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ABSTRACT Self-powered or autonomously driven wearable devices are touted to revolutionize the person-
alized healthcare industry, promising sustainable medical care for a large population of healthcare seekers.
Current wearable devices rely on batteries for providing the necessary energy to the various electronic
components. However, to ensure continuous and uninterrupted operation, these wearable devices need to
scavenge energy from their surroundings. Different energy sources have been used to power wearable
devices. These include predictable energy sources such as solar energy and radio frequency, as well as
unpredictable energy from the human body. Nevertheless, these energy sources are either intermittent or
deliver low power densities. Therefore, being able to predict or forecast the amount of harvestable energy
over time enables the wearable to intelligently manage and plan its own energy resources more effectively.
Several prediction approaches have been proposed in the context of energy harvesting wireless sensor
network (EH-WSN) nodes. In their architectural design, these nodes are very similar to self-powered
wearable devices. However, additional factors need to be considered to ensure a deeper market penetration
of truly autonomous wearables for healthcare applications, which include low-cost, low-power, small-size,
high-performance and lightweight. In this paper, we review the energy prediction approaches that were
originally proposed for EH-WSN nodes and critique their application in wearable healthcare devices. Our
comparison is based on their prediction accuracy, memory requirement, and execution time. We conclude
that statistical techniques are better designed to meet the needs of short-term predictions, while long-term
predictions require the hybridization of several linear and non-linear machine learning techniques. In addition
to the recommendations, we discuss the challenges and future perspectives of these technique in our review.

INDEX TERMS Wearable devices, energy harvesting, healthcare, wireless sensors, energy prediction.

I. INTRODUCTION

For better management of chronic diseases such as ischemic
heart diseases and diabetes, the demand for developing per-
sonalized real-time patient monitoring systems is critical [1].
Recent advancements in microelectronics, mobile comput-
ing, as well as the internet of things (IoT), and artificial intel-
ligence (AI) technologies have significantly contributed to
the emergence of wearable sensing devices. The wide poten-
tial of this unique sensing platform in several applications,
including health monitoring, medical prosthetics and
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consumer electronics, have motivated tremendous research
efforts in this domain [2]. Additionally, the wearable med-
ical sensors market is expected to gain momentum, as the
market size is anticipated to reach 139,353.6 million USD by
2026, which demonstrates a 467.13 % growth in the market
size compared to 2018 [3]. Wearable devices encompass
an array of miniaturized sensors, a wireless transmission
module, a power supply module, and electronics for data
acquisition and processing, which are all packaged in a sup-
portive wearable encasing such as a glove [4], [5], wristband
[6], [7], contact lens [8], [9], or a ring [10], [11]. These
portable units can gather the patients’ physiological signals
and periodically transmit them through a wireless network
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to the remote healthcare service provider. The recorded data
is then processed for detecting and predicting acute health
events, which lead to fast medical intervention in such cases.

Nevertheless, the widespread adoption of self-powered
wearable devices for healthcare applications is limited by sev-
eral factors that include their size, ease of use, cost, and their
energy sustainability [12]. Batteries are the most common
energy source for wearable devices, but their use impedes
perpetual operation due to the battery’s limited lifetime [13],
which means that frequent recharging or replacement is nec-
essary. In this regard, energy harvesting from the surround-
ings or from the human body is considered a promising
method for deepening the penetration of self-powered wear-
able devices for patient monitoring using power-efficient and
self-sustainable portable devices [14].

Energy harvesting is the process of converting the ambi-
ent or external energy into useful electricity. This process
will not completely avoid the need for batteries or other
energy storage technologies in wearables, but it will effec-
tively reduce their reliance on such technologies as their
single source of energy. There are several types of energy
harvesting techniques that have been proposed in the liter-
ature, which are based on converting light, heat, mechanical,
electromagnetic, wind, acoustic, and biochemical energy into
electricity. Furthermore, hybrid techniques, which combine
different energy sources on a single platform have previ-
ously been demonstrated [15]. However, in the context of
self-powered wearable devices for healthcare applications,
the most common sources are solar irradiation [16], radio fre-
quency (RF) [17], thermoelectric energy [18], and mechani-
cal [19] energy owing to their large power conversion density,
which is an important attribute for achieving lightweight and
small-sized wearable devices.

Despite their potential and due to the fluctuating nature
of these energy sources, all the previously mentioned energy
harvesting techniques are either location or time depen-
dent. Consequently, this uncertainty in harvestable energy
will always impact the performance of wearable healthcare
devices. In this regard, accurately predicting the amount of
harvestable energy from the human body, as well as the
wearable’s surroundings will enable it to effectively manage
its current energy reserves for future use. This helps avoid
temporary energy shortages falling below a critical level.
It also opens the door to additional functionalities that can
be implemented on the wearable device, especially if energy
demand is variable.

Accordingly, several energy prediction models have been
proposed in the literature, particularly for solar energy [20].
The power management technique based on energy predic-
tion can overcome the problem of the harvested power vari-
ation over time by taking decisive actions and allowing the
system to efficiently exploit the available energy. Other power
management techniques were proposed for the efficient use
of un-predictable energy sources, such as the thermal, and
mechanical energies [21]. Despite the importance of power
management models in wearable technologies, very few
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studies were conducted in this domain. Consequently, based
on the architectural resemblance of wireless wearables and
wireless sensor nodes, this study investigates the most promi-
nent prediction methods in energy harvesting wireless sensor
networks (EH-WSNs). We investigate the relative advan-
tages of each mechanism, while only considering the energy
sources that are commonly harvested in wearables. Thus,
an overview of the main proposed energy predictors for
photovoltaic and RF energy harvesters in EH-WSN literature
are presented, since these energy sources are the predictable
energy harvesting sources for wearable devices.

The remainder of this paper is organized as follows.
Section II provides the system architecture of typical
EH-WSN nodes. Our focus in this article is on the Power
Management Subsystem shown in Fig. 1. Next, in Section III
we provide a comparison between the energy harvesting
sources, as well as the technologies used for self-powered
wearable healthcare devices. In section IV we critically
analyze and compare the different methods for predicting
the amount of harvestable energy in self-powered wearable
devices. Moreover, we provide recommendations and future
directions in section V of the article. Finally, the article ends
with concluding remarks in section VI.

Il. SYSTEM ARCHITECTURE OF ENERGY HARVESTING
WIRELESS SENSOR NODES

The system architecture of energy harvesting wireless sensor
nodes comprises four main subsystems, namely data acquisi-
tion, processing and storage, radio, and power management
subsystems [15] as outlined in Fig. 1.

Data Acquision
Subsystem

Power Management Subsystem
Processing & Storage
Subsystem

Energy
Harvesting
Device(s)

Power
Control

Energy Storage

Ambient Energy Source(s)

Low-power
Radio
Transceiver

RF Antenna

FIGURE 1. Schematic diagram of energy harvesting wireless sensor node.

In the data acquisition subsystem, the sensor detects the
physical signal, which is inputted to the analog-to-digital con-
verter to convert the output of the sensor into its digital form.
The converted signal is then fed to the processing and storage

170337



IEEE Access

M. A. Wahba et al.: Prediction of Harvestable Energy for Self-Powered Wearable Healthcare Devices: Filling a Gap

subsystem. The main purpose of the processor is to execute
the instructions pertaining to sensing, communication and
self-organization. Additionally, it interconnects the other sub-
systems, and any additional peripherals, such as the local-
ization units. The storage process has two-folds: non-volatile
memory to store the application-related data, and an active
memory which temporarily stores the sensed data and the
internal clock. It is a good practice to deploy low-power
microcontrollers in the processing and storage subsystem of
the wireless sensor nodes due to their small size, low-power
consumption, low-cost, and compact construction compared
to the field-programmable gate arrays (FPGAs) [22]. The
radio subsystem uses low-power transceivers, and radio fre-
quency antennas to connect the node to the WSN gateway in
case of point-to-point communication, or to the other WSN
nodes creating a mesh.

The most crucial consideration in the design and opera-
tion of wireless sensor (WS) nodes is the tradeoff between
their energy requirements and their performance. Hence,
the power management system in EH-WSN nodes alleviate
the dependency on a fixed or finite energy source by incorpo-
rating energy harvesters, which scavenge ambient, external,
or human-generated energy and transduce them into electrical
energy. This energy is then transferred to the power control
unit, which regulates the energy storage and consumption
process. Decisions are then made to directly power the sub-
systems using the harvested energy or to buffer the energy at
the energy storage unit. The architecture of the power man-
agement subsystem is represented in more details in Fig. 2.

P
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FIGURE 2. Schematic diagram of power management subsystem of
energy harvesting wireless sensor node.

From Fig. 2, one or multiple energy harvesters may be
used in the power management subsystem to scavenge energy
from different sources. For example, photovoltaic cells and
thermoelectric generators [23] can be used for harvesting
solar and thermal energies. Using this approach, an energy
adapter is required for normalizing the output energy from
different energy harvesters. Afterward, the energy flow con-
troller distributes the obtained energy to satisfy two scenarios,
namely i) when the harvested energy is available, the obtained
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energy is directly used to power the WSN node through a
DC/DC converter that regulates the provided voltage, and
ii) if the harvested energy exceeds the consumed energy, this
surplus is accumulated in the energy buffer for later use at
times of scarce harvesting resources.

Commonly, rechargeable batteries and supercapacitors are
used in the energy storage unit. However, many EH-WSNs
rely on supercapacitors, either as a standalone energy
buffer [24], [25], or in combination with batteries [23], [26].
This is due to their several advantages compared to recharge-
able batteries, including higher lifetime, simpler charging
circuits, and higher charging/discharging efficiencies. Both
types of storage units suffer from self-discharge and leakage,
which cause a reduction in their stored energy due to chemical
factors and temperature, even though the storage devices are
not in use [27]. Comparing the two approaches (i.e. direct
use of energy, and stored energy), the direct use of energy
is the most energy efficient as it alleviates the energy loss in
the storage units. However, in terms of practicality, the stored
energy approach is more realistic due to the fluctuating nature
of the energy sources over time, which constrains the rate and
the amount of the scavenged energy. Accordingly, intelligent
power management techniques such as energy prediction
are crucial for estimating energy availability and forecast-
ing energy intake. Moreover, the efficient use of available
energy sources enables the EH-WSN node to dynamically
adjust its wake-up intervals to satisfy energy neutral operation
(ENO) [26].

In the following section, we describe the most common
energy sources in the context of self-powered medical wear-
ables. We compare their average power densities, conversion
efficiencies, and classify them in terms of their controllability
and predictability. We will subsequently review the energy
prediction approaches in Section I'V.

Ill. COMPARISON BETWEEN ENERGY HARVESTING
TECHNIQUES IN SELF-POWERED WEARABLES
Sources for energy harvesting applications can be classified
as either ambient-, or human-based energy sources. Despite
the wide variety of ambient energy sources, they are either
location or time dependent. Some of these sources have a
further reduced availability in indoor environments, which is
where most wearables are typically used. The most popular
energy harvesting technologies rely on converting light, heat,
radio frequency and body movements into electricity [28].
We will therefore discuss the most common materials and
architectures used in each of these technologies.
Photovoltaic (PV) energy harvesting from solar and
indoor light has shown great potential, especially following
recent advances in power density, flexibility, and sensitivity
[29], [30]. Such technologies rely on converting the Sun’s
energy into electricity using materials that produce currents
and voltages as a result of light absorption. Semiconducting
materials are typically used, with power densities reach-
ing 15 mW/cm? for outdoor applications [15]. However,
despite their high efficiency, photovoltaic energy harvesting
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using rigid semiconducting materials is not ideal for wear-
able applications. Thus, flexible non-crystalline materials are
currently being investigated for wearable applications. For
example, a flexible perovskite solar cell with an integrated
lithium ion capacitor has been demonstrated by Li ez al. [31].
Their strain sensing device can be integrated into garments
and has shown an efficiency of 8.4%. A schematic diagram
illustrating the concept is shown in Fig. 3a. Methods for
improving the efficiency of such devices as well as their long-
term stability are still under investigation, as mentioned in the
review by Hashemi et al. [32].
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FIGURE 3. Schematic diagram of different energy harvesting methods
from the human body and its surroundings. These include (a) Solar
energy conversion using flexible materials [31], (b) TEGs on the wrist [28],
(c) RF harvesters on flexible substrates [40], and (d) Piezoelectric
harvesters embedded in shoes [38].

On the other hand, body heat and body movements are
practical energy sources for wearable devices. For example,
body thermal radiation can be harvested using thermoelectric
generators, which rely on temperature gradients in ceramics,
polymers and semiconducting materials for electricity pro-
duction. Here, the Seebeck effect is responsible for convert-
ing this temperature difference into a potential difference.
Therefore, heating one end of the thermoelectric material
causes carriers to diffuse from the cold to the hot ends of
the material [14]. Needless to mention that semiconducting
materials such as Bismuth Telluride have been widely used
for thermoelectric applications due to their low cost and high
Seebeck Coefficient [33]. Moreover, thermoelectric genera-
tors (TEGs) for healthcare applications have been demon-
strated by Thielen et al., which were subsequently combined
with DC-DC converters to provide a power density ranging
from 13 to 14 pW/cm?. Despite this low power density,
their lightweight bracelet system consisting of multiple TEGs
wrapped around the wrist proves that sensors can be powered
using such a device [28]. Figure 3b illustrates the underlying
concept of their harvester.

Moreover, researchers exploited the mechanical and
kinetic energy from human movements and vibrations to
power wearable devices using piezoelectric, electrostatic,
electromagnetic, and triboelectric energy harvesting tech-
niques [34]. Materials that have been used for piezoelectric
applications include Zinc Oxide (ZnO) and Zirconate

VOLUME 8, 2020

Titanate (PZT) [35]. Currently, the most effective method of
harvesting kinetic energy from the human body is from walk-
ing [36]. According to the literature, almost 67 W of power
can be generated from a person weighing 68 kg walking at
a speed of two steps per second [37]. For example, a PZT
dimorph was inserted under the heel to produce 8.4 mW for
a 500 k€2 load and a walking rate of 0.9 Hz [38].

Furthermore, RF energy, at the frequency band from 3 KHz
to 30 GHz, was used for powering several wearable devices
by developing custom-built rectennas suitable for harvesting
ambient wireless transmissions. These ambient transmissions
include the radio and television broadcasting, Wi-Fi commu-
nications, mobile transmissions microwaves. However, Wi-Fi
communications are the most common source for RF energy
harvesting due to their wide availability and their closer
proximity to the user’s wearable device compared to the other
ambient sources [39]. An example of such a flexible device
has been demonstrated by Zhang et al., where rectennas were
used to convert RF energy from Wi-Fi into electricity [40].
Their device consisted of a Molybdenum disulfide (MoS;)
semiconducting—metallic-phase heterojunction with a cutoff
frequency of 10 GHz, which is ideal for harvesting electro-
magnetic radiation from Wi-Fi systems that typically operate
in the 2.5 to 6 GHz range. Thus, an incident electromagnetic
wave can be converted into direct current. The MoS, Schottky
diode structure is shown in Fig. 3¢, which includes a metal
palladium (Pd) anode and a gold (Au) Ohmic contact that
serves as the cathode. Their device demonstrated a high
power conversion efficiency of 40.1%. Despite the ubiquitous
nature of RF radiation, such harvesters still suffer from low
output power (62 uW).

Other human movement methods have been investigated
by Halim et al., where the swing motion of arms during walk-
ing was converted to useful electricity (between 55 to 61 uW)
using an electromagnetic energy harvester [41], [42]. The
architecture of the electromechanical transducer consisted of
two eccentric rotors containing five magnetic pole pairs and
an array of coils in the middle.

Recently, there has been an increased interest in develop-
ing hybrid energy harvesters, which scavenge energy from
multiple sources to mitigate the limitations of each other.
An example of this is the smart bracelet device demon-
strated by Magno et el., which combines both thermoelectric
and photovoltaic energy harvesters [43]. The heart of this
complete wrist-worn system is an ultra-low power processor
(Mr. Wolf), which receives power from a dual harvester
consisting of flexible solar cells and a TEG harvester.

Table 1 compares the different energy harvesting tech-
niques for self-powered medical wearables in terms of their
advantages and limitations, indicating the typical power den-
sities produced using these techniques. Given the dynamic
nature of these energy sources, the rate and the amount of
harvestable energy varies with time, which increases the need
for efficient power management in terms of energy use and
storage. This is to ensure sustainable operation of the energy
harvesting devices.
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TABLE 1. Comparison between energy harvesting methods for
self-powered wearable healthcare devices.

Energy EH technique Typical harvested A g Limi
Source power density for
Photovoltaic Outdoors (direct sun): | Scalability Fabrication material
> 15 mW /em? [15] Low cost selection
:*;D Outdoors (cloudy Maintenance free Surface area
5 day): No moving parts Amount of
=) E 0.5 mW /cm? [44] Simple design illumination
§ 5 Indoors (using light): High power density Device location
SE up to 30 pW /cm? Easy fabrication
w5F [44] High availability
A < Indoors (using human | Reliability
g infrared thermal
E emissions):
& 2.2 W fem? [14]
_ Thermoelectric | Human (indoors): Scalability Low efficiency
E 60 W /em? [14] Low cost Requires a
E Human (at 0 °C Mai free hanism to
) ambient): No moving parts maintain the
25 97.2 mW /cm? [45] Simple design temperature
<5 High availability and | difference across
g reliability the device
;:‘ Output power Works best
independent on size outdoors

Human body mechanical energy

Piezoelectric

<68 W [cm? [46]

Simple technique
Small size

High output voltage
Power density

Low efficiency at
low-frequency
Requires frequency
up-conversion
Fabrication material
selection

Low output current

Electrostatic

~0.1 uW /cm? for
implantables and
1.2 uW /em? for
wearables [14]

Compatible with
MEMS technology
Easy fabrication
Good performance at
low-frequency
vibrations

Need start-up
voltage
Complexity
Capacitance range
of variation affects
efficiency and
energy gain
Electret discharge
for liquid-based

harvesters
Electromagnetic |~ 4 uW/cm?® from Durable operation Bulkiness
human motion [14] High output current Challenging to
No mechanical parts miniaturize
No external voltage Affected by

source

vibration amplitude,
frequency, and
damping factor
Difficult to make
microscale coil, low
flexibility

Low output voltage

Radio Frequency Energy

Triboelectric ~36 mW/cm? [47] Very high output Electrostatic charge
voltage, and power Low current
density, simple, ease | density,
of fabrication, performance
scalability, cost- dependent on the
effective, flexibility choice of materials

Temperature
Surface roughness,
and strain
Requires surface
morphology
modification

Rectennas ~0.01- 0.1 uW/cm? | Widely available Low power density

for distances ranging
from 25 m to 100 m
from a GSM base
station [14]

over a large
frequency range
Simple circuits as
series RF-DC
converters provide
good compromise
between conversion
efficiency and output
voltage

Varies with distance
Short range
Transient drops in
received power
level may occur
because of different
radio wave
propagation
phenomena and
traffic fluctuations

IV. REVIEW OF ENERGY PREDICTION METHODS

Energy prediction methods can be used to forecast energy
source availability and evaluate the expected energy intake.
This allows the energy harvesting system to efficiently man-
age its own resources and store enough energy for any unex-
pected energy dips. The energy sources used in self-powered
medical wearables are classified according to their pre-
dictability and controllability [21], as reported in Table 2.
Controllable energy sources do not require energy forecast-
ing, due to their on-demand availability. On the other hand,
the ability to predict the availability of non-controllable
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TABLE 2. Predictability vs controllability of energy harvesters for
wearable healthcare devices.

Energy Predictability | Controllability | Conversion Examples of

source efficiency proposed devices

25+1.5% InfiniWolf
[48] bracelet [49], flexible

Photovoltaic v X smart
pulse-oximeter
bracelet [50], solar-
powered converter for
wearable devices [51],
wearable
electromyography
wristband [52]
WiWear [39], dual-

Radio v v 50%

Frequency excluding band wearable

transmission | rectenna [531,
efficiency wearable rectenna for

[15] healthcare [40, 54]

Human-based X x Human temperature-
based wearables [18,
28, 56],

thermoelectric-based

physiological
wearable
5-30% [55] electrocardiography
[57]

Human-based X vV Human motion
wearable piezoelectric

harvesters [58-61]

activity

energy source using energy prediction techniques supports
the efficient power management of EH-based devices.

Energy prediction methods are based on using available
historical time-series datasets and meteorological parameters
to efficiently forecast the available energy at upcoming time
intervals. The existing prediction models can be divided into
three main classes, as shown in Fig. 4: statistical, stochastic,
and machine learning models. The performance of these pre-
diction classes and their specific methods vary in terms of
prediction accuracy, the required memory, and the execution
time, which are critical in evaluating the adequacy of such
methods in energy prediction for wearable devices.

However, few studies in the literature have considered
energy prediction for wearable devices. Therefore, based
on the architectural resemblance of wearable devices to
EH-WS nodes, the energy prediction methods proposed for
the latter have been investigated in this study to determine
their effectiveness for wearable devices. From this deduc-
tion, the energy prediction methods for EH sources that are
commonly used by wearable devices would be only consid-
ered. For example, energy prediction for wearable devices is
critical in the following cases:

o In case of predicting the time-ahead scarcity of solar
energy, the device regulates the currently available
energy to maximize the preserved energy at the sec-
ondary storage for further use at the time of need. Also,
task scheduling, and adaptive duty cycle management
at the media access control (MAC) layer of the device
would be set accordingly [62].

o In case of predicting the RF link quality, the device
can estimate the remaining RF connectivity time for
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FIGURE 4. Different classes of prediction models.
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avoiding the unnecessary message transmissions. Thus,
fully exploiting the available energy in transmitting the
critical data, minimizing the wasted energy, and optimiz-
ing the network performance [63].

Thus, an overview of energy predictors for photovoltaic
and RF energy harvesters in EH-WSN literature are pre-
sented, since these energy sources can be predicted in
autonomous or self-powered wearable devices.

A. STATISTICAL METHODS

Statistical models adopt different statistics such as mean,
variance, standard deviation, and moving average to estimate
the available energy at a particular time interval based on the
given historical energy profiles. The exponentially weighted
moving-average (EWMA) model, which is considered as the
baseline of statistical-based prediction models, was applied in
predicting the availability of solar energy. This model relies
on the rough assumption, where the generated energy profiles
of the consequent days have similar distribution over the
corresponding time intervals. This means that the available
energy at a specific time interval during the day is related
to the observed energy during the same time interval in the
previous days. Thus, based on the stored historical summary
of the energy generation profiles, the expected energy at a cer-
tain slot during the current day is an exponentially weighted
moving average of the energy during the same slot for the pre-
viously observed days. Subsequently, each day is discretized
into N equal-length time slots, usually about 30 minutes each,
yielding to 48 slots [64]. However, the selection of the slot
length considers the tradeoff between the uniformity of the
solar activity during each slot, which is achieved by selecting
shorter slots, and the memory overhead caused by the storage
of a large number of slots (N-sized vector), as shorter slots
lead to higher N. The EWMA model predicts the amount of
energy E in the nth time slot, as follows [65]:

E¢=aE7 4+ (1 —a)M, (1)

where d represents the current day, M,, represents the average
value of the harvested energy at the nth slot for the previous
days, and « is the weighting factor (0 < o < 1) to ensure
less contribution of the older days to the progression of the
predicted value. The study of Kansal et al. [64] compared the
effect of different values of o on the prediction error have

VOLUME 8, 2020

suggested an optimal value of « = 0.5, whereas another
study was proposed using smaller values of @ (i.e. « = 0.3)
for the fast adaptation to seasonal changing [66]. Similar
to the EWMA, the Swiss Federal Institute of Technology
Zurich (ETHZ) prediction method [67], which can be used
for both short term and long term predictions, included the
data collected over the past days in an exponentially decay-
ing manner, along with the received energy in the current
time slot. However, the ETHZ method is comparably more
complex in terms of the number of multiplications, and the
required prediction time. The derived short term predicted
energy is a weighted combination of the following three
values, namely the measured energy at the previous slot, the
average incoming power at the last 7 samples, and the short-
term energy average. The last two values are also multiplied
by weighting coefficients. The main drawback of the EWMA
is the inability to adjust well to the frequent variations of
weather conditions, such as the alternation of cloudy and
sunny days, causing an average error of 30% between the
predicted and the true harvested energy [68]. This was the
main motivation behind developing the weather-conditioned
moving average (WCMA) model which accounts for weather
turbulence by including the weather conditions of the current
day, as described by the following expression [68]:

E, = a.Ey_i + (1 — a).M,GAPK )

where E,_ is the last harvested energy, and M, is the mean
of the stored energy values E at the time slot (n) for the D
previous days, which is given as follows:

d—D @)
D E
M, = == 3)

For the n™ slot, the GAP factor estimates the current day
weather conditions based on the ratio between the measured
energy of the K previous time slots [n-K+1, ..., n-1] on the
current day to their average estimated energy values over the
previous D days. For computing this factor, two K-element
vectors were defined, namely V = [v,va,...,vk]and P =

[p1,p2, ..., pk], which indicate the energy quotient of the
prior samples and their weights, respectively, as follows [68]:
En_k+tk—
v = Kkl )
MK +i-1
_ )
Pk =%

The P vector has the weights assigned to the K previous slots,
which are in proportion to their proximity to the n”” time slot,
such that the most recent slots have larger weights and higher
contribution to its expected weather condition. Subsequently,
the GAP is computed as follows:

V.P
GAPN = ——— (©)

Zk: 1Pk
Thus, the higher memory requirement of WCMA compared
to the EWMA is due to its storage of the measured energy
matrix E(i,j), where j is the number of the time slot at the
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i day. Moreover, the significant changes in the solar condi-
tion at sunrise and sunset using the WCMA lead to peaking
the prediction error at these times, especially for weighting
factor values of o > 0.5, as the preceding slots contribute to
the current slot prediction [67]. The prior setting of this factor
generally tunes it for a particular set of data to justify the
current measurements along with the historical data, which
does not necessarily ensure the fast adaptation to the rapidly
changing weather conditions. Therefore, several algorithms
were proposed for addressing this issue, such as the dynamic
WCMA (D-WCMA) at which « is adapted dynamically
according to the mean value of the historical data [69].
For further improvement in the prediction accuracy, the last
observation E,_; was replaced by a linear weighted combi-
nation of the last observation and the closest energy pattern in
the stored data, which was proposed by the universal dynamic
WCMA (UD-WCMA). Also, Bergonzini et al. [67] proposed
the WCMA-PDR algorithm including phase displacement
regulator for reducing the prediction error over the consec-
utive days through exploiting the prediction errors of the past
days in a feedback manner, which reduced the prediction error
to 9.2% compared to 10% for the WCMA, while increasing
the memory requirement by 25% and the time for prediction
by 62.7%.

The statistical profile-energy (Pro-Energy) energy predic-
tion model [70] was proposed for predicting the short-term
(30 minutes) and the medium-term (one hour to cou-
ple of hours) energy generation. Similar to the WCMA,
the Pro-Energy maintains the recorded energy generation
profiles of the previously observed D days, which are used for
estimating the future energy intake. Similar to the premen-
tioned models, each day is divided into N equal-sized time
slots, which are usually 30 minutes each (i.e. 48 time slots).
The predicted values during the N slots of the current day
are stored in an N-dimensional vector. The energy profiles of
the previously observed days are stored in a (DxN) matrix.
Unlike the prementioned models that depend on the energy
intake of the previous days, the Pro-Energy model search
in the pool of the previously stored energy profiles to find
the profile with the highest similarity to the current day and
exploiting it in the energy prediction of the next time slot.
Accordingly, the forecasted energy for the time slot (n + i) at
the current day d is described over the short-term and medium
term, respectively, as follows:

El | =aEl +(1-a).EL, @)
El,; = viE + (1= y).Ey, ®)

where i is the i timeslot with respect to n, E,Zl is the energy
harvested at the n”” slot during the current day (d), « and y
are weighting factors, and Er‘fii is the energy harvested at the
(n + i) slot at the most similar day (¢*). For indicating the
most similar day, the mean absolute error (MAE) is calculated
as the difference between the energy predictions of the last
observed K timeslots of the current day and the corresponding
predictions for each of the recorded D days. Accordingly,
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the day with the least MAE is determined as the most similar
day. Conversely, the variation in the energy harvesting rate
throughout the different periods of the day does not guarantee
the best prediction results using fixed-length timeslots.

Thus, one of the proposed advancements of the Pro-Energy
model is the Pro-Energy model with variable length timeslots
(Pro-Energy-VLT) [70], which adapts the granularity of the
timeslots (i.e. coarser or finer) according to the dynamics of
the energy source. It was reported in the same study that the
mean absolute deviation percent (MADP) decreases using a
higher number of timeslots, when the harvesting variability is
high. For estimating the length of each of the N slots, an iter-
ative algorithm based on the perceptually important point
method is applied. This method uses the average daily har-
vesting profile computed from the historical weather data for
estimating the granularity of the timeslots. Also, this model
was compared against Pro-Energy, EWMA, adjusted EWMA
(AEWMA), and WCMA in terms of the MADP prediction
error and memory overhead. In the AEWMA, a scaling factor
that represents the ratio between the actual harvested energy
and the predicted value for a certain timeslot is used to adjust
the future predictions, which accounts for short-term weather
variations. Results as shown in Table 3 indicate that Pro-
Energy-VLT had less MADP compared to Pro-Energy by
10.1% to 12.3%, 15.9% to 23.1% less than that of WCMA,
35% to 53.2% less than that of AEWMA, and 58.8% to
62.9% less than that of EWMA. The main advantage of this
model is reducing the memory requirement and alleviating
the overhead of the energy prediction process, which is pro-
portional to the number of timeslots, as Pro-Energy-VLT out-
performed Pro-Energy and WCMA in terms of the predictive
accuracy, while using nearly half the number of timeslots,
which can reduce the memory footprint to more than 40%,
as WCMA and Pro-Energy typically consume 20-50% of the
total memory available on Telos B and Mica2/MicaZ motes,
respectively.

Another enhancement of the Pro-Energy model is the
IPro-Energy model [20], which was proposed for increas-
ing the prediction accuracy and reducing the computational
overhead for predictions over both short term and medium
term horizons. Instead of selecting the one most similar day
from the pool, IPro-Energy minimizes the prediction error by
combining the profiles of the two most similar days from the
pool in the prediction process (i.e. number of selected profile
P = 2). These selected profiles are weighted by a factor (w),)
according to their MAE, such that higher weight is assigned
to the day profile with the lower MAE, after that the weighted
profile (WP) is obtained as follows.

MAE (0%, C)

wp=1—( ) ©)
! Y1 MAE(0%, C)
1 P d,
WP, = P 2apmt (wp.Onil) (10)

. . d
where O% is the day p entry at the stored matrix O, OHfH
represents the (n+7) timeslot at that entry, and C represents
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TABLE 3. Performance summary of the main proposed prediction approaches for EH-WSNs.

Reference Prediction model

Energy

source

Dataset source

Prediction error

Execution time Memory

©) (Bytes)

Pro-Energy-VLT

Pro-Energy

[70]
WCMA

AEWMA

EWMA

Outdoor
solar traces
(OST)

Indoor
radiant

light (IRL)

OST: traces from Rome
(ROME), traces from
Oak Ridge,
Tennessee(ORNL) [95]

IRL: from Energy
Harvesting Active
Networked Tags
project [96]

OST: 5% "M to 11% "™ (short-
term)

6% to 14% (medium-term)
IRL: ~24% (short-term)

~31% (medium-term)

1344
(N=32)

OST: 6% to 12% (short-term)
8% to 15% (medium-term)
IRL: ~ 28% (short-term)

~ 32% (medium-term)-

2592
. (N=48)

OST: 7% to 18% (short-term)
9% to 25% (medium-term)
IRL: ~ 35% (short-term)

~ 45% (medium-term)-

1732
- (N=48)

OST: 11% to 13% (short-term)
13% to 16% (medium-term)
IRL: ~ 30% (short-term)

~ 35% (medium-term)-

96
- (N=48)

OST: 11% to 30% (short-term)
10% to 28% (medium-term)
IRL: ~ 53% (short-term)

~ 45% (medium-term)-

96
- (N=48)

IPro-Energy

Pro-Energy
[20]

WCMA

ASIM

Solar

irradiance

Traces from New-
Mexico (NM),
Michigan (MI) [97]

7.5% "™ to 11.9%™" (short-term)
14.5% to 21.1% (medium-term)
38.7% to 54.9% (long-term)

0.021 -

15.9% to 24.1% (short-term)
31.1% to 40.9% (medium-term)
35.3% to 53.2% (long-term)

0.090 -

22.2% to 28.1% (short-term)
84.3% to 96.7% (long-term)

0.014 -

25.9% to 69.8% (short-term)
44.9% to 65.4% (long-term)

0.013 -

Autoregression

NN
[90]

ANFIS

Solar

irradiance

hourly global solar
irradiance ground
measurements from
Spanish National
Radiometric Network

stations (AEMet)

20.65% to 25.71% (Murcia)
26.54% to 31.06% (Albacete)
23.11% to 30.10% (Madrid)
23.45% t0 29.69% (Lerida)

20.58% to 24.68% (Murcia)
26.37% to 30.39% (Albacete)
23.21% to 28.31% (Madrid)
23.65% to 29.31% (Lerida)

20.86% to 25.69% (Murcia)
27.36% to 30.42% (Albacete)
23.40% to 28.96% (Madrid)
23.52% t0 29.66% (Lerida)
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TABLE 3. (Continued.) Performance summary of the main proposed prediction approaches for EH-WSNs.

13.68% (long-term)

ALHM
8.66% to 11.74% (short-term)
Two- dataset fi
NN Solar Woryear Cataset oM 1718 419% (long-term)
86 the UMASS T - -
[86] irradiance ¢ UMASS Trace 15.24% to 18.84% (short-term)
Reposit 98
epository [98] 20.39% (long-term)
SVM
16.87% to 21.05% (short-term)
Feedforward NN 56.61 W/m? (hourly) 20 KB
Backpropagation NN 71.47 W/m? (hourly) 212 KB
Four months dataset -
NARX NN 59.63 W/m” (hourly) 216 KB
Solar from National
[84] Elman o -
irradiance Renewable Energy 66.95 W/m? (hourly) 212 KB
backpropagation
Laboratory (NREL)
Recurrent NN 49.17 W/m? (hourly) 228 KB
Model averaged NN 57.82 W/m® (hourly) 56 KB
Proposed 56.61 W/m’ (hourly) 20 KB
Feedforward NN
[84]
_ Four months dataset 5
Adaptive NN + 149.29 W/m* (hourly) 228 KB
o . Solar from National
[84] statistical techniques -
(93] irradiance Renewable Energy
Laboratory (NREL) 5
Feedforward NN [99] 172 W/m* (hourly) 20 KB
Model averaged NN 204.52 W/m’® (hourly) 56 KB
[83]
One year data from 20.5% to 177.88% (over 1-year
Feedforward NN
Solar Radiation data)
. Resource Setup at the 121.74% to 463.12% (over 1-year
Backpropagation NN
[83] Solar Electrical Engineering data)
irradiance Department in Madan 140.06% to 241.46% (over l-year
Deep learning NN .
Mohan Malaviya data)
University of 35.93% to 120.57% (over 1-year
Model averaged NN .
Technology, India data)
36.59% (hourly NRMSE)
Hybrid using PME
28.39% (daily cumulative
rule
Horizontal global NRMSE)
radiation available on 40.55% (hourly NRMSE)
MLP-NN Solar . .
[89] the French 31.63% (daily cumulative NRMSE) - -
irradiance .
Meteorological 40.32% (hourly NRMSE)
ARMA o
Organization database 32.49% (daily cumulative NRMSE)
) 50.62% (hourly NRMSE)
Persistence
39.94% (daily cumulative NRMSE)
Research Unit for 13.16% (daily prediction
SVM Solar
[88] . . Renewable Energy NRMSE) - -
irradiance o
MLP-NN Applications (RUREA) | 14.44% (daily prediction NRMSE)
518 (training)
UC-M3 7.94% (hourly NRMSE) 4.09
One year hourly GHI )
Solar (forecasting)
[100] L and sky imaging -
irradiance 220 (training)
dataset by the NREL
UC-SAML 9.74% (hourly NRMSE) 3.42
(forecasting)
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TABLE 3. (Continued.) Performance summary of the main proposed prediction approaches for EH-WSNs.

19.1 MJ/m*day (trainin,
LLR y ( 2)
22.4 MJ/m?/day (validation)
MLP (conjugate 28.5 MJ/m*/day (training)
. Traces from the site of ) o
learning) 28.1 MJ/m*/day (validation)
the Natural
30.2 MJ/m?/day (training)
MLP (BFGS) Environment Research ) L
Solar 29.7 MJ/m“/day (validation)
[101] o Council (NERC) - -
irradiance . 32.75 MJ/m*day (training)
ELMAN funded hydrological
) 52.89 MJ/m%day (validation)
radar experiment
) 26.74 MJ/m*/day (training)
NNARX (HYREX) project
49.63 MJ/m?/day (validation)
32.14 MJ/m*day (trainin
ANFIS v e
65.47 MJ/m?*/day (validation)
ARIMA 30% (hourly MAPE)

(2] Fuzzy Solar National Environment 13.87% - 20.22% (hourly MAPE)
NN irradiance Agency (NEA) 10.85% - 20.33% (hourly MAPE)
Fuzzy-NN 6.03% - 9.65% (hourly MAPE)
GMLA(6) - MM 1.5%

GMLA(8) - MM 2%
GMLA(10) - MM 3.3%
GPS - MM 3%
BD - MM 13%
MTCP - MM RF link 3.3%

[63] ) Realistic simulations - 32 KB
GMLA(6) - GMM quality 20%

GMLA(8) - GMM 21%
GMLA(10) - GMM 23%
GPS - GMM 55%
BD - GMM 40%
MTCP - GMM 50%
0-BD(6)-MM 2%
0O-BD(8)-MM 2%
0O-BD(10)-MM 4%
BD-MM RF link 13%

[102] . Realistic simulations - -
0-BD(6)-GMM quality 16%
0-BD(8)-GMM 17%
0-BD(10)-GMM 20%

BD-GMM 32%

the N-dimensional vector that stores the harvested energy
values of the current day. The [Pro-Energy model uses the
smarting factor (S) to incorporate the current day energy
pattern based on the harvested energy values of the last two
timeslots. Subsequently, the energy prediction for the (n+1)
timeslot is obtained for both short-term and medium-term as
follows.

Ed = WrES + (1 — Wp).WP,) + S (11)

where Wy is a weighting factor ranging between 0 and
1 that enforces the contribution of the current day energy
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pattern to the predicted value. Table 3 compares the
IPro-Energy, Pro-Energy, and WCMA models in terms
of their prediction error (according to the mean abso-
lute percentage error (MAPE)), and execution time against
the stochastic ASIM model, which is described in the
next section.

B. STOCHASTIC METHODS

Stochastic models are based on the stochastic processes to
describe the possible fluctuations over time of a random
phenomenon, such as the ambient energy availability. Several
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studies proposed using first-order Markov chains, a com-
monly used stochastic process, for predicting solar radiation
availability. For instance, Muselli et al. [71] proposed cou-
pling Ward’s classification method and first-order Markov
chains to reproduce the stochastic and statistical properties
of the experimental global solar irradiation data, and gen-
erate synthesized solar irradiation sequences for sizing PV
systems. A two-state first-order Markov model was presented
in [72] to model the energy harvesting process of a node,
which can be applied to solar EH-WSNs or motion energy
harvesting body sensor networks (BSNs). That study mod-
elled the energy harvesting status of a node, as either active
or inactive, in addition to the residual energy left in the bat-
tery, while considering the presence of sensing events. The
performance of the proposed model was verified using the
loss probability due to energy run-out (LPERO) and average
time to run-out (ATERO) metrics. Besides, Ventura et al. [73]
proposed MAKERS, a multiple board Markov model for
BSN energy harvesting sensors, which integrates both the
energy and the traffic models of the node as an extension to
the models presented in [72], [74]. It considered that sensors
may be equipped with multiple energy harvesting boards
allowing them to harvest energy from either a single source,
or multiple sources, such as the RF and vibration energy. The
performance of the MAKERS model was evaluated using the
probability of event-loss due to running out of energy. It was
noted that MAKERS model provides less complexity com-
pared to the former models, which facilitates the on-board
computations in the sensors. Ku et al. [75] modelled the
evolution of the solar irradiance during a 10-hour period via
a hidden Markov chain whose state parameters, which are
the mean u; and variance p; of each state, were represented
by an underlying normal distribution. The proposed model
was trained by an EM model for finding the maximum likeli-
hood estimate of the state parameters based on the observed
data. Comparing the histogram of the training result and the
observed data, it was observed that the highest similarity
between them was obtained after increasing number of states
from two to four states, which also increased the system’s
complexity.

Moreover, Ghuman et al. [76] proposed the accurate solar
irradiance prediction model (ASIM) based on higher-order
Markov chain for high prediction accuracy at the expense
of the system complexity. The increase in accuracy is a
result of the more accurate state dependencies, considering
that the probability of a random process (i.e. solar irradi-
ance level) attaining a state (i.e. a defined range of radiation
values) at a particular time instant depends on the attained
states at the previous K instants. The prediction accuracy
was estimated using the normalized root mean square error
(NRMSE) and the percentage of the predicted points within
one standard deviation from the corresponding original points
of the dataset. The latter metric has increased from 50% with
first-order Markov chain to up to 81% using the 10th order
model, which also achieved an average NRMSE of 0.78 for
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the four used datasets. Instead, the implementation complex-
ity presented by the following equation is measured by the
number of states (Ns):

) 12)

where K is the Markov chain order, D,,,, is the maximum
irradiance value, and W represent the bin size, which refers
to the range of irradiance values considered as a single state.
The linear increase in the chain order would result in an
exponential increase in the number of states. Nevertheless,
it was reported that using third-order Markov chain resulted in
an adequately similar performance to the tenth-order model,
while requiring 1.43 x 107 times less states, which presents
a more viable solution.

As shown in Table 3, the ASIM model was com-
pared to multiple statistical model, namely the IPro-Energy,
Pro-Energy, and WCMA in terms of the prediction accuracy,
execution time, and their effectiveness when integrated to
energy management schemes in [20]. The evaluation of pre-
diction accuracy was performed over the short-term, medium-
term, and long-term time horizons due to the significant
impact of time horizons on the prediction error. However,
ASIM and WCMA were excluded from the medium term
comparison due to their design and implementation limi-
tations, while for long-term predictions aggregated energy
values of one accumulated value per day were used. It was
reported that medium term predictions scored higher mean
absolute percentage error (MAPE) values compared to
short term predictions, which is due to the higher prob-
ability of error accumulation with longer inter-prediction
times. With more elaboration, over the short term horizon,
IPro-Energy model exhibited the least prediction error com-
pared to the other models, as it had 51%, 60%, and 78%
less MAPE compared to Pro-Energy, WCMA, and ASIM,
respectively. IPro-Energy exhibited 50% less prediction error
compared to Pro-Energy model for solar predictions over
the medium-term horizon. Results for long term horizons
established the comparable performance of both IPro-Energy
and Pro-Energy models which was superior than ASIM and
WCMA by 18% and 50%, respectively.

The results established that the highest throughput and
active period was achieved without depleting the battery
level using IPro-Energy model, followed by the Pro-Energy,
WCMA and ASIM models, respectively. Conversely,
the ASIM model reported the least execution time, followed
by WCMA and IPro-Energy, while Pro-Energy scored the
highest execution time. Additionally, [Pro-Energy model was
more memory efficient compared to the other three models,
as [Pro-Energy combines only the two most similar days in
its prediction calculation. Therefore, it can be concluded that
the ASIM model is superior in its fast execution compared to
statistical models, while the latter models are more efficient
in terms of prediction accuracy and memory requirements,
specifically the IPro-Energy model. As the main objective of
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energy prediction is to manage the data transmission process
of the EH-WSN nodes by regulating the transmission rate
and active mode period according to the expected energy
availability during a timeslot. Therefore, maximizing the
throughput without depleting the energy source, which may
occur in case of wrong predictions. Several studies have
proposed using Markovian models for tracing the solar irra-
diance energy pattern of a given dataset in order to model
and study several aspects of the EH-WSN nodes, such as
the operation of the sensor nodes [77], the evolution of the
residual energy and the temporal death probability [78], and
finding the optimal transmission policies for maximizing the
data throughput [75].

C. MACHINE LEARNING-BASED METHODS

Machine learning (ML) approaches have been effectively
tackling key issues in WSNs, which have many applica-
tions in the fields of internet of things (IoT), machine com-
munication, and cyber security. These challenging issues
include transmission overhead, node localization, node
failure, network efficiency, scalability, and reliability. ML is
applied to improve the network lifetime by forecasting the
available amount of energy at a particular time slot [79].
ML approaches can be categorized into three main categories,
supervised learning, unsupervised learning, and reinforce-
ment learning approaches. Supervised approaches are widely
adopted in EH- WSNs energy harvesting, while unsupervised
models are usually applied in WSN clustering problems. The
reinforcement methods are commonly used in prediction-
free energy management tasks, such as maximizing the qual-
ity of service, while avoiding node death or power failure
[80], [81]. In supervised ML approaches, a labeled
input-output dataset is applied during the training phase of
the system model, which aids in learning the relationship
between these input and output data samples. The parameters
of the system model are tuned accordingly, allowing the sys-
tem to estimate the output for the applied blind input samples
during the testing phase. ML approaches include supervised
neural networks (NN) [82]-[84] deep-learning methods [55],
[83], [85], support vector machines (SVM) [85]-[88], and
regression methods [85], [89], [90].

1) NEURAL NETWORK-BASED MODELS

In numerical weather prediction (NWP), the time-space
domain is discretized on the regional level, and equations of
thermodynamics, motion, and mass transfer are then solved
for solar intensity forecasting. The physical NWP model
and satellite-based approaches were widely adopted for solar
forecasting on large temporal and spatial resolutions [91].
On the other hand, numerical weather prediction is based
on using composite regional datasets rather than site specific
datasets causing error propagation over time steps and node
locations. Such a case leads to a root mean square error
(RMSE) of 30-50% for day-ahead predictions [92]. Thus,
site-specific and intra-hourly forecasts can hardly be precise
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using NWP or satellite data due to the low image precision
and resolution, in addition to infrequent sampling intervals.
While, sky imagery-based methods are the most common
for intra-hourly forecasts, their prediction accuracy was con-
strained by several assumptions related to cloud shape and
linear cloud movement [93]. Instead, the operation of the
neural network was based on local micrometeorological data,
which enhanced the local prediction accuracy. Also, its inher-
ent memory enabled recalling the historical anatomies of
weather.

These NNs are able to automatically adapt to the long-term
and abrupt changes in climatic and environmental conditions.
Accordingly, Srivastava et al. [8§3] compared the performance
of three NN-based models, namely the feed forward, back
propagation, and deep learning NN-based models. These
models were compared against the averaged NN model for
the 6-day ahead forecasting of the daily solar intensity. Nine
parameters were applied as inputs to these models including
average, minimum, and maximum temperatures, as well as
time, wind, rain, dew point, azimuth angle, and atmospheric
pressure. Prediction accuracy was qualified over a one-year
dataset and the results in terms of the RMSE are reported in
Table 3. Experimental results established that feed forward
and model averaging NN models achieved better prediction
results compared to the back propagation and deep learning
networks in the solar radiation forecasting using the given
dataset.

The most influential parameters for global solar radiation
(GSR) prediction were studied in [94] for finding the combi-
nation of weather parameters that provided the best day-ahead
GSR prediction using a three-layer feed forward NN model
The day, air temperature, pressure, relative humidity, cloud
cover, wind speed, and direction were investigated as input
data, which was acquired from real three-year outdoor solar
radiation data. The performance evaluation based on the
RMSE, MAPE, and correlation coefficient have established
that humidity, temperature, and cloud-cover are the optimal
features in the GSR prediction, while considering reducing
the system’s complexity in terms of the number of neurons
in the hidden layer. Nevertheless, the cloud-cover data was
excluded as it is often unavailable. Hence, the temperature,
humidity and day were finally considered as the input data.
The proposed model achieved 4.75% RMSE, 3.65% MAPE,
and 0.98 correlation factor using 75 neurons in the hidden
layer.

Dhillon et al. [84] also proposed a feedforward network
for the hourly solar irradiance forecasting using three
weather parameters, namely pressure, temperature, and rel-
ative humidity, which were used for generating a reference
signal. The generated reference signal indicated the occur-
rence probability of cloud formation. Filtration and cross cor-
relation were performed on all the dataset to remove outliers,
and determine the optimum filter length for each variable,
respectively. Then, features were extracted using indepen-
dent component analysis (ICA), and then applied to the NN
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model, which was trained using the Levenberg-Marquardt
(LM) algorithm. Comparisons between different NN mod-
els have shown that the most optimal architecture was a
two-layer model with 24 neurons at both input and output
layers. Although this model provided a 56.61 W/m2 RMSE
consuming 20 KBs of memory, only a slight improvement
of 446 W/m2 in RMSE was obtained using a three-layer
model consuming 28 KBs of memory.

Table 3 reports the performance of this proposed model
using different types of neural networks and compares the
proposed model with other models from literature, where the
prediction error is represented by the RMSE in W/m2. It is
worth noting that the optimal model choice is based on the
tradeoff between the prediction error and model complexity
in terms of the occupied memory size. The slight increase
in prediction performance is considered insignificant if it
comes at the expense of a higher memory demand. The results
established the superiority of feedforward networks com-
pared to backpropagation and model averaged NN, which
is the same result obtained from [83]. Also for predicting
the daily average GSR, Dey et al. [85] proposed a 6-layer
deep learning-based NN, called SolarisNet. The proposed
model was fed using three weather parameters: minimum,
maximum, and dry bulb temperatures. The sensitivity anal-
ysis of the data showed that the sunshine hour and the
minimum temperature features are more significant in the
forecasting process compared to the maximum temperature.
Also, the experimental results indicated the superiority of
the SolarisNet in terms of the prediction accuracy compared
to Angstrom-Prescott parametric method, Gaussian process
regression, support vector regression, and NN, which was
aided by the presence of a non-linear mapping layer in the
proposed network for exploiting the non-linear interrelation-
ships among the given parameters. Manjili ef al. [93] imple-
mented an adaptive framework for day-ahead solar radiation
forecasting based on adopting statistical techniques for the
selection of the appropriate training sets for the NN model.
These statistical techniques included correlation analysis and
independent component analysis (ICA) feature extraction
from the given 8 weather-related parameters, i.e. temperature,
time, relative humidity, azimuth angle, zenith angle, pressure,
opaque cloud cover, and total cloud cover. Also, synoptic
event detection was applied for learning the underlying
influence of the given variables and their features on solar
irradiance. The proposed model provided a RMSE of 41.69%,
which is equivalent to 149.29 W/m?.

2) SUPPORT VECTOR MACHINE-BASED MODELS

Belaid and Mellit [88] compared the performance of SVMs
and multi-layer perceptron neural networks (MLP-NNs) for
the one step ahead daily and monthly predictions of global
solar radiation. Several combinations of input variables were
examined, including the potential sunshine duration, extrater-
restrial global solar radiation (So), and measured ambient
temperatures. Table 3 reports the best daily predicted GSR
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in terms of NRMSE using SVM and MLP-NN which were
both trained and tested using the same inputs, namely the
minimum, mean and the difference of the ambient temper-
ature, and the daily So. The best performing SVM was set at
a regularization parameter of 2172500, and a kernel band-
width of 8.666. While considering several input combina-
tions, it was concluded that SVMs achieved slightly better
results compared to ANN-based approaches. However, for
short-term solar power prediction, Zeng and Qiao [87] have
shown that the least-square SVM significantly outperformed
the AR model and achieved better results compared to radial
basis function NN. The inputs of the proposed model included
historical two-dimensional atmospheric transmissivity data,
and meteorological variables, such as wind speed, relative
humidity, in addition to the sky cover which was signif-
icant in improving the prediction accuracy. Even though
the SVM outperformed the NN in [88] and [87], however,
in [86], the SVM achieved higher prediction error compared
to the NN. This variation in results is due to the application
of different combinations of input parameters, the kernel
function, the SVM parameters, the different datasets, along
with the different architectures and learning algorithms of
the NNs.

3) REGRESSION-BASED MODELS
Martin et al. [90] studied the predictability the half daily
values of global solar irradiance. Accordingly, two hourly
accumulated values over a 3-day time horizon were used,
namely solar rise to noon, and noon to solar dawn values
of each day (i.e. 6 total values). For overcoming the
non-stationary behavior of half daily global solar irradiance,
the clearness index (KT) and lost component (LC) stationary
variables were derived from the given solar irradiance time
series and were used as the inputs of the predictive model.
Several orders of autoregressive models (i.e. infinite impulse
response filters) were studied along with the NNs trained
using Leverage-Marquardt algorithm, and adaptive network
based fuzzy inference system (ANFIS). The performance of
these models was compared using the relative root mean
square deviation (rRMSD), and the improvement factor.
Table 3 reports the range of the rRMSDs for the different
models at each station over the 6 intervals. It was concluded
from [90] the superiority of the nonlinear models compared to
the autoregressive models. Correspondingly, the most useful
information for prediction lies within the first temporal lag
of the time series, and the best results were obtained from
the LC time series using NN and ANFIS models, except
for one station. However, the KT achieved better results for
lower order models. The evaluation process proved the strong
dependence of the prediction error on the climatic conditions
and the temporal sequence of the training dataset.
Moghaddamnia et al. [101] applied the gamma test (GT)
for the appropriate selection of input parameters and training
data length used for forecasting the daily solar irradiance.
Meteorological parameters were applied, such as the daily
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average and maximum temperatures, precipitation, wind
velocity, and extraterrestrial radiation. Different non-linear
modeling approaches were evaluated with the aid of GT,
such as local linear regression, Elman NN, MLP trained with
Broyden—Fletcher—Goldfarb—Shanno (BFGS), MLP trained
with conjugate gradient algorithm, NN autoregressive model
with exogenous inputs (NNARX), and ANFIS trained with
LM algorithm. The experimental results revealed that local
linear regression (LLR) provided the most reliable estima-
tions among the given models. However, the MLP (conjugate
gradient) outperformed MLP (BFGS), which both outper-
formed the Elman and ANFIS models in both the training and
the validation periods. From Table 3, the NNARX model pre-
sented better prediction accuracy during the training period
compared to the MLP models. In conclusion, the ANFIS
model was uncompetitive in the solar irradiance forecasting,
on the contrast of the LLR and NNARX models, which were
more adequate for that purpose.

The performance of several data-driven models for the
daily multi-step ahead solar prediction was compared
in [103]. These models included the multivariate linear
regression (MLR) model, NN, k-nearest neighbor (kNN), and
different kernels of SVM. In the first evaluation scenario,
meteorological data were considered in addition to the histor-
ical data, while in the second scenario, only time-series data
was included. The importance of the meteorological parame-
ters was analyzed using linear regression, SVM regression,
and pace regression algorithms. The conducted evaluation
revealed the superiority of maximum, mean, and minimum
temperatures, in addition to the insolation, followed by wind
speed and precipitation. The experimental results proved
that the time-series models provided better predictions in
the multi-steps ahead solar power prediction. Conversely,
the meteorological data resulted in more accurate predictions
for the current time solar power prediction with MAPE lower
than 20% compared to MAPE of more than 30% using
time-series models. It was shown that the contribution of
meteorological data is of less significance with the increase
of the prediction horizon. None of the four data-driven mod-
els constantly outperformed the others in all the time-ahead
steps.

4) HYBRID MODELS

Other studies have considered applying hybrid ML models.
For example, Chen et al. [82] proposed a hybrid model for
the hourly solar radiation forecasting based on fuzzy logic
and NNs, which improved the MAPE by nearly 10% com-
pared to the use of the other techniques individually at the
various weather conditions. Parameters including the past
and future sky conditions and temperature information were
considered in this model. Also, fuzzy logic was applied to
optimize the clustering process and reduce the number of
classes of these parameters. The MAPE of the proposed
model as presented in Table 3 demonstrate its superiority
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compared to statistical models, and individual fuzzy, and NN
approaches.

Voyant et al. [89] proposed the integration of Al mod-
els and statistical techniques for the hourly global radiation
prediction by considering the multi-layer perceptron (MLP),
ARMA, and persistence models in that study. The perfor-
mance of each of these models was evaluated individually
in terms of the hourly prediction error and the cumulative
prediction error over 24 hours. For the MLP, 6 sub-variables
were derived from the given pressure time series, including
the minimum, the maximum and the mean pressure of the day,
and the daily trend pressure. Using the mutual information
method, the daily trend pressure was selected as the variable
with the highest dependency on the global radiation and
was applied as the input variable of the MLP. Afterward,
Bayesian rules were applied to hybridize the evaluated mod-
els to improve the performance. The results in Table 3 indicate
the equivalence in the hourly prediction NRMSE for both
the MLP and ARMA models with nearly 40.5%, which was
reduced to 37% using the hybrid model, which considered the
previous mean error (PME) rule.

Grigorievskiy et al. [104] adopted optimally pruned
extreme machine learning (OP-ELM) model for the problem
of long-term time series forecasting. Three long-term time
series forecasting strategies were considered in integration
with the OP-ELM, namely the direct, DirRec, and recursive
strategies, which were combined with baseline least square
SVM (LS-SVM), and linear least square models for compar-
ison. The results using three datasets have demonstrated that
DirRec strategy had the highest computational time, when
integrated with LS-SVM, as it requires the adjustment of sev-
eral hyperparameters. Nevertheless, the same strategy con-
sumed less computational time with the non-linear OP-ELM
model, which also outperformed the linear model, and had
more stable performance compared to the LS-SVM. It was
concluded that adopting an ensemble of OP-ELM would
improve the prediction accuracy significantly, as shown
in Table 3 in terms of MSE.

Wang et al. [86] proposed an adaptive learning hybrid
model (ALHM) for both short-term, and long-term forecast-
ing of solar intensity. The ALHM integrated time-varying
multiple linear model (TMLM), genetic algorithm back prop-
agation network (GABP), and adaptive learning online hybrid
algorithm (ALOHA), as these models capture the linear,
dynamic, and nonlinear properties of the collected data,
respectively. The input parameters of temperature, dew point,
humidity, precipitation, and wind speed were included. The
proposed ALHM performance was compared to NN and
SVM using a two-year dataset from the UMASS Trace
Repository [98] of solar intensity levels (Watts/ m2), and
meteorological data, which are recorded for every 5 minutes.
The MAPE of the proposed method was compared to the
MAPE of NN and SVM in both the long-term (daily) and
short-term (5-min), as reported in Table 3. Accordingly, it has
established the superiority of the proposed model due to the
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deficiency of NN and SVM in analyzing and learning the
linear and non-linear relationships of solar power generation
and meteorological data in real-life applications.

On the other hand, in unsupervised approaches, unlabeled
data are provided to the system model, which analyzes the
inherent distribution or structure within the given data sam-
ples to distinguish them into different groups. As an example,
Feng et al. [100] proposed an unsupervised clustering-based
(UC-based) global horizontal radiance (GHI) model for
the hour-ahead short-term solar prediction. In the proposed
model, the daily time series is first clustered using the
proposed optimized cross-validated clustering (OCCUR)
method, which optimized the number of clusters and the clus-
tering performance. Then, SVM-based pattern recognition
was adopted to identify the data category of each day using
only the first four hour data. After that, forecasting was per-
formed using M3, a two-layer machine learning-based multi-
model, which include NN, SVR, random forests, and gradient
boosting machine. The UC-M3 model has proved to achieve
better performance than single-algorithm ML (SAML)
methods by approximately 20%, as shown in Table 3.

Despite the wide availability of ambient RF signals,
the power of the electromagnetic waves rapidly decreases
as the signal spreads away from the source. Thus, the RF
harvesters should either be placed close to the RF sources,
or dedicated RF transmitters can be used merely for the
purpose of powering the EH devices. This factor has limited
the applicability of RF energy in EH wearables, except for
indoor environments, such as harvesting the WiFi signals in
office environments [39]. Therefore, few studies have inves-
tigated the RF energy prediction, which relies on predicting
the quality of the link connectivity, which in turn reflects on
the ability of the EH nodes to harvest RF energy. Link quality
prediction or RF link duration prediction allows the detection
of the remaining node efficient connectivity time for avoiding
the unnecessary transmissions of data or control messages.
De Aratijo et al. [63] proposed a genetic machine learning
approach for link quality prediction (GMLA) based on a clas-
sifier system at which a selected set of classifiers was evolved
using the genetic algorithm (GA) after a predetermined set of
consults. This approach represented an extension of the ori-
ented birth-death model (OBD) as it relied on Markov Chain
model for forecasting the link quality in the future, while also
replacing the need of previous history to set the parameters of
the Markov model with on-the-fly parameters discovery. The
experimental results compared the performance of the GMLA
model at 6,8, and 10 states with the BD, Markov transition
counting process (MTCP), and GPS in terms of link predic-
tion error at different time-ahead steps. These models were
assessed with three mobility models, namely the Manhattan
mobility (MM) model, reference point group mobility model,
and Gauss-Markov mobility (GMM) model. Table 3 reports
the best case using MM model for one step ahead prediction,
and the worst case using the GMM mobility model for 30 step
ahead prediction. The results depicted that the number of
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states should be compromised for adequate prediction pre-
cision. This proposed approach was an extension of the study
in [102] in which the OBD model was proposed for estimating
the RF connectivity. The results in Table 3 demonstrate the
best and worst prediction cases at one step ahead MM model
and 20 steps ahead GMM model, respectively. It is shown that
the proposed OBD model achieved better performance using
6 states compared to 8 or 10 states in both cases. Both studies
established that the best performance was obtained using the
MM model, while representing the link quality by 6 states.

V. DISCUSSION, FUTURE DIRECTIONS &
RECOMMENDATIONS

The EH-based medical wearable devices and EH-WSNs
exploit mutual energy sources, namely the photovoltaic and
RF energy sources, allowing for continuous and sustainable
operation. Different energy prediction methods were pro-
posed for estimating the availability of these sources, which
include statistical, stochastic and ML-based methods. In sta-
tistical methods, historical time-series data is used for energy
predictions, however, the selection of slot length presents a
tradeoff between the prediction accuracy, which is achieved at
shorter slots and the equivalent memory requirement imposed
by the large number of slots. Statistical methods have devel-
oped throughout different studies in order to adapt to the
abrupt weather conditions and fast seasonal changes from
EWMA to IPro-Energy. These methods are applicable to
short-term, medium-term, and long-term predictions. Since,
the variation in the energy harvesting rate throughout the
day adversely affect the prediction accuracy, variable length
timeslots were proposed to adapt to the dynamics of the
energy source. For example, the Pro-Energy-VLT model
which outperformed the Pro-Energy and WCMA models in
terms of memory requirement, and predictive accuracy for
short-term, medium-term, and long-term indoor and outdoor
photovoltaic predictions [70].

Stochastic models are based on Markov chