copy of
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Algorithm 1Calculate the First Maximum of xWith Starting
Index i0, Window Length Thw, and Threshold Thh
Require: x[n] ∈ R ∧ n ∈ Nx
Ensure: C ← firstmax(x, i0,Thw,Thh)
C ← i0
i← i0
w← N
while i < N ∧ i < (C + w) do
if x[i] > Thh ∧ x[i] > x[C] then
C ← i
w← Thw

end if
i← i+ 1

end while

itself. It can show the similarity of the signal itself or its
periodicity and can be defined as

Rxx[m] =
Cxx[m]
Cxx[0]

, (10)

where

Cxx[m] =
1
N

N−m∑
i=0

(x[i]− x̄)(x[i− m]− x̄). (11)

N is the signal sample length, and 0 ≤ m < n < N .
Chatfield [30] showed that the time period of the signal is
the time at which the correlated value first peaks. We used
Algorithm 2 to find the periodicity of a signal, such as an
acceleration or gyroscope signal.

Algorithm 2 Find Periodicity S and Time Period T of x With
Sampling Frequency Fs
Require: x[n] ∈ R ∧ n ∈ Nx
Ensure: S,T ← periodicity(x,Fs)
R← RXX (τ ); 0 ≤ τ ≤ N
Thh← 0.3
Thw← 5
S ← new Array
T ← new Array
while True do
Cn← firstmax(−R, 0,Thw, 0)
Cp← firstmax(R,Cn,Thw,Thh)
if Cp ≤ Cn then
break

else
insert R[Cp] into S
insert Cp/Fs into T

end if
end while

D. CURL-UP AND RAISE-UP EXERCISES
The pronator drift test where a patient is asked to lift both
arms in the air with forearms supinated and eyes closed is a

FIGURE 3. Screenshots of our data-collection application and some
examples of Raise-up and Curl-up exercises. (A) Subjects will be
classified into three levels according to health. (B) Screenshot of the
Raise-up exercise. (C) ‘‘Prepare’’ posture used prior to each exercise.
(D) Demonstration of the Curl-up exercise. (E) Demonstration of the
Raise-up exercise.

neurological examination to detect signs of cerebral damage
affecting the motor nerve for pronation [31]. Patients with
arm weakness will show symptoms where they will attempt
to overturn their hand. This test is similar to the standard arm
test of FAST. We adopted this test such that the pronator drift
can be measured with a single mobile phone, measuring one
arm at a time, and named it the ‘‘Raise-up’’ exercise. The
accelerometer and gyroscope were used to measure the lifting
distance and stability of the patient’s arms.

The arm strength test used by Mukerjee and Arvind [19]
focuses on measuring the strength of biceps brachii muscles.
Because weakness rather than spasticity is the main factor
interfering with voluntary force control in chronic stroke
[32], we adopted this test’s primary motion of ‘elbow flexion
against gravity’ to measure arm weakness for each arm by
using a mobile device, and we called this the ‘‘Curl-up’’ exer-
cise. The accelerometer and gyroscope were used to measure
the applied force and the periodicity of cycling of the biceps
curl.

III. PROPOSED METHODS
A. DATA PREPROCESSING
The gyroscope and acceleration signals collected from our
application were enhanced by the Savitzky-Golay smoothing
filter, the same configuration as in [33], and the DC off-
set removal method, called normalization. After normalizing
the gyroscope signal, we replaced the incorrect angle as
described in Section II-B.

B. ARM WEAKNESS SCREENING POSTURES
Before the exercises, all subjects consented to the agreements
and conditions of the ‘‘Software Usage Agreement’’ in the
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application and documented personal information including
age, gender, and dominant hand. Then, they classified them-
selves by selecting their health conditions:

• Level 1 - Stroke patients with arm muscle weakness
• Level 2 - Regular healthy subjects
• Level 3 - Healthy subjects who regularly exercise

After completing the introductory part of the applica-
tion, subjects were instructed to perform four exercises as
follows:

1) Curl-up - Right hand
2) Raise-up - Right hand
3) Curl-up - Left Hand
4) Raise-up - Left Hand

TheCurl-up exercise was designed tomeasure the subject’s
arm strength: more specifically, the biceps and triceps mus-
cles. As explained in the instruction part of the application,
subjects are instructed to sit in a straight and relaxed posture
with their mobile device held in the indicated hand. After
clicking ‘‘Start’’ on the screen, each subject should be in
the ‘‘Prepare’’ posture, placing their hands on their lap with
their palms facing up as they wait for the ‘‘Go’’ signal. The
‘‘Go’’ signal will sound for five seconds after clicking. After
the ‘‘Go’’ signal, subjects will begin to perform the biceps
curl. To perform the Curl-up, subjects will contract their
biceps to elevate their forearm towards their chest. Then,
they will relax their biceps to allow the forearm to descend
back towards their lap. These motions should be repeated as
rapidly as possible. Subjects will eventually stop after time
runs out at 15 seconds. This exercise is then repeated with the
other arm.

