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ABSTRACT Image to video person re-identification (IVPR), i.e., matching between pedestrian video
and image, is an important task in practice. Although several methods have been presented for IVPR,
most of these methods investigate the IVPR problem under the supervised setting, and require a large
number of labeled image-video pairs for training. In this article, we study the IVPR problem under the
semi-supervised setting, and propose a Kernel Analysis-synthesis Dictionary based heterogeneous Distance
Learning (KADDL) approach. Specifically, KADDL first learns two pairs of kernel analysis-synthesis
dictionaries from the labeled and unlabeled training image-video data in the kernel space. With the learned
dictionary pairs, the heterogeneous image and video features can be transformed into coding coefficients
of the same representation space, such that the gap between image and video can be bridged. Then,
KADDL learns a discriminative distance metric over the transformed coding coefficients, to make the
coding coefficients of positive image-video pair become similar, while those of negative image-video pair
dissimilar. To make better use of the unlabeled data, we further designed a reliability-based semi-supervised
strategy for KADDL. Experiments on several publicly available pedestrian sequence datasets demonstrate
the effectiveness of the proposed approach.

INDEX TERMS Semi-supervised image to video person re-identification, distance learning, kernel dictio-
nary learning, coupled dictionary learning.

I. INTRODUCTION
Person re-identification (re-id) [1]–[4] is a key task in many
safety-critical applications, such as automated video surveil-
lance and forensics, and has attracted lots of research interests
in the machine learning and computer vision communities.
Given a pedestrian image/video captured by one camera, per-
son re-id aims to identify the same person from images/videos
captured by other non-overlapping cameras [5]–[7]. Due to
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the existence of factors such as changes in illumination,
viewpoint, occlusion and resolution, there usually exist large
differences between the images/videos captured by different
cameras in practice, which makes the person re-id across
cameras a challenging task.

To relieve the difficulties existed in person re-id task,
a series of methods have been proposed in recent years
[7]–[10]. According to the used pedestrian representation
in the matching process, existing person re-id methods can
be mainly divided into three categories: image-based person
re-id, video-based person re-id, and Image to Video Person
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FIGURE 1. Difference between image/video-based person re-id and
image to video person re-id.

Re-id (IVPR). Image-based person re-id methods represent
each pedestrian with a single image, and focus on the match-
ing between images across cameras. Video-based person re-id
methods use the video clip to represent each pedestrian, and
focus on the re-identification between videos from different
camera views. In either image-based or video-based person
re-id methods, the samples to be matched are homogeneous,
i.e., image versus image or video versus video.

In many real-world scenarios, the query object may be
just one single image, while the gallery set consists of large
quantities of surveillance videos [11]–[13]. One instance is
locating lost person from the surveillance videos according
to the person’s image. Another instance is rapidly looking
for clues of criminal suspects among a large number of
surveillance videos according to one photo of the suspect. In
these cases, person re-id has to be conducted between image
and video (i.e., IVPR). Therefore, IVPR mainly focuses on
the matching between pedestrian image and video clip. In
practice, the information contained in image and video are
usually inconsistent, which further increases the difficulty
of matching between pedestrian image and video. Figure 1
illustrates the differences between image/video-based per-
son re-id and image to video person re-id. In this article,
we mainly focus on the problem of image to video person
re-id.

A. MOTIVATION
Recently, a series of methods have been presented to investi-
gate the problem of image to video person re-id, and achieved
interesting results [11]–[19]. Most of these methods focus on
training a discriminative matching model by using a large
number of labeled pedestrian image-video pairs. In practice,
it’s usually time-consuming and expensive to collect large
quantities of labeled image-video pairs from non-overlapping
cameras, which will limit the application of these meth-
ods in real environment. Therefore, we try to investigate
the IVPR problem under the semi-supervised setting in this
article, to relieve the requirement for the amount of labeled
image-video pairs.

Distance learning is an effective technique for identifica-
tion or verification tasks, such as image/video-based person
re-identification [20]–[22], kinship verification [23], and so

on. Intuitively, we can use the distance learning technique
to solve the difficulty of large within-class variation existed
in IVPR. However, a pedestrian video clip usually contains
more useful information (e.g., spatial-temporal information)
than a single image, which means that the features extracted
from video and image are usually heterogeneous (different
physical properties and dimensions). This will lead to the
result that directly learning distance metric from hetero-
geneous image and video features usually cannot produce
desirable re-identification performance. Therefore, we need
to bridge the gap between image and video features before
learning distance metric.

Coupled dictionary learning (CDL) is an effective tech-
nique to bridge the differences across domains, and has been
successfully applied to many machine learning and computer
vision tasks [24]–[26]. By learning a pair of dictionaries,
CDL can transform the samples from different domains into
coding coefficients of the same representation space. Inspired
by these works, we can borrow the idea of coupled dictionary
learning to bridge the gap between image and video features.
However, there is still an important issue to be considered
in the learning process. Due to the variations of viewpoint,
illumination and occlusion existed in the capturing process,
there is no guarantee that the features of images and videos
lie in a linear space. Considering that kernel learning is an
effective technique to cope with non-linear data, we can
combine the coupled dictionary learning and kernel technique
to reduce the image-to-video gap more effectively.

Motivated by the above analyses, we intend to investigate
the semi-supervised image to video person re-id problem,
by combining the distance learning, coupled dictionary learn-
ing and kernel learning techniques.

B. CONTRIBUTION
The major contributions of this article are summarized as
follows:

• We make the first attempt to investigate the image to
video person re-id in the semi-supervised setting, and
provide an effective solution.

