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ABSTRACT Computed tomography (CT) with a contrast-enhanced imaging technique is extensively
proposed for the assessment and segmentation of multiple organs, especially organs at risk. It is an important
factor involved in the decision making in clinical applications. Automatic segmentation and extraction of
abdominal organs, such as thoracic organs at risk, from CT images are challenging tasks due to the low
contrast of pixel values surrounding other organs. Various deep learning models based on 2D and 3D
convolutional neural networks have been proposed for the segmentation of medical images because of their
automatic feature extraction capability based on large labeled datasets. In this paper, we proposed a 3D-atrous
spatial pyramid pooling (ASPP) module integrated with a proposed 3D DensNet encoder–decoder network
for volumetric segmentation to segment abdominal organs from CT. The proposed network used a 3D-ASPP
block to capture spatial information in multiscale input feature maps from the decoder side. We also
proposed a 3D-ASPP block with a 3DDensNet network for automatically processing 3Dmedical volumetric
images. The proposed hybrid network was named 3D-ASPPDN for volumetric segmentation via CTmedical
imaging. We tested our proposed approach on a public dataset, Thoracic Organs at Risk (SegTHOR) 2019.
The proposed solution showed excellent performance in comparison with other existing state-of-the-art DL
methods. The proposed method achieved Dice scores 97.89% on the SegTHOR dataset. Results presented
that 3D-ASPPDN exhibited enhanced performance in volumetric biomedical segmentation. The proposed
model could be used for volumetric segmentation in clinical applications to diagnose problems in multi class
organs.

INDEX TERMS 3D volumetric segmentation, 3D deep learning models, 3D-atrous spatial pyramid pooling
(ASPP), SegTHOR.

I. INTRODUCTION
The contrast-enhanced Computed Tomography (CT) has
been used effectively for thoracic diseases and has great
importance in medical field. The radiologist spent lot of
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the time for identification and localization of organs in
CT images. The automatic segmentation and localization of
organs from CT images could be helpful to diagnose the
thoracic organs at risk in CT images. The CT images contain
multiple organs have three-dimensional(3D) structure and
manually segmented of each slice from 3D volume is time
consuming process. Automatic segmentation based on deep
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learning models could be helpful and can produce effective
results for segmentation and detection of organs in 3D CT
images. Lot of works have been done for automatic segmenta-
tion of CT images in biomedical fields. Mostly the segmenta-
tion in medical fields has been done based on individual slice
of each patient such as 2D U-net model. The U-net model
consisted of encoder and decoder part with skip connection
and produce better results in medical image segmentation.

In 3D deep learning models, the segmentation of all slices
of the CT images done at once. However, the first issue
in 3D segmentation deep learning models is computationally
complexity. The second issue is due to large number of
weights parameters can make the model to overfitting due
limited training data. The second could be resolve by using
small 3D convolutional layers or decreasing the number of
channels per convolutional layer. This idea might not be work
well especially for small training dataset. Semantic segmen-
tation produces an effective and rich representation of tumors
and achieves accurate extraction of contact surface area [1],
irregularity [2], and morphological traits.

Automatic segmentation is generally used in addition to
semiautomatic and manual segmentation. Manual segmen-
tation requires expertise to deal with tasks. It is subjec-
tive, requires considerable time for processing, and is poorly
reproducible. It entirely depends on human-made handcrafted
features; hence, it is impractical for real applications [3].
Similarly, semiautomatic segmentation initially depends on
human involvement that could cause mistakes and errors.
On the contrary, automatic segmentation could be accu-
rate, produce minimal errors, and help surgeon’s segment.
However, structural variability, noise existence, the com-
plexity of 3D spatial multiclass features, large-scale spatial
variability, partial volume effects, and the similarity of nearby
organs to make automatic segmentation a difficult task [3].

Convolutional neural networks (CNNs) have recently been
used for classification and other important applications, such
as object detection and volumetric image segmentation. They
achieve state-of-the-art performance compared with tradi-
tional machine learning models. CNN models can automat-
ically extract hierarchical features from raw images without
depending on handcrafted features. The deep layers in CNN
models capture global information in a broad way due to large
receptive fields [4], while shallow layers grasp only local
information. The automatic extraction of structural informa-
tion and the delineation of organs from images [5] are highly
needed to perform visual augmentation [6], interventions [7],
and computer-assisted diagnosis [8]. The interventional and
diagnostic imaging consisting of 3D images and volumetric
segmentations can consider the entire volume content at once,
which is the requirement for the automatic segmentation
of biomedical images. The depth of 3D CNNs is limited
compared with 2D networks due to many constraints, such
as the memory consumption of the graphics processing unit
(GPU), high computational cost, and the requirement for a
large number of annotated datasets. These 3D CNN models
are also not flexible and efficient for 3D image sequences due

to the large number of parameters and the limited number of
hardware resources.

Many approaches based on patch-wise image classification,
postprocessing steps, and different techniques, such as
Markov random fields [9], voting strategies [10], and level
sets [11], are used in combination with CNN models to
perform volumetric segmentation. These techniques globally
fail to produce accurate and efficient volumetric segmenta-
tion. Patch-wise approaches could not perform well due to
high computation cost and produce redundant information
that makes the algorithm runtime high. Therefore, efficient
computational schemes are required to tackle 3D CNN
segmentation problems.

Fully convolutional networks (FCNs) [12] have been
widely used for dense segmentation. They change fully con-
nected layers with upsampling layers to retain the spatial
structure. The upsampling layers use downsample feature
maps that can restore input images into the original reso-
lution. FCN models automatically produce a pixel-to-pixel-
based segmentation map for medical image segmentation
[12]. For the dense semantic segmentation task, the dense
label provides accurate solutions for small lesions or objects
and produces improved solutions with reduced classification
error rate. This approach, however, has two issues. First,
the receptive field could be large by using a convolutional
layer with pooling or striding. Second, the resolution of input
images is downsampled, and small objects with different
scales and shapes in multiclass scenarios are difficult to
classify [13].

Thus, the application of deconvolution or bilinear
interpolation by using an upsampling layer at the decoder
part of the network could not assure an accurate segmentation
map. Various state-of-the-art networks, such as DeepLab
with an atrous spatial pyramid pooling (ASPP) module [14],
U-Net [15], FCN [12], dense FCN, and residual dense FCN,
have been proposed to handle this issue. DeepLabv2 [16]
introduces ASPP for semantic segmentation.

The ASPP network handles objects at multiple scales [17]
to capture multiscale information on the basis of parallel
atrous-based CNN layers by using multiple atrous rates.
It achieves efficient and robust performance in dense seman-
tic labeling and detects small objects in various scales and
shapes.

ASPP consists of different numbers of atrous CNN layers
and combines these layers in a parallel branch. Each layer
uses different multiple kernel functions to capture feature
maps with specific field of view. Simple 3D CNN models
might not perform well, and we need a hybrid solution to
tackle 3D segmentation problems and incorporate some valu-
able information at the dataset level and inmodel architecture.
In this study, we proposed a 3D-ASPP module in a 3D Den-
sNet network (3D-DN)model for the automatic segmentation
of CT images. ASPP block could be integrated within any
CNN model. The ASPP module was embedded with the
proposed 3D-DN as a bottom layer to extract contextual infor-
mation with multiple resolutions. We extended 2D ASPP into
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a 3D-ASPP block and integrated it with the proposed 3D-DN
for volumetric segmentation. In accordancewith the literature
review and our knowledge, the 3D-ASPP module was pro-
posed for the first time. A deep learning (DL)-based model,
which processed volumetric slices for volumetric segmenta-
tion on the basis of abdominal CT volumes, was proposed.
We also proposed volumetric convolutions that processed 3D
input slices as a volume. The main contributions of this work
are follows:
• First, we proposed 3D-DN for 3D segmentation. 3D-DN
involved an encoder–decoder structure. Various 3DDen-
sNet blocks were introduced into the encoder–decoder
part of the network.

• Second, we introduced a 3D-ASPP module into 3D-DN
at the bottom of the encoder–decoder module. The
3D-ASPP block captured the spatial information at
multiscale and produced improved segmentation. ASPP
extracted contextual information in a multiscale form
and recovered spatial information with different fields of
view to determine sharp object boundaries from encoder
to decoder.

Our approach for 3D volumetric segmentation provided
an automatic solution by indicating the complete volume
of a patient at once for accurate and robust segmenta-
tion. In our proposed method, no postprocessing steps were
required for further processing and evaluation. We tested our
model on abdominal CT datasets, Thoracic Organs at Risk
(SegTHOR) 2019 [18]. The proposed technique was general-
ized for the SegTHOR 2019 dataset, and its performance was
compared with that of existing state-of-the-art segmentation
models.

II. RELATED WORK
DL models have been used for natural language processing,
image analysis [19], image classification, and image seg-
mentation. These deep neural network (DNN) models have
been successfully used in medical imaging challenges [20].
Meanwhile, CNN-based models have shown best perfor-
mance in the medical imaging domain by using either patch-
based or multiscale pixel-based segmentation approaches that
could increase the segmentation results.

For example, Zhang et al. introduced CNN-based brain
tissue segmentation based onmultimodal magnetic resonance
imaging (MRI) [21]. Pereira et al. introduced a CNN model
for the segmentation of brain tumors in multimodal MRI
[22] and claimed satisfactory results for complete tumors.
Lee et al. proposed a DL-based CNN model for brain seg-
mentation features [23]. Li et al. proposed a 2D CNN model
using CT slices for segmentation and compared its perfor-
mance with that of traditional machine learning approaches,
such as AdaBoost [24], random forests [25], and support
vector machine [26]. This study determined that CNNs had
limitation in tumor segmentation due to unclear borders and
uneven density. However, existing CNN models have been
used for segmentation on the basis of 2D slices that are
extracted from 3D volumes. These models could be a choice

on the basis of using low computational resources and
memory consumptions. We required an automatic 3D
volumetric segmentation solution based on DL models
that could consider the axial direction of 3D volumes to
assist medical doctors and would be beneficial in health
applications.

In early studies, Shakeri et al. introduced a 2D CNN
incorporated with a 3D conditional random field algorithm
as postprocessing for tumor detection from brain slices [27]
to achieve volumetric consistency. Cihik et al. used first 3D
CNN-based U-Net for the segmentation of sparsely sequen-
tial volumetric images and then a 3D model on a large
scale [28]. Dolz et al. proposed a 3D CNN based on an
FCN model for the segmentation of brain MRI images [29].
They introduced small kernels in DNNs to reduce compu-
tational complexity and memory cost in 3D CNN models.
Andermatt et al. [30] introduced a 3D recurrent neural net-
work for the segmentation of gray andwhite matters in a brain
MRI dataset.

Bui et al. introduced a 3D dense CNN for the segmentation
of a brain volumetric dataset [31]. A densely connected
3D model captured multiscale contextual information and
achieved fast convergence with an effective discrimination
capability [32]. Oktay et al. introduced a 3D attention U-Net
model for medical image segmentation. This novel technique
captured target structures of different shapes and sizes [33]
from a medical imaging dataset. Nevertheless, 3D CNNs still
encounter bottlenecks due to hardware limitation, complex
datasets, and memory constraints. In the literature, most deep
3D CNN models use a brain MRI dataset. On the contrary,
we covered some recent advancements in abdominal datasets
by using 3D CNN models.

Lu et al. presented a 3D CNN model with graph cut
technique for the segmentation of liver tumors but tested it
on only one dataset to judge the generalized behavior of the
model [34]. Few authors [35]–[38] used the deep learning
models for segmentation of other CT organs such as Liver
and tumor and they applied FCNs models based on encod-
ing and decoding techniques. The most of DL models that
have been used in liver or lesion segmentation are based on
2D slices that are extracted from 3D image volumes. These
models do not fully consider the spatial information from
3D volumes.

We tested our proposed model with the existing publicly
available SegTHOR 2019 dataset. The main challenge in this
dataset is the shape and position of each organ at each slice
vary greatly and contrast in CT images is very low. This is
a multiclass segmentation problem and the dataset contains
4 organs as risk such as heart, aorta, trachea, esophagus.
Recently, the deep learning-based models using SegTHOR
2019 dataset has been used published for segmentation prob-
lem [40]. He et al. [41] presented Dense V-Net deep learn-
ing model and achieved optimal performance with some
postprocessing steps. They used patch processing approach
using Dense V-Net to avoid extra computational burden.
Vesal et al. [42] introduced 2d T-Net approach using organ
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TABLE 1. Performance analysis based on the SegTHOR 2019 dataset by using the proposed model and reimplemented (VNet and Attention U-Net)
architectures with other state-of-the-art models.

at risk dataset. Han et al. [43] proposed 3D U-Net with
multitasking techniques and also applied some auxil-
iary task for generalization the proposed using SegTHOR
2019 dataset. Kim et al. [44] presented 2D dilated residual
U-net model and produced better results. Chen et al. [45]
presented V-Net model for organ at risk dataset. Zhang et al.
[46] used cascading approach based on 3DU-Net twomodels
that could produce more computationally complexity during
training their proposed models. Lalande et al. [47] introduced
ensemble approach to fuse three-axis information for seg-
mentation of SegTHOR dataset. Milletari et al. [48] proposed
two-level deep learning model and achieved better perfor-
mance on organ at risk dataset. The detail of each DL-based
method can be found in recently published works [40]–[48]
and is shown in Table. 1 in result section.

III. MATERIALS AND METHODS
A. DATASETS
1) SEGTHOR 2019 DATASET
The SegTHOR 2019 [18] dataset contains 40 cases in training
and 20 cases in testing. The images or slices vary from
150 to 284 with a plane input image size of 512 × 512.
The spatial resolution also varies from 0.90 mm to 1.37 mm
with a slice thickness between 2 and 3.7 mm. In this exper-
iment, we used 32 CT cases (the number of patients) for
training, 8 for validation, and 20 for testing. The problem
was a multiclass segmentation one, and each patient in the
dataset consisted of four classes (aorta, esophagus, trachea,
and heart). All CT scans comprised a high variation in z
direction with anisotropic dimension. The dataset is publicly
available on all grand challenge websites. The test sample
based on SegTHOR 2019 is shown in Fig. 1.

FIGURE 1. Axial, coronal, and sagittal views for the SegTHOR
2019 dataset. The heart (green color), esophagus (red), trachea (blue),
and aorta (yellow) are presented.

B. PROPOSED METHOD
Fig. 4 shows the proposed model using a 3D-ASPP module.
Each block with detailed explanation is provided in the fol-
lowing subsection.

1) 3D-ASPP LAYER
3D-ASPP comprised various atrous convolutional layers with
multiple rates of convolution kernels. It used blocks of differ-
ent atrous convolutional layers with a spatial pyramid pooling
layer. It captured spatial information from input feature maps
in multiple scales and shapes for accurate semantic segmenta-
tion and classification. However, ASPP provided contextual
information by using multiple atrous layers blocks. Atrous
convolution produced promising results by capturing the res-
olution of features with different rates by using deep CNNs.
It adjusted the receptive field in such a way to acquire multi-
scale information from the set of features. Atrous convolution
has been applied to input image (x) with some kernel filters
w and produce output y, as shown as follows [16]:

y[i] =
∑
k

x(i+ r .k)z[k], (1)
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FIGURE 2. Proposed model using 3D encoder–decoder integrated with a
3D-ASPP module.

where r represents the atrous factor that controls the stride
for input image. Atrous convolution inserted some zeros,
e.g., (r − 1) values, among kernel filters and convolved the
input x with those filters. The receptive field of filters could
be modified using different rate r values.

The proposed 3D-DN was integrated into the proposed
3D-ASPP network to improve the performance of volumet-
ric segmentation. ASPP used a combination of four parallel
atrous convolutions by using different atrous rates and one
global average pooling layer. The ASPP module consisted
of a parallel 3 × 3.3D convolutional layer with atrous rates
of 3, 5, and 7 and one 1 × 1.3D convolution. One average
pooling layer was used with the same input feature maps
as image level features. The feature maps from all branches
were bilinearly upsampled. After the concatenation of all
layers, 1 × 1 × 1 convolution was used. The 3D-ASPP
module was applied on the feature maps from the proposed
3D decoder part. After the transition layer, the output feature
maps were fed into the 3D decoder part of the network,
as shown in Fig. 2.

2) PROPOSED MODEL
Our model was based on a hybrid approach using 3D-ASPP
with 3D-DN, as shown in Fig. 3. We incorporated the
3D-ASPP module at the bottoms of the 3D encoder and
decoder densNet network to boost the contextual information
of the spatial features of the input volume. The decoder part
is a regular 3D-DN based on 3D proposed dense blocks,
except the bottom layer. The proposed model consisted of
an encoder and decoder path with some skip connection and
bottom block. Appropriate features were extracted using a 3D
dense based convolutional block at each level in the decoder,
and their resolution was reduced using appropriate stride with
3D stride convolutional layer. The decoder path was divided
into different stages with varying resolutions. Each stage
in the decoder path consisted of one to three desne based
convolutional layers having volumetric kernel of 3 × 3 × 3.
The input data resolution was halved by passing every stage

by using a convolutional layer with 2 × 2 × 2 voxel kernels
applied with stride 2. The number of features was doubled
for each stage in the decoder block of the proposed network.
After the convolutional layer, an activation function (PReLU)
was applied throughout the network. The dense block was
used at each stage of the decoder and encoder path. The
densNet function consisted of convolutional and PReLUwith
batch normalization (BN) layers with repeated blocks. The
dense block consisted of a combination of 3D convolutional
layer, ReLu, and BN layer. The input for every stage in the
dense block passed to the combination of convolution and
nonlinearities (ReLu+BN). The information obtained from
the last layer was used for the next stage of the dense block.

The size of input signal was reduced through downsampling,
and the receptive field was increased in the successive net-
work layer. The proposed 3D-ASPP module was integrated
at the bottom of the decoder and encoder path of the proposed
3D-DN.

The module used the feature maps from the last bottom
layers from the decoder side and fed feature maps at the
de-convolutional layer from the encoder side of the network.
In the encoder path, after each stage, the deconvolutional
layer increased the input dimension size in the block of
convolutional layers. The network extracted and expanded the
spatial feature size from a low resolution to gather essential
information for 3D volumetric segmentation. The feature
maps from the dense block in the decoder side were concate-
nated with a downsampled densNet block in the encoder side.
The 1×1×1 convolutional layer used to compute two feature
maps produced output with the same input volume size. The
softmax layer produced a segmentation map for foreground
and background voxel-wise regions. The proposed model is
shown in Fig. 3.

3) LOSS FUNCTION
The Dice coefficient (DC) proposed in [10] was used
to compute the loss function. The loss function between
predicted and GT segmentation for 3D was optimized
using (2). The loss L is shown in (2) and directly evaluates
the similarity of two samples.

D(p, g) =

2
N∑
i=1

sigg

N∑
i=1

s2i +
N∑
i=1

g2i

, (2)

where si and gi denote the predicted segmentation map and
manually provided segmentation map, respectively; and N is
the total number of voxels.

4) IMPLEMENTATION DETAIL
The proposed model was built using PyTorch library. All
models were trained from scratch. The Adam optimizers used
the defined learning rate of 0.0008. The number of epochs
was set to 10000 for SegTHOR 2019. The batch size was set
to 2. The training of the proposed model was conducted using
an NVIDIA GTX 1080 GPU having 12GM memory.
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FIGURE 3. Proposed 3D-DN based on an encoder–decoder integrated with a 3D-ASPP module.

FIGURE 4. The first row shows the GT of axial, coronal, sagittal, and 3D views of the SegTHOR dataset.
The second row shows the predicted values of axial, sagittal, coronal, and 3D views by using the proposed
model. The heart (green color), esophagus (red), trachea (blue), and aorta (yellow) are presented.

IV. RESULTS
Eighty percent of the dataset was used for training, and the
remaining 20% was used for the prediction on the SegTHOR
2019 dataset. The input slices for all cases were downsampled
to 256× 256 in plane resolution to simplify the computation.
In the SegTHOR 2019 dataset, the input resolution size of
each volume was set to 256× 256. Slices of lesion with five
additional slices empty from the start and end of each volume
slice were selected. The qualitative and quantitative results
are demonstrated in the next section.

A. VISUALIZATION RESULTS BASED ON THE PROPOSED
METHOD
Fig. 4 demonstrates the visualization segmentation results of
the proposed model. Two different cases have been described
in this manuscript. The axial, coronal, sagittal, and 3D views
for GT and predicted segmentation visualization are shown
in Fig. 4.

Any interpolation in tumor slices to avoid information loss
from input volume was not needed. Lesion or masks with
a large size were segmented, and some lesions with small
organs were hardly segmented using our proposed model.

Some other organs, such as esophagus, trachea, and aorta,
have a small size, and a low contrast exists surrounding
the heart. Our proposed model could still segment such
small organs. In Fig. 4, the first row represents the GT, and
the second row represents the predicted values based on the
proposed model. Fig. 5 shows the segmentation map for
another subject based on the SegTHOR 2019 dataset.

B. PERFORMANCE METRICS
Performance metrics [47] were used for the test and
evaluation of our proposed model on the datasets.
Specifically, the following evaluation metrics were adopted
to test the proposed model. The results were compared with
those of existing DL models.

1) SENSITIVITY
Sensitivity was used to compute the positive portion of voxels
by using GT and predicted segmentation masks.

Specificity = TPR = TP/(TP+ FN ) (3)

2) SPECIFICITY
Specificity, also called true negative rate (TNR),was used to
compute the performance on the basis of GT and predicted
segmentation masks.

Specificity = TNR = TN/(TN + FP) (4)

3) JACCARD COEFFICIENT (JC)
JC is defined as

J (A,B) = |A ∩ B| / |A ∪ B| , (5)

where A is the GT, and B denotes the predicted volume.

4) DICE SIMILARITY COEFFICIENTS (DCS)
DC is commonly used for the validation of medical
volume segmentations. It is also called overlap index. It is
used to measure the overlap between GT and predicted
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FIGURE 5. The first row represents the manual masks for axial, sagittal, coronal, and 3D views of the SegTHOR
dataset. The second row shows the predicted values of axial, coronal, sagittal, and 3D views by using the
proposed model. The heart (green color), esophagus (red), trachea (blue), and aorta (yellow) are presented.

segmentation masks. For GT and predicted masks, DC is
defined as

Dice(A,B) = 2 |A ∩ B| / |A ∪ B| . (6)

Two types of DCs could be measured. The first is called
global Dice that is applied on complete volume for all cases
and second is the local dice that was used for individual test
sample.

5) VOLUME OVERLAP ERROR (VOE)
VOE is defined as

VOE(A,B) = 1− |A ∩ B| / |A ∪ B| . (7)

6) RELATIVE VOLUME DIFFERENCE (RVD)
RVD is expressed as follows:

RVD(A,B) = (|B| − |A|) / |A| . (8)

7) SURFACE DISTANCE METRICS
Surface distance was used to compute the surface between
GT and predicted masks. Let S(A) denote the set of surface
voxels of A.
d(v, S(A))

= min
SA∈S(A)

‖v− SA‖ (9)

D(A,B)

=
1

|S(A)|+|S(B)|
(
∑

SA∈S(A)

d(SA, (S(B))+
∑

SB∈S(B)

d(SB, (S(A)))

(10)

8) HAUSDORFF DISTANCE (HD)
Symmetric HD was used to compute the (symmetric) HD
between the binary objects in the two segmentation masks.
It is defined as themaximum surface distance (MSD) between
the objects.

MSD(A,B)=max
{
max

SA∈S(A)
d(SA, S(B)), max

SB∈S(B)
d(SB, S(A))

}
(11)

C. COMPARISON WITH STATE-OF-THE-ART METHODS
The segmentationmodels provided an automatic segmentation
map and could be evaluated using different performance
metrics.

Various performance metrics, such as accuracy, DCs,
JC, MSD, RVD, and average symmetric surface distance
(ASSD), were used to compute the performance of the pro-
posed and existing state-of-the art DL models. High values of

FIGURE 6. DCs based on the SegTHOR 2019 dataset for 20 patients.

Dice and three other metrics (JC, sensitivity, and specificity)
indicate improved segmentation performance.

The proposed 3D-DN with a 3D-ASPP block was eval-
uated and compared with existing state-of-the-art methods
for SegTHOR 2019 dataset. Our proposed model produced
optimal results compared with existing methods. It was aval-
idated to have robust performance by using the recently
published SegTHOR 2019 dataset. We reimplemented 3D
simple-VNet and 3D attention U-Net models and compared
their results with those of our proposed model and existing
state-of-the-art results. Our proposed model outperformed
existing segmentation models on SegTHOR 2019. The DCs
for 20 test patients based on SegTHOR 2019 were reported.
These Dice scores were computed using the proposed, atten-
tion U-Net, and simple-VNet models. As shown in Fig. 5,
the proposedmodel produced excellent results comparedwith
existing models. The Dice values by using the proposed and
existing models based on 20 test samples from the SegTHOR
2019 dataset are presented in Fig. 5. The proposed model
clearly showed good performance compared with existing
models. The correlation coefficients based on GT and pre-
dicted values by using the proposed and existing 3D models
are shown in Fig. 6. These correlation coefficients validated
that our proposed model obtained better performance com-
pared with existing models. The results confirmed that the
proposed model successfully segmented on the SegTHOR
2019 dataset and could be used for the evaluation of 3D
volumetric biomedical images. A comparison of the proposed
model with state-of-the-art models by using various perfor-
mance metrics on the basis of the SegTHOR 2019 dataset is
shown in Table 1. The simple 3D-VNet and the 3D-VNet with
an attentionmodulewere reimplemented, and the results were
compared with those of the proposed model. The proposed
model produced better DCs and other performance metrics
compared with existing 3D models.
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FIGURE 7. Correlation coefficients between prediction and GT for
20 cases. Correlation coefficients by using the proposed and existing 3D
models based on the SegTHOR 2019 dataset.

D. DISCUSSION
The considerable improvement in computer hardware and
data availability in 3D medical imaging has enabled
3D medical segmentation by utilizing spatial information.
Comprehensive information can be produced in any direction
on the basis of volumetric images rather than be viewed in
a single direction in 2D approaches. A deep model could
usually be used to extract highly informative features from
complicated organs via segmentation algorithms for volumet-
ric images. The main challenge is the training of these deep
networks for 3D models. Most DL architectures are based
on FCN, and hybrid-based FCN models are proposed for
tumor and liver segmentation tasks. The FCN used a fixed
receptive field and could fail in the segmentation of objects
with varying sizes. The fixed-size receptive field issue in FCN
could be resolved by increasing the field of view.

A sliding window based on complete images by using
uniform patches can be used in the FCN model to han-
dle the problem of fixed-size receptive field. The proposed
model based on ASPP extracted multiscale information from
input images and provided an efficient solution for fixed-
size receptive field networks. DNNs encounter some issues
during the training of these networks. The first issue is the
overfitting, which would occur during the training of the
proposed model due to the less samples of the datasets in
comparison with the weights of 3D DL models [30].

A small training dataset could produce an overfitting
problem, which could be minimized using the data aug-
mentation and dropout layer. The dropout layer was used
in the proposed model to handle the overfitting issue. The
considerable training time would be the second issue if we
have limited hardware resources. Recently, the computation
time for training could be minimized using convolution based
on stride [19] that would provide the same effect as that with
a pooling layer while achieving faster convergence. BN was
also used for rapid convergence of the deep models. Pooling
and downsampling techniques could reduce the performance
and might loss beneficial information. Gradient vanishing
is the third issue, which could happen during the deep net-
work training. We used a desne with carried feature maps
from previous layers to handle the vanishing gradient prob-
lem during the backpropagation while training the proposed
model.

Target organs present a heterogeneous appearance that
depends on shape, location, and size from patient to

patient [42] and could induce a great challenge in pixel-based
image segmentation.

The limited contrast and ambiguous boundary that arise
with target organs and surrounding tissues refer to the fourth
issue and are usually caused by the attenuation coefficient in
CT [23]. Superpixel information and different weight-based
techniques with different weighting used in class imbalance
could be used to handle such an issue [12].

The aforementioned issues in 3D DL models might lead
to decreased performance when handling 3D volumetric
datasets because of less data samples and a large number
of parameters compared with input 3D data samples and the
low variance among voxels with neighboring voxels. The pro-
posed model used multiscale contextual feature information
by utilizing an ASPP module and handled the heterogeneous
appearance and varying sizes, shapes, and locations of target
organs and neighboring tissues.

The main objective of this study is to enhance the accuracy
and quality of segmentation based on volumetric 3D CT
images. A model based on 3D-ASPP was proposed to
improve the segmentation accuracy by capturing multiscale
features. It could estimate the pixels at the decoder side of
the network with an improved capability to reconstruct small
organs with different sizes, shapes, and irregular structures
from abdominal CTmedical images. The visual and quantita-
tive experimental result reported that the 3D-ASPP-integrated
denseNet model achieved better performance in 3D medical
segmentation compared with existing segmentation models.

Automatic segmentation based on abdominal CT scans
could provide enhanced solutions based on morphomet-
ric features. However, the computational complexity would
also increase if the number of feature maps and the filter
size are large in the encoder–decoder part of the architec-
ture. In consideration of the limited computational resources
and GPU memory, we need to design an effective and
deep 3D model for improved segmentation performance.
The proposed model produced excellent results by using
limited memory and computational resources.

V. CONCLUSION
The proposed model in this paper was applied on two
different datasets for the segmentation of liver and tumor
fromCT images and other abdominal CT scans. The proposed
approach utilized 3D-ASPP and could acquire multiscale
features in a 3D way with 3D-DN based on encoder–decoder
to extract discriminative features. Consequently, the proposed
model achieved accurate and detailed segmentation results
on the basis of CT images. It also achieved excellent per-
formance metrics compared with existing 3D models in the
biomedical segmentation field. It could be used for volumet-
ric segmentation in clinical applications to diagnose problems
from medical images without the intervention of medical
doctors and might be helpful in the medical community for
the classification and segmentation of medical images.

In the future, we will explore new models based on the
attention mechanism or incorporate different parameters into
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the proposed model to generalize and train well for another
medical dataset in the biomedical domain.
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