After completing the Curl-up exercise, subjects will pro-
ceed to perform the Raise-up exercise. The Raise-up exercise
was designed to follow the standard procedures to detect
muscle weakness for the arm factor in FAST. For Raise-up,
subjects will also begin in their ‘‘Prepare’’ posture as they
wait for the ‘‘Go’’ signal. Once the ‘‘Go’’ signal is played,
subjects will extend their arm horizontally, parallel to the
floor, with their palms facing upwards. The phone should rest
on the extended arm’s palm. On the mobile application, sub-
jects will see two circles on the screen: one white stationary
circle on the center of the screen and one adjustable circle
that correspondingly moves with the subject’s palm angle.
The objective of this exercise is to align the adjustable circle
with the stationary center circle and maintain that balance for
as long as possible. By doing so, subjects will earn points,
and their scores will increase. The Raise-up exercise will end
after 20 seconds.

While performing the exercises, accelerometer and gyro-
scope data are being collected by the application with a
20 millisecond sampling interval. The accelerometer collects
data of the device’s acceleration on the X , Y , and Z axes, rep-
resented as x, y, and z, respectively. The gyroscope provides
data on the device’s orientation in space; pitch (β), roll (γ ),
and yaw (α) represent rotations around the X, Y, and Z axes,
respectively.

C. DEFINITION OF SIGNAL PARTS
We are interested in analyzing three parts of the two exercises.
The first point of interest is the last 10 seconds of the Curl-up
exercise, called the ‘‘curl part’’. This part reflects the strength
of the arm muscles and the consistency of exertion. The next
point of interest is the first 2 to 12 seconds of the Raise-up
exercise, called the ‘‘raise part’’, which indicates the distance
that the subjects can lift and the time needed for the subject
to maintain stability after lifting the mobile phone. The third
point of interest is the last 10 seconds of the Raise-up exer-
cise, called the ‘‘stable part’’. During this part, the subjects
must try to balance their phone, parallel to the ground, at
all times.

Gyroscope and accelerometer data were retrieved with a
20 millisecond sampling interval to ensure that the method
can be run with the majority of mobile devices in the global
market. According to portrait orientation, the X axis runs
from left to right, the Y axis runs from bottom to top, and the
Z axis runs from back to front. The acceleration data display
the device’s acceleration on three axes, x, y, and z, which
constitute the device acceleration along the X , Y , and Z axes,
respectively. Gyroscope data reveal the device’s orientation in
space; yaw (α), pitch (β), and roll (γ ) represent the rotations
around the Z , X , and Y axes, respectively.

We defined the sum of the rotation signals in both motions
by

2[n] = θβ [n]+ θγ [n], (12)

where θβ and θγ are the orientation in pitch and roll, classified
as follows: good level–a sum less than 1 degree; adequate
level–a sum less than 3 degrees; moderate level–a sum less
than 5 degrees; poor level–a sum greater than 5 degrees.

D. FEATURE EXTRACTION
1) Curl Part’s Feature Extraction

• First local maximum (delay time and value) and
number of local maxima of the autocorrelation of
the Z -axis acceleration (first(TCz ), first(SCz ), and
card(TCz )), where

SCz ,T
C
z = periodicity(aCz ,Fs) (13)

• First local maximum (delay time and value) of
the autocorrelation of the pitch (first(SCβ ) and
first(TCβ )) and the roll (first(SCγ ) and first(TCγ )),
where

SCβ ,T
C
β = periodicity(θCβ ,Fs) (14)

and

SCγ ,T
C
γ = periodicity(θCγ ,Fs) (15)

• Maximum acceleration andmaximum jerk (deriva-
tive of acceleration)

aCmax,z = max({aCz [n]|n ∈ N
C
az }) (16)

jCmax,z = max({aCz [n]− a
C
z [n− 1]|n ∈ NC

az }) (17)
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• Absolute values of maximum positive velocity and
maximum negative velocity and their sum

vCmax,↑,z = max({vCz [n]|v
C
z [n] > 0 ∧ n ∈ NC

vz })

(18)

vCmax,↓,z = max({−vCz [n]|v
C
z [n] < 0 ∧ n ∈ Nvz})

(19)

|v|Cz = vCmax,↑,z + v
C
max,↓,z (20)

• Range of Z -axis displacement in 500 ms

|s|Cz = max(sCz [0 :
Fs
2
])−min(sCz [0,

Fs
2
]) (21)

• Standard deviation of sin of the sum rotation
(std(sin(2C [n])))

2) Raise Part’s Feature Extraction
• Range of Z -axis acceleration in 500 ms

|a|Rz = max(aRz [0 :
Fs
2
])−min(aRz [0,

Fs
2
]) (22)

• Maximum positive velocity

vRmax,↑,z=max({vRz [n]|v
R
z [n]>0 ∧ n ∈ NR

vz}) (23)

• Time used to stabilize the device to the proper or
adequate level after maximum Z -axis acceleration,
called ‘‘peak-to-stable’’

nRpeak = argmax
n
aRz [n] (24)

nRstable = {n|n ≥ t
R
peak ∧2

R[n]≤3◦} (25)

tRpeak−to−stable =
min(nRstable)− n

R
peak

Fs
(26)

3) Stable Part’s Feature Extraction
• Standard deviation of Z -axis acceleration

σ Sz = stdev({aSz [n]|n ∈ N
S
az}) (27)

• Percentage of time at the good, adequate, andmod-
erate levels

%tSgood =
card({n|2S [n] ≤ 1◦})

N
(28)

%tSadequate =
card({n|1◦ < 2S [n] ≤ 3◦})

N
(29)

%tSmoderate =
card({n|3◦ < 2S [n] ≤ 5◦})

N
(30)

• 25th, 50th, and 75th percentiles of the degree of
stabilization (P25(2S ), P50(2S ), and P75(2S ))

E. ‘‘DELTA OF’’ FEATURES
Stroke patients are expected to experience difficulty in per-
forming both exercises efficiently for the same arm. For
example, in the Curl-up exercise, arm weakness can be
indicated by a drastic difference in the acceleration of
each arm. Since force is directly proportional to acceler-
ation, the weaker arm would yield a significantly lower
acceleration.

FIGURE 4. Workflow diagram of features measured and used in each fold
of ten runs in 10-fold cross-validation.

All extracted features are computed for each individual arm
and calculated to find the difference between both arms. This
difference is called ‘‘Percent Delta of’’ (%1), defined as

%1(FX ) =
|FX ,L − FX ,R|

|FX ,L | + |FX ,R|
, (31)

where FX ,L is a feature from the X part for the left arm and
FX ,R is a feature from the X part for the right hand. If %1
is a Not-a-Number (NaN) value, caused by having a zero
denominator, then this feature will be set to the ‘‘ignore’’
value.

IV. EXPERIMENTAL SETUP
A. DATA COLLECTION
In this study, we collected the gyroscope and acceleration
signals from the Curl-up and Raise-up exercises by using
an iPhone 6, a smartphone device, with a 40 Hz sampling
frequency. With the approval of the Institutional Review
Board, Chulalongkorn University No. 242/61, the data from
68 participants (32 healthy subjects and 36 chronic stroke
patients) were collected at the King Chulalongkorn Memo-
rial Hospital, Bangkok, Thailand. All chronic stroke patients
have been diagnosed and confirmed to have symptoms of
arm weakness by the hospital’s neurologists. However, they
could speak and understand speech. Facial drooping and other
stroke-related damage were present in some patients. All
patients were assisted in the documentation and informa-
tion process; however, all patients performed the exercises
unassisted.

B. CROSS-VALIDATION
Cross-validation is used in machine learning to estimate
the performance of a classifier on unseen data (often used
in the case of limited sampling data). We used the k-fold
cross-validation method. This method splits data randomly
into k equal parts. After that, one part is used to test the per-
formance of the model. To be able to compare each method,
we must split data in the same way for every classifier. Then,
this process is repeated for all k parts. No pair of data points in
this study is from the same subject. In this study, we repeated
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TABLE 2. Top 15 selected features from InfoGain feature selection for ten runs of 10-fold cross-validation.

TABLE 3. Top 15 selected features from CFS feature selection for ten runs of 10-fold cross-validation.

ten runs of 10-fold cross-validation for all combinations of
classification and feature selection methods with randomized
initial values.

C. SELECTED FEATURES
In each fold of the cross-validation, we augmented the train-
ing dataset by swapping data between left and right hands
to avoid imbalance of the weak side in the data that we
randomized. Then, the gyroscope and acceleration signals

from both arms were adjusted and extracted into 78 features,
described in Section III-D.

We chose to use the two most common feature selec-
tion methods: Information Gain (InfoGain) [34] and
Correlation-Based Feature Selection (CFS) [35]. InfoGain
is an entropy-based feature selection method, defined as
the amount of information provided by the feature items
for the text category. It is calculated according to how
useful a term is for classification of information. InfoGain
ranks subsets of features based on high information gain
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TABLE 4. Average and standard deviation (italics) of percentage accuracy (ACC), sensitivity (SENS), specificity (SPEC), and area under the ROC curve (AUC)
for ten runs of 10-fold cross-validation.

entropy in decreasing order. It is frequently employed as a
term-goodness criterion in the field ofmachine learning,mea-
suring the number of bits of information gained for category
prediction by knowing the presence or absence of a term in
a document. CFS is an evaluation method used to analyze
subsets of features based on how correlated the features

are with the classification. This feature selection method
operates on the original feature space, making the knowledge
induced by the learning algorithm interpretable in terms of
the original features and not the transformed space. A good
feature subset contains features that are highly correlated
with the class but not correlated with other feature subsets.
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TABLE 5. Summary of the results of the features from Table 2, divided into three columns according to the feature sets and separated into three rows
according to the percentage picked.

In principle, the CFS technique, only requiring a means of
measuring the correlation between any two variables, can
be applied to a variety of supervised classification problems.
Although optional, CFS does not require the user to specify
any thresholds or the quantity of features to be selected.
Moreover, being a filter, CFS incurs low computational cost
because it does not require repetitive invocation of a learning
algorithm.

The purpose of this study is to find features that can help
screen stroke by analyzing arm weakness. We classified the
features into stroke patients and healthy subjects. In each fold,
the training models were produced from the training dataset

using 63 combinations of three classical feature selection
methods (InfoGain, CFS, and no feature selection), three
feature sets (Curl-up-only features, Raise-up-only features,
and both-exercises features), and seven well-known classifi-
cation methods (naive Bayes (NaiveB), Bayes network learn-
ing (BNet), random forest (RF), J48 decision tree, k-nearest
neighbors (kNN), locally weighted learning (LWL), and mul-
tilayer perceptron (MLP)). We used the Weka tool [36],
well-known software that collects tools and methods of data
mining and machine learning, to perform all of the combi-
nation tasks of feature selection and classification. We then
used the testing dataset to measure the performance of all
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TABLE 6. Summary of the results of the features from Table 3, divided into three columns according to the feature sets and separated into three rows
according to the percentage picked.

combinations of models and selected features according to
the statistics of each feature selection.

The measurements of performance included the accuracy
(ACC), sensitivity (SENS), specificity (SPEC), and area
under the receiver operating characteristic curve (AUC).
These measurements of performance reflected the classifi-
cation without regard to class distribution and error costs
[19]. To calculate them, we must measure the true positive
(TP), true negative (TN), false positive (FP), and false neg-
ative (FN) values corresponding to the number of correctly
classified stroke patients. We also need to note the number
of correctly classified healthy subjects, the number of incor-
rectly classified stroke patients, and the number of incor-
rectly classified healthy subjects. Due to the unequal cost
of incorrectly classified stroke patients and healthy subjects,
i.e., that misclassifying stroke patients could be harmful but
misclassifying healthy subjects could be a waste of time,

we adjusted the cost function ratio of false positives to false
negatives in the training step to two to one.

D. EVALUATION
In ten runs of 10-fold cross-validation, a number of selected
features are counted every round because the information
gain method considers every feature related to the entropy of
the output class, but CFS considers a random feature subset
that is uncorrelated with the inner features but correlated with
the output class. The difference between the two selected
features method could describe some characteristics of each
feature.

The average performance is evaluated by multivariate
analysis of variance (MANOVA) to analyze whether the
independent grouping variables (feature sets, feature selec-
tion, and classification model) simultaneously explain a sta-
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tistically significant amount of variance in the dependent
variable (accuracy, sensitivity, specificity, and AUC).

Primarily, we will select the appropriate model for stroke
screening by selecting the combination that yields the high-
est accuracy value. However, if two or more combination
performances yield a similar high accuracy, then we analyze
and select the combination with the highest sensitivity as an
alternative.

V. EXPERIMENTAL RESULTS
The data from Tables 2 and 3 display selected features from
the InfoGain and CFS methods, respectively. The features
in both tables are divided into three main columns labeled
‘‘Curl-up’’, ‘‘Raise-up’’, and ‘‘Both’’. The ‘‘Curl-up’’ and
‘‘Raise-up’’ columns contain features associated with their
respective exercises, while the ‘‘Both’’ column contains fea-
tures associated with both exercises. Within each column,
features are grouped and labeled according to their percent-
age picked. Features that are selected 100% of the time are
labeled ‘‘Always Picked’’ and highlighted in green, features
selected 80–99% of the time are labeled ‘‘Often Picked’’ and
highlighted in blue, and features selected less than 80% of the
time are labeled as ‘‘Seldom Picked’’.

The results for the InfoGain and CFS feature selection
methods are summarized in Table 5 and Table 6, respectively.

The performances of each feature set are significantly
different [F(2, 6237) = 29.82, p<0.001]. The AUC, accu-
racy, sensitivity, and specificity of the feature sets shown
in Fig. 5 are significantly different ([F(2, 6237) = 12.06,
p<0.001], [F(2, 6237) = 11.08, p<0.001], [F(2, 6237) =
84.64, p<0.001], and [F(2, 6237)= 20.71, p<0.001], respec-
tively). However, the average accuracy and AUC from the
Curl-up exercise and both-exercises feature sets are not sig-
nificantly different (p= 0.4532 and p= 0.721, respectively).
The other pairs are significantly different. The average sensi-
tivity and specificity are significantly different for all pairs.

The average accuracy and AUC of the feature selection
methods shown in Fig. 6 are not significantly different
([F(2, 6237) = 2.32, p = 0.098] and [F(2, 6237) = 1.69,

FIGURE 5. Comparisons of the average and standard deviation of the
performance of features from the Curl-up-only exercise, Raise-up-only
exercise, and both exercises.

FIGURE 6. Comparisons of the average and standard deviation of the
performance of feature selection methods.

FIGURE 7. Comparisons of the average and standard deviation of the
performance of classifiers.

p = 0.184], respectively). However, the average sensitiv-
ity and specificity of the feature selection methods are
significantly different ([F(2, 6237) = 4.876, p<0.01] and
[F(2, 6237) = 5.35, p<0.01], respectively). The AUC,
accuracy, sensitivity, and specificity of the classification
methods shown in Fig. 7 are significantly different ([F(6,
6237) = 36.03, p<0.001], [F(6, 6237) = 33.20, p<0.001],
[F(6, 6237) = 45.15, p<0.001], and [F(6, 6237) = 31.75,
p<0.001], respectively).

VI. DISCUSSION AND CONCLUSION
The percentages of the selected features for both fea-
ture selection methods showed that the essential factors of
arm-weakness screening are from the curl part, related to the
strength of the biceps brachii test, and the stable part, related
to the pronator drift test. The displacement and velocity of the
raise part are quite difficult to detect; this could be attributed
to slow changes in displacement resulting in small accelera-
tions that were similar to noise and removed by the smooth
filter. However, the raise part is still essential because the
time necessary to stabilize from the raise part to stability had
been detected in 79% of instances by the information gain
method, the first not-always-selected feature, and it is part of
the Raise-up exercise.

Both feature selection methods selected almost the same
features of both exercises and preferred to select the features
from the stable part rather than the curl part, especially those
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TABLE 7. Notation.

from the acceleration signal, and not to select those from the
raise part.

Table 4 shows the average and standard deviation of all
performances for ten runs of 10-fold cross-validation. The
top 5 combinations of classification and feature selection
methods achieved the highest average accuracy; none of them
are significantly different, including the naive Bayes model
with all features from the Raise-up exercise, which yielded
an average accuracy of 85.0%, the naive Bayes model with
information gain feature selection from the Raise-up exercise,
which yielded an average accuracy of 84.2%, the naive Bayes
model with information gain feature selection from both exer-
cises, which yielded an average accuracy of 84.2%, the ran-
dom forest model with information gain feature selection
from the Curl-up exercise, which yielded an average accuracy
of 84.1%, and the naive Bayes model with information gain
feature selection from the Curl-up exercise, which yielded
an average accuracy of 84.2%. The random forest model
with information gain feature selection from the Curl-up
exercise yielded the highest average sensitivity of 94.8%,
significantly different from the three former combinations.
Based on our collected data, we suggest that the random
forest model with information gain feature selection from
the Curl-up exercise should be for used for automated stroke
screening.

VII. FUTURE WORK
First, we plan to collect more data, especially from patients
who exhibit signs of pronation drift, to increase the sensitivity
of the Raise-up features because these two exercises are tested
with different muscle strengths. Then, we will collect data
from patients who have arm weakness resulting from other
diseases to compare and analyze differences between the
data. Finally, we will combine features from other factors,
such as facial drooping and speech, to complete the total
FAST test. However, the time used and robustness in an
open-environment situation will be considered.

NOTATIONS
Abbreviations and symbols in this paper are explained
in Table 7.
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