• We propose a Kernel Analysis-synthesis Dictionary
based heterogeneous Distance Learning (KADDL)
approach. To solve the matching between image and
video, KADDL first transforms the heterogeneous
image and video features into coding coefficients of the
same representation space by learning a pair of dictio-
naries from labeled and unlabeled data. Then KADDL
learns a discriminative distance metric in the coding
coefficient domain to facilitate the matching between
image and video. To make better use of unlabeled data,
KADDL designs a reliability-based semi-supervised
strategy. The solution of KADDL for solving heteroge-
neous matching is novel.

• We combine the coupled analysis-synthesis dictio-
nary learning and kernel learning techniques for the
first time, which can ensure that the transformed
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coding coefficients better reflect the intrinsic relation-
ship between image and video.

• We have conducted extensive experiments on three
publicly available pedestrian image sequence datasets,
including iLIDS-VID, PRID 2011 and MARS. Experi-
mental results have shown that the proposed approach
can achieve very competitive or even higher perfor-
mance than the compared methods by using less labeled
data.

II. RELATED WORK
In this section, we briefly review three types of works that
are most related to our approach: image to video person
re-identification, distance learning and coupled dictionary
learning.

A. IMAGE TO VIDEO PERSON RE-IDENTIFICATION
To relieve the difficulties existed in the matching between
pedestrian image and video, several image to video person
re-id methods have been presented [11], [14]–[18]. For exam-
ple, Zhu et al. [11] proposed a joint feature projection matrix
and heterogeneous dictionary pair learning approach, which
jointly learns a pair of heterogeneous image and video dictio-
naries as well as an intra-video projection matrix to facilitate
the matching between image and video. In [12], a Temporal
Knowledge Propagation (TKP) method is presented, which
can propagate the temporal knowledge learned by the video
representation network to the image representation network,
such that the in- formation asymmetry problem can be alle-
viated. In [13], Yu et al. presented a Cross-media Body-part
Attention Network (CBAN), which employs CNN/LSTM to
extract body part attention features from images/videos, and
uses a media-pulling constraint term to alleviate the inherent
cross-media gap. In [18], Xie et al. presented an end-to-end
neural network, which employs the image captioning and
video captioning models to project the learned features into
a coordinated space, such that the similarity of image and
video can be calculated. In [17], Li et al. used the mean
shift to extract the salient region from each person image,
and clustered all salient regions by least-squares log-density
gradient clustering. Finally, the distance between the probe
salient region and the gallery clustered salient regions are
computed and used for re-identification.

Although these methods have relieved some difficulties
existed in image to video person re-id to some extent, they
all need a large number of labeled image-video pairs in the
training process. In practice, collecting large quantities of
labeled image-video pairs from non-overlapping cameras is
usually time-consuming and expensive.

To relieve the requirement for the quantity of labeled
image-video pairs, Zhang et al. [19] presented a cross-modal
feature generating and target information preserving transfer
network, which transforms the features of unlabeled target
sample into the source domain feature space while preserving
target identity information, and uses a cross-modal loss term

to eliminate the gap between pedestrian images and videos.
By leveraging the labeled source dataset, this work reduced
the requirement for labeled target data to some extent. How-
ever, the performance of this method is rather poor comparing
to the supervised image to video person re-identification
methods. The possible reason may be that: this work cannot
effectively capture the intrinsic characteristic of target data
without using the label information.

Different from the existing supervised or unsupervised
image to video person re-id methods, our approach tries
to solve this problem under the semi-supervised settings.
Specifically, our approach trains the learning model by
employing a small amount of labeled data as well as a large
number of unlabeled data, and uncovers the intrinsic relation-
ship between image and video data in the kernel space.

B. DISTANCE LEARNING
Distance learning technique has been successfully applied
in many computer vision tasks [27]–[30]. Distance learn-
ing based person re-identification methods mainly focus on
seeking an optimal distance metric, under which the dis-
tance between truly matching images is small, but the dis-
tance between wrong matching images is large [31]–[34].
For example, in [35], Davis et al. formulated distance
learning as a LogDet optimization problem, which enforces
the positive semidefinite constraint automatically to avoid
the projection onto the positive semidefinite cone. In [36],
Weinberger et al. presented the large-margin nearest neigh-
bor (LMNN) method, which aims to pull the neighbors of the
same class together while push the neighbors from different
classes far away. In [37], Hirzer et al. relaxed the posi-
tive semi-definiteness constraint to dramatically simplify the
problem of learning a Mahalanobis distance metric. In [38],
a probabilistic relative distance comparison (PRDC) method
is presented to maximize the probability of a truly matching
pair having a smaller distance than a wrong matching pair.
In [39], Liao et al. used the generalized Rayleigh quotient to
search a discriminating low-dimensional subspace, where the
distance learning can be executed more efficiently. In [22],
Nguyen et al. presented a distance metric learning method by
incorporating kernels into the KISSME [40] method, which
allows the distance metric to be learned in a nonlinear feature
space induced by a kernel function.

The major differences between our approach and the men-
tioned distance learning methods are as follows. (i) These
methods are designed for homogeneous matching (i.e., the
objects participating in the matching are described with the
same feature descriptor), while our approach is designed
for heterogeneous matching. (ii) These methods learn the
distance metric in the original feature space. Different from
them, our approach first learns a pair of dictionaries. With
which, heterogeneous image and video features can be trans-
formed into coding coefficients in the same representation
space, and then our approach learns a discriminative distance
metric over the coding coefficients.
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FIGURE 2. Illustration of the basic idea of our approach.

C. COUPLED DICTIONARY LEARNING
As an effective technique for bridging the gap between dif-
ferent modalities, coupled dictionary learning has attracted
lots of attention in recent years [41]–[43]. Recently, cou-
pled dictionary learning technique has also been successfully
applied to person re-identification. In [44], a semi-supervised
coupled dictionary learning (SSCDL) approach is presented
for person re-identification, which learns a pair of dictionaries
for two camera views. In [45], a cross-view projective dic-
tionary learning (CPDL) approach is presented, which learns
effective features for persons across different views. In [46],
Jing et al. proposed a semi-coupled low-rank discriminant
dictionary learning (SLD2L) approach for super-resolution
person re-identification, which learns a pair of dictionaries
from the training HR and LR images. In [25], a discriminative
semi-coupled projective dictionary learning (DSPDL) model
is presented, which jointly learns a pair of dictionaries and
a mapping to bridge the gap across low and high resolution
person images.

The existing coupled dictionary learning methods have
relieved the difficulties existed in person re-identification
across camera views to some extent. However, all these meth-
ods learn dictionaries from training data in the linear manner,
but ignore the fact that pedestrian samples usually lie in a
non-linear feature space, leading to that the learned dictio-
naries may not be able to reflect the intrinsic relationship
between different camera views. Different from the existing
coupled dictionary learning methods, our approach employs
the kernel technology to copewith the non-linearity issue, and
learns kernel dictionaries from the training data. In addition,
our approach learns a discriminative distance metric over the
coding coefficients of image and video.

III. THE PROPOSED APPROACH
A. PROBLEM FORMULATION
From the analysis in themotivation part of Section I, we know
that there are four intrinsic difficulties existed in image
and video data. (i) The features extracted from video and
image are usually inconsistent (e.g., physical property and
feature dimension); (ii) The extracted image/video features
may not lie in a linear feature space. (iii) There usually
exist large variations between the image and video of the
same person. (iv) Labeling image-video pairs across cam-
eras is time-consuming and expensive. All these difficulties
will directly influence the performance of matching between
image and video.

To deal with the above difficulties, we propose a Ker-
nel Analysis-synthesis Dictionary based heterogeneous Dis-
tance Learning (KADDL) approach. Figure 2 illustrates the
basic idea of our approach. (i) To deal with the inconsis-
tency between image and video features, KADDL borrows
the idea of coupled dictionary learning and jointly learns
view-specific dictionaries for image and video data. Over
the learned dictionaries, the heterogeneous image and video
data can be transformed into coding coefficients in the same
representation space. In this way, the inconsistency between
image and video data can be reduced to some extent. Since
analysis-synthesis dictionary could provide a more complete
view of data representation than analysis dictionary or syn-
thesis dictionary [47], [48], the proposed KADDL approach
utilizes the analysis-synthesis dictionary learning technique
as the basis in the coupled dictionary learning process. (ii)
To cope with the non-linearity issue, KADDL combines the
coupled dictionary learning and kernel technology together,
such that the learned dictionaries can better characterize
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TABLE 1. Notations used in our approach.

the non-linear feature spaces of image and video. (iii) To
deal with the large within-class variations, KADDL learns
a discriminative distance metric, under which the distance
between image and video of the same person gets close, while
that between image and video from different persons becomes
far apart. (iv) To relieve the issue of labeling image-video
pairs, KADDL designs a simple but efficient semi-supervised
strategy, which enables KADDL to be trained by using little
labeled data together with large amount of unlabeled data.

Let X = [XL ,XU ] and Y = [YL ,YU ] represent the fea-
tures of training pedestrian images and videos, respectively,
where XL ∈ Rp×n1 and YL ∈ Rq×n2 are labeled, while
XU ∈ Rp×n3 and YU ∈ Rq×n4 are unlabeled. Here, n1,
n2, n3 and n4 are the sample numbers of the corresponding
subsets, p and q are the dimensions of image and video
features, respectively. Denote by xl,i ∈ Rp (yl,i ∈ Rq) the
feature vector of the ith labeled pedestrian image (video),
and denote by xu,i ∈ Rp (yu,i ∈ Rq) the feature vector of
the ith unlabeled pedestrian image (video). By embedding
image and video features into Reproducing Kernel Hilbert
Space (RKHS), coupled dictionary learning can be conducted
in RKHS. Let Φx(·) and Φy(·) represent the kernel mapping
functions for the image and video features, respectively. Let
Kx(X,X) = Φx(X)TΦx(X) and Ky(Y,Y) = Φy(Y)TΦy(Y)
separately denote the kernel Gram matrices of the image
and video features. Similar to [48], we use Φx(X)Dx and
Φy(Y)Dy to separately represent the learned kernel synthesis
dictionaries for image and video features, and use PxΦx(X)T

and PyΦy(Y)T to denote the learned analysis dictionaries
for images and videos, respectively. Here, Dx ∈ RN1×m,
Dy ∈ RN2×m, Px ∈ Rm×N1 and Py ∈ Rm×N2 , where N1 =

n1 + n3, N2 = n2 + n4, and m represents the dictionary size.
In addition, we denoteW as the learned distance metric over
the representation space spanned by the coding coefficients.
Table 1 summarizes the notations used in our approach.

Based on these symbols, we design the objective function
of our KADDL approach as follows:

min
Dx ,Dy,Px ,Py,W

f (Dx ,Dy,Px ,Py,X,Y)

+ αg(W,Px ,Py,XL ,YL)

s.t. ‖dx,i‖22 ≤ 1, ‖dy,i‖22 ≤ 1, ‖wi‖22 ≤ 1, ∀i, (1)

where α is a balancing factor, and dx,i (dy,i, wi) denotes the
ith column of Dx (Dy, W). The constraint is used to restrict
the energy of each column vector in Dx , Dy andW , such that
the updating process will become more stable. Details of f (·)
and g(·) are as follows.
� f (·) is the coupled kernel analysis-synthesis dictionary

learning term, which aims to transform the heterogeneous
image and video features into coding coefficients of the same
representation space. The definition of f (·) is as follows:

f (Dx ,Dy,Px ,Py,X,Y) = fx(Dx ,Px ,X)+ fy(Dy,Py,Y), (2)

where fx(·) and fy(·) are the reconstruction fidelity terms for
image and video data, respectively.

fx(Dx ,Px ,X)

= ‖Φx(XL)−Φx(X)DxPxΦx(X)TΦx(XL)‖2F
+‖Φx(XU )−Φx(X)DxPxΦx(X)TΦx(XU )‖2F , (3)

fy(Dy,Py,Y)

= ‖Φy(YL)−Φy(Y)DyPyΦy(Y)TΦy(YL)‖2F
+‖Φy(YU )−Φy(Y)DyPyΦy(Y)TΦy(YU )‖2F . (4)

Here, fx(Dx ,Px ,X) (fy(Dy,Py,Y) ) is used to ensure that
the learned kernel analysis-synthesis dictionary pair can well
reconstruct the features of labeled and unlabeled pedestrian
images (videos) in the kernel space. With the learned coupled
dictionaries, the image and video features can be transformed
into coding coefficients of the same representation space.

� g(·) is the coding coefficient based distance learning
term, which aims to facilitate the matching between the cod-
ing coefficients of image and video by learning a distance
metric, i.e., the distance between the coefficients of truly
matching image-video pair is smaller than that of wrong
matching image-video pair. Definition of g(·) is shown in
Eq. (5), where < i, j, k > represents a triplet, which consists
of a truly matching image-video pair (xl,i, yl,j) and a negative
video yl,k . G is the collection of constructed triplets, and λ is
a balancing factor.

g(W,Px ,Py,XL ,YL)

=
1
|G|

∑
<i,j,k>∈G

(‖WT (PxΦx(X)TΦx(xl,i)

−PyΦy(Y)TΦy(yl,j))‖22
− λ‖WT (PxΦx(X)TΦx(xl,i)− PyΦy(Y)TΦy(yl,k ))‖22).

(5)

Semi-supervised strategy. In Eq. (1), unlabeled data is
used to improve the representation ability of the learned dic-
tionaries. In fact, there exists much more useful information
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in unlabeled data. To make better use of the information
contained in unlabeled data, we label the unlabeled data after
each training epoch, and add the reliable newly labeled data
into XL and YL . The definition of reliable newly labeled data
is as follows. For unlabeled image xu,i and video yu,j, they
can be regarded as a reliable image-video pair only when the
following two criteria are satisfied. (i) The matching proba-
bility between xu,i and yu,j is larger than the threshold. (ii) xu,i
and yu,j are the top-k nearest neighbor of each other. Then the
updated XL and YL are used for the next epoch. Repeat this
process until no unlabeled image-video pairs satisfy the above
criteria.

However, since pseudo labels are estimated through the
distance metric learned with a relatively small amount of
labeled data, the accuracy of pseudo labels can be inferior due
to the lack of enough labeled data. Researches in [49] also
confirm this. Therefore, we adjust the effect of newly added
pseudo-label samples in the objective function by measuring
the reliability of the pseudo label. Eq. (5) is rewritten as:

g(W,Px ,Py,XL ,YL)

=
1
|G|

∑
<i,j,k>∈G

(‖WT (PxΦx(X)TΦx(xl,i)

−PyΦy(Y)TΦy(yl,j))‖22
− λ‖WT (PxΦx(X)TΦx(xl,i)− PyΦy(Y)TΦy(yl,k ))‖22)

+
1
|G1|

∑
<i,j,k>∈G1

rij(‖WT (PxΦx(X)TΦx(xl,i)

−PyΦy(Y)TΦy(yl,j))‖22
− λ‖WT (PxΦx(X)TΦx(xl,i)− PyΦy(Y)TΦy(yl,k ))‖22).

(6)

where G1 is the collection of newly constructed triplets,
in which the truly matching image-video pair (xl,i, yl,j) is
from the newly added pseudo-label sample pairs. rij repre-
sents the reliability of the newly added pseudo-label sample
pair, which can be computed as rij = exp−dij . Here, dij is
the distance between the coefficients of xl,i and yl,j under the
distance metric learned at the previous epoch. The smaller dij
is, the larger the reliability rij will be. For the convenience of
optimization, we simplify Eq. (6) to the following form:

g(.) = ‖WT (PxΦx(X)TM x
1 − PyΦy(Y)TM

y
1 )‖

2
F

−‖WT (PxΦx(X)TM x
2 − PyΦy(Y)TM

y
2 )‖

2
F

+‖WT (PxΦx(X)TM x
3 − PyΦy(Y)TM

y
3 )‖

2
F

−‖WT (PxΦx(X)TM x
4 − PyΦy(Y)TM

y
4 )‖

2
F

= ‖WT (PxΦx(X)TM x
S − PyΦy(Y)TM

y
S )‖

2
F

−‖WT (PxΦx(X)TM x
G − PyΦy(Y)TM

y
G)‖

2
F (7)

where M x
1 (M

y
1 ,M

x
2 ,M

y
2 ,M

x
3 ,M

y
3 ,M

x
4 ,M

y
4 ) is a matrix with

each column being 1
√
|G|
Φx(xl,i) ( 1

√
|G|
Φy(yl,j),

√
λ
|G|Φx(xl,i),√

λ
|G|Φy(yl,k ),

√
rij
|G1|

Φx(xl,i),
√

rij
|G1|

Φy(yl,j),
√
λrij
|G1|

Φx(xl,i),√
λrij
|G1|

Φy(yl,k )) corresponding to the triplet < i, j, k > in

the collection G (G,G,G,G1,G1,G1,G1). M x
S = [M x

1 ,M
x
3 ],

M y
S = [M y

1 ,M
y
3 ], M

x
G = [M x

2 ,M
x
4 ], M

y
G = [M y

2 ,M
y
4 ].

B. THE OPTIMIZATION ALGORITHM
Generally, the objective function in Eq. (1) is not convex.
To optimize the problem in Eq. (1), we introduce two vari-
ables A and B, and relax Eq. (1) into the following problem:

min
Dx ,Dy,Px ,Py

W,A,B

‖Φx(X)−Φx(X)DxA‖2F+‖Φy(Y)−Φy(Y)DyB‖2F

+α(‖WT (PxΦx(X)TM x
S − PyΦy(Y)TM

y
S )‖

2
F

−‖WT (PxΦx(X)TM x
G − PyΦy(Y)TM

y
G)‖

2
F )

+ τ (‖PxΦx(X)TΦx(X)− A‖2F
+‖PyΦy(Y)TΦy(Y)− B‖2F )

s.t. ‖dx,i‖22 ≤ 1, ‖dy,i‖22 ≤ 1, ‖wi‖22 ≤ 1, ∀i, (8)

where τ is a scalar constant.
The variables in Eq. (8) can be alternatively optimized by

fixing the others when optimizing one of them. Specifically,
we divide the objective function into four sub-problems,
including updating {Dx ,Dy}, updating {Px ,Py}, updating
{A,B}, and updating W. The step-by-step optimization pro-
cedures are as follows.
Step 1: Update A and B.We first initialize Dx ,Dy,Px , Py

andW as randommatrices with unit Frobenius norm for each
column vector. When other variables are fixed, A and B can
be updated by:

min
A
‖Φx(X)−Φx(X)DxA‖2F+τ‖PxΦx(X)TΦx(X)− A‖2F ,

(9)

min
B
‖Φy(Y)−Φy(Y)DyB‖2F+τ‖PyΦy(Y)TΦy(Y)− B‖2F .

(10)

Let the derivative of Eq. (9) with respect to A be zero, the
closed-form solution of Eq. (9) can be easily obtained.

A = (DT
x Φx(X)TΦx(X)Dx + τ I )−1

× (DT
x Φx(X)TΦx(X)+ τPxΦx(X)TΦx(X)) (11)

By substituting Kx(X,X) = Φx(X)TΦx(X) into 11, the solu-
tion of A can be rewritten as:

A = (DT
x Kx(X,X)Dx + τ I )−1

× (DT
x Kx(X,X)+ τPxKx(X,X)) (12)

Similarly, the closed-form solution of Eq. (10) can be written
as:

B = (DT
y Ky(Y,Y)Dy + τ I )−1

× (DT
y Ky(Y,Y)+ τPyKy(Y,Y)) (13)

Step 2: Update Dx and Dy. By fixing Px ,Py,W,A and
B, the objective function regarding to Dx can be written as
follows:

min
Dx
‖Φx(X)−Φx(X)DxA‖2F , s.t. ‖dx,i‖

2
2 ≤ 1, ∀i. (14)
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By introducing a relaxation variableQ, Eq. (14) can be rewrit-
ten as:

min
Dx ,Q
‖Φx(X)−Φx(X)Q‖2F + τ1‖Q− DxA‖2F ,

s.t. ‖dx,i‖22 ≤ 1, ∀i, (15)

where τ1 is a scalar constant. Eq. (15) can be solved by
updating Dx and Q alternatively. By keeping only the terms
relevant to Q, we can obtain min

Q
‖Φx(X) − Φx(X)Q)‖2F +

τ1‖Q−DxA‖2F . By setting the derivative to zero, the solution
of Q can be obtained as:

Q = (Kx(X,X)+ τ1I )−1(Kx(X,X)+ τ1DxA). (16)

By ignoring irrelevant terms with respect to Dx , Eq. (15)
reduces to the following form:

min
Dx
τ1‖Q− DxA‖2F , s.t. ‖dx,i‖

2
2 ≤ 1, ∀i. (17)

Dx can be updated by solving the problem in Eq. 17. Here,
we use the similar way as [47] to solve Eq. 17, i.e., introduc-
ing a variable S:

min
Dx
τ1‖Q− DxA‖2F , s.t. Dx = S, ‖si‖22 ≤ 1 ∀i. (18)

The problem in (18) can be solved by using the ADMM [50]
algorithm:

Dx = argmin
Dx
τ1‖Q− DxA‖2F + ρ‖Dx − S + T‖2F

S = argmin
S
ρ ‖Dx − S + T‖2F , s.t. ‖si‖

2
2 ≤ 1

T = T + Dx − S, update ρ if appropriate.

(19)

where the initial value of T is a zeromatrix.Dy can be updated
in the similar way as Dx .
Step 3: Update Px and Py. By removing irrelevant terms

with respect to Px , the objective function can be written as
follows:

min
Px
α(‖WT (PxΦx(X)TM x

S − PyΦy(Y)TM
y
S )‖

2
F

− ‖WT (PxΦx(X)TM x
G − PyΦy(Y)TM

y
G)‖

2
F )

+ τ‖PxΦx(X)TΦx(X)− A‖2F . (20)

By introducing two relaxation variables V1 and V2, Eq. (20)
can be rewritten as:

min
Px ,V1,V2

α(‖WT (V1 − PyΦy(Y)TM
y
S )‖

2
F

− ‖WT (V2 − PyΦy(Y)TM
y
G)‖

2
F )

+ τ‖PxΦx(X)TΦx(X)− A‖2F
+ τ2(‖V1 − PxΦx(X)TM x

S ‖
2
F

+ ‖V2 − PxΦx(X)TM x
G‖

2
F ), (21)

where τ2 is a scalar constant. By setting the deriva-
tive w.r.t. each variable to zero, Px , V1 and V2 can be updated

Algorithm 1 The Proposed Kernel Analysis-Synthesis Dic-
tionary Based Heterogeneous Distance Learning Approach
Require: Training image and video sets X and Y
Ensure: Dx ,Dy,Px ,Py,W
1: Initialize Dx ,Dy,Px ,Py,W, α, λ, and τ
2: while not converge do
3: Update A and B by (9) and (10), respectively;
4: Update Dx and Dy according to (15);
5: Update Px and Py according to (20);
6: UpdateW according to (25);
7: end while
8: return Dx ,Dy,Px ,Py andW;

alternatively as follows:

Px = (τKx(X,X)Kx(X,X)T + τ2Φx(X)TM x
SM

x
S
T
Φx(X)

+ τ2Φx(X)TM x
GM

x
G
T
Φx(X))−1(τAKx(X,X)T

+ τ2V1M x
S
T
Φx(X)+ τ2V2M x

G
T
Φx(X)) (22)

V1 = (αWWT
+ τ2I )−1(αWWTPyΦy(Y)TM

y
S

+ τ2PxΦx(X)TM x
S ) (23)

V2 = (αWWT
+ τ2I )−1(αWWTPyΦy(Y)TM

y
G

+ τ2PxΦx(X)TM x
G) (24)

We update Py in the similar way.
Step 4: Update W. By keeping only the terms relevant

toW, we can obtain:

min
W

α(‖WT (PxΦx(X)TM x
S − PyΦy(Y)TM

y
S )‖

2
F

− ‖WT (PxΦx(X)TM x
G − PyΦy(Y)TM

y
G)‖

2
F )

s.t. ‖wi‖22 ≤ 1, ∀i. (25)

By introducing a variable S, problem (25 ) can be rewritten
as:

min
W

α(‖WT (PxΦx(X)TM x
S − PyΦy(Y)TM

y
S )‖

2
F

− ‖WT (PxΦx(X)TM x
G − PyΦy(Y)TM

y
G)‖

2
F )

s.t.W = S, ‖si‖22 ≤ 1, ∀i. (26)

Then, the ADMM algorithm can be employed to effectively
solve this problem.

W = argmin
W
α(‖WTM1‖

2
F − ‖W

TM2‖
2
F )+ ρ‖W

− S + T‖2F
S = argmin

S
ρ ‖W− S + T‖2F , s.t. ‖si‖

2
2 ≤ 1

T = T +W− S, update ρ if appropriate,

(27)

where M1 = PxΦx(X)TM x
S − PyΦy(Y)TM

y
S , M2 =

PxΦx(X)TM x
G − PyΦy(Y)TM

y
G.

We repeat the above procedure until convergence.
Algorithm 1 summarizes the optimization process of our
approach.
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FIGURE 3. Convergence curve of the proposed KADDL approach on the
iLIDS-VID dataset.

C. MATCHING BETWEEN IMAGE AND VIDEO FEATURES
USING KADDL
In the testing phase, the matching between image and
video features can be realized by using the learned kernel
analysis-synthesis dictionary pairs {Dx ,Px} and {Dy,Py}) as
well as the metric matrixW. Let xi ∈ Rp be the feature vector
of a testing image, and yj ∈ Rq be the feature vector of a
video. Detailed steps of matching between xi and yj are as
follows.

(1) Transform the heterogeneous image and video features
into coding coefficients of the same dimension by using
the learned dictionaries. Specifically, the coefficient of xi is
obtained by using ai = PxΦx(X)TΦx(xi), and the coefficient
of yj is obtained by using bj = PyΦy(Y)TΦy(yj).
(2) Calculate the distance between the coefficients of

image and video by using the learned distance metricW. The
distance between ai and bj can be calculated as d(ai, bj) =
‖WT (ai − bj)‖22.

D. COMPLEXITY AND CONVERGENCE
In the optimization process of our KADDL approach, all
variables are updated iteratively. In each iteration, the time
complexity of updating A or B is O(m3), where m is the
dictionary size; updating Dx and Dy costs Ok(m3), where k
is the iteration number in the ADMM algorithm; the time
complexities for updating Px and Py areOk(N 3

1 ) andOk(N
3
2 ),

respectively; updating W costs Ok(m3). In our experiments,
k is usually smaller than 10, and the dictionary size m is
usually much smaller than the sample numbers of X and Y
(i.e., N1 and N2). Therefore, the major computational burden
in the training phase of KADDL is on updating Px and
Py. Fortunately, the operations that cost O(N 3

1 ) and O(N
3
2 )

will not change in iteration process, and thus can be pre-
computed. This greatly accelerates the training process.

The proposed optimization algorithm for KADDL is an
alternate iterative optimization algorithm. In each iteration,
{A, B}, {Dx , Dy}, {Px , Py} and W are updated alterna-
tively, and each sub-problem is convex. The convergence of
such a problem has already been intensively studied in [51].
Figure 3 shows the convergence curve of our algorithm on
the iLIDS-VID dataset. We can see that the energy drops
quickly and begins to stabilize after 20 iterations. In most
of our experiments, our algorithm will converge in less
than 30 iterations.

IV. EXPERIMENTAL RESULTS
To evaluate the effectiveness of the proposed approach,
we conduct extensive experiments on three publicly available
person sequence datasets, including iLIDS-VID [52], PRID
2011 [53] and MARS [54].

A. EXPERIMENTAL SETTINGS
1) FEATURE EXTRACTION
For the image set, we employ Part-based Convolutional Base-
line (PCB) method [55] to extract features from each image,
and use the obtained feature vector to represent the image.
For the video sequence, two kinds of features are employed.
Specifically, we first extract HOG3D feature from each
sequence by using the same way as [54]. Then, we extract
PCB feature from each frame of the sequence, and perform
max-pooling operation on the obtained feature vectors to gen-
erate a feature vector for the sequence. Finally, the extracted
HOG3D and PCB features are concatenated to represent the
video sequence.

2) EVALUATION SETTING
In this article, we conduct experiments by following the
similar evaluation protocol as [15]. For the experiments on
iLIDS-VID and PRID 2011, all persons are randomly split
into two sets of equal size, with one for training and the
other for testing. Then, we select the first image from each
sequence of the probe camera to construct the image set, and
the sequences from the gallery camera are used as the video
set. For the MARS dataset, the presetting of training/test split
is used. For each person in the training set, we select the first
frame from half of his/her video sequences to form the image
set, and the remaining sequences are used to construct the
video set. For the test set, the first frame of each query video
sequence is used as the probe image. For the experiment on
each dataset, we repeat each experiment 10 times and report
the average rank-r matching rates.

3) PARAMETER SETTING
There are three parameters in our KADDL approach, includ-
ing α, λ, and τ . In experiments, we set their values by using
the cross validation technique on the training data. In addi-
tion, the size of image and video dictionaries is set as 240, 220
and 300 for iLIDS-VID, PRID 2011 andMARS, respectively;
the number of columns in metric matrixW is set as 180, 170
and 210 for iLIDS-VID, PRID 2011 andMARS, respectively.
The kernel function k(x, y) = exp(−‖x − y‖2/s) is used for
image and video features, and the kernel parameter is set as
the mean of the pairwise distances of samples [48].

B. RESULTS AND ANALYSIS
To demonstrate the effectiveness of our approach, we com-
pare KADDL with several state-of-the-art methods on the
iLIDS-VID, PRID 2011 and MARS datasets, and report the
detailed rank 1, 5, 10, 20 matching rates of all methods. For
our approach, the results are obtained in the case that only
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TABLE 2. Top r ranked matching rates (%) on the iLIDS-VID dataset. The
results of KADDL are obtained by using only half of the labeled training
samples.

TABLE 3. Top r ranked matching rates (%) on the PRID 2011 dataset. The
results of KADDL are obtained by using only half of the labeled training
samples.

TABLE 4. Top r ranked matching rates (%) on the MARS dataset. The
results of KADDL are obtained by using only half of the labeled training
samples.

half of the training samples are labeled. For the competing
methods, the reported results are from their own papers.

Tables 2 - 4 report the matching rates of all methods on
the iLIDS-VID, PRID 2011 and MARS datasets. We can
observe that: (1) our KADDL approach achieves the best
matching results on the iLIDS-VID dataset. In particular,
our approach improves the rank 1 matching rate at least
by 1.7%(=56.3%-54.6%). (2) Our approach achieves much
higher matching rates than other methods on PRID 2011.
Taking the rank 1 matching rate as an example, KADDL
improves the averagematching rate at least by 7.1% (=80.4%-
73.3%). (3) Our approach achieves very competitive results
on MARS, and even outperforms the best compared method
TKP from rank 5. Note that the results of our approach are
obtained in the case that only half of the training data is
labeled.

The major reasons why our approach can achieve very
competitive or even better results with fewer labeled data
are three-fold: (1) Considering that the image and video data
lies in non-linear feature space, our approach learns cou-
pled dictionaries in the Reproducing Kernel Hilbert Space,
such that the learned dictionaries can better characterize the

TABLE 5. Top r ranked matching rates (%) of KADDL and KADDL_base on
three datasets. The results are obtained by using half of the labeled
training samples.

intrinsic relationship between image and video data, and
reduce the gap between image and video. (2) Our approach
learns discriminative distance metric over the coding coeffi-
cients of the images and videos, which can improve the per-
formance of the learned re-identification model. (3) KADDL
can exploit the discriminant information contained in the
unlabeled data by using the designed reliability-based semi-
supervised strategy, which further improves the discrim-
inability of our approach.

V. IN-DEPTH DISCUSSION AND ANALYSIS
A. EFFECT OF THE DESIGNED SEMI-SUPERVISED
STRATEGY
The proposed KADDL approach utilizes the designed
reliability-based semi-supervised strategy to exploit the
useful information contained in unlabeled data. In this
experiment, we evaluate the effectiveness of the designed
semi-supervised strategy. To this end, we compare
reliability-based semi-supervised strategy with the base-
line semi-supervised strategy (i.e., regarding the newly
added pseudo-label samples as the truly labeled samples,
and making use of them with the same manner). Here,
we call the modified version of KADDL with the baseline
semi-supervised strategy as KADDL_base. Table 5 reports
the rank 1-20 matching rates of KADDL and KADDL_base
on the iLIDS-VID, PRID 2011 and MARS datasets. We can
observe that the rank 1 matching rate of our approach is
improved at least by 4.2% (80.4%-76.2%) by using the
designed reliability-based semi-supervised strategy. These
results indicate that the designed semi-supervised strategy
is beneficial to making better use of the useful information
contained in unlabeled data.

B. EFFECT OF USING NON-LINEAR TECHNIQUE
In this experiment, we evaluate the effect of using non-linear
technique. Specifically, we compare our approach with the
modified version that directly learns linear synthesis-analysis
dictionary pair from the original feature data, and report
the performance improvement from the linear feature space
to non-linear feature space. We call the linear version of
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TABLE 6. Rank 1 matching rates (%) of KADDL and KADDL_linear on
three datasets.

TABLE 7. Rank 1 matching rates (%) of KADDL and KADDL-W on three
datasets.

our KADDL approach as KADDL_linear , which learns the
dictionaries without using kernel technique. Table 6 shows
the rank 1 matching rates of KADDL and KADDL_linear
on the iLIDS-VID, PRID 2011 and MARS datasets. One
can easily observe that our approach achieves better perfor-
mance by using non-linear technique (kernel technique). The
major reason is that samples of the image/video set usually
lie in non-linear feature space, and learning dictionaries in
RKHS space can better capture the intrinsic distribution of
image/video data.

C. EFFECT OF THE CODING COEFFICIENT BASED
DISTANCE LEARNING TERM
To evaluate the effect of the designed coding coefficient based
distance learning term, we generate the modified version of
KADDL by removing W from Eq. (5), and compare the
performance of KADDL and its modified version. Here,
we name the modified version of KADDL without using W
as KADDL-W. Table 7 reports the rank 1 matching rates
of KADDL and KADDL-W on three datasets. We can see
that the performance of KADDL decreases without usingW,
which means that learning the metric matrix W is benefi-
cial to further enhancing the discriminability of the obtained
re-identification model.

D. EFFECT OF THE QUANTITY OF LABELED SAMPLES
In our KADDL approach, the distance learning process (espe-
cially for the first epoch ) depends on the labeled data and
pseudo-label data. Thus, the quantity of labeled data will have
an impact on the discriminability of the learned model. To
investigate the influence of the quantity of labeled data to the
performance of KADDL, we perform KADDL by changing
the percentage of labeled data in the training set from 5% to
100%, and observe the performance changes. Figure 4 plots
the rank 1 matching rates of our approach versus different
percentages of labeled data on the iLIDS-VID dataset.We can
observe that: (1) the rank 1 matching rate of our approach
grows along with the increase of labeled training data, and
reaches over 65% when all the images and videos in the
training set are labeled; (2) When only 10% or even 5%

FIGURE 4. Rank 1 matching rates of KADDL versus different percentages
of labeled data in the training data on the iLIDS-VID dataset.

TABLE 8. Rank 1 matching rates (%) of KADDL by using different kernel
functions (including Linear kernel, Polynomial kernel and Gaussian
kernel) on three datasets.

training samples are labeled, the rank 1 performance of our
approach is still higher than 40%. The results indicate that our
approach can leverage the information contained in unlabeled
data to learn more effective re-identification model. Similar
effects can be observed on the other datasets.

E. EFFECT OF DIFFERENT KERNEL FUNCTIONS
In the proposed KADDL approach, Gaussian kernel is uti-
lized as the default kernel function. In this experiment,
we will evaluate the influence of different kernel functions
to the performance of our approach, including Linear ker-
nel, Polynomial kernel and Gaussian kernel. We name the
modified version of our approach using Linear kernel as
KADDL_L, and name the version using Polynomial kernel
as KADDL_P. Table 8 reports the rank 1 matching rates
of KADDL, KADDL_L and KADDL_P on the iLIDS-VID,
PRID 2011 and MARS datasets. We can observe that:
for the iLIDS-VID and PRID 2011 datasets, using Gaus-
sian kernel (i.e., KADDL) can bring better performance;
For the MARS dataset, using Polynomial kernel is a better
choice. The experimental results indicate that selecting more
appropriate kernel functions can induce better performance
for our approach. In practice, we can realize this by using
multi-kernel technique.

F. COMPUTATION TIME
In this experiment, we investigate the training and testing time
of our KADDL approach. We run KADDL on a computer
with an Intel I9 eight-core 3.6GHZ CPU and 32GB memory.
In the training phase, the computation time of learning dictio-
naries and distance metric on the iLIDS-VID, PRID 2011 and
MARS datasets is 8.6, 4.2 and 15.3 minutes, respectively.
In the testing phase, the testing time for one query image is
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less than 0.1 seconds. In practice, the training phase is usually
off-line, thus our approach is suitable for practical use.

VI. CONCLUSION
In this article, we investigate the problem of image to video
person re-id under the semi-supervised setting, and pro-
pose a Kernel Analysis-synthesis Dictionary based heteroge-
neous Distance Learning (KADDL) approach. By learning
coupled kernel analysis-synthesis dictionaries, our approach
can transform the heterogeneous image and video fea-
tures into coding coefficients of the same representation
space, such that the coupled inconsistency can be reduced.
By designing the reliability-based semi-supervised strategy,
our approach can exploit the discriminant information con-
tained in unlabeled data effectively. By learning distance
metric over the coding coefficients in the representation
space, the discriminability of our approach can be further
improved.

Experimental results on three widely used person sequence
datasets demonstrate that: (1) The proposed KADDL
approach can achieve competitive or even better results than
the compared methods by using only half of the labeled
data. (2) By introducing kernel technique into coupled
analysis-synthesis dictionary learning, the learned dictionar-
ies can better reveal the intrinsic relationship between two
non-linear distributions. (3) The designed reliability-based
semi-supervised strategy is beneficial to making better use
of the information contained in unlabeled data.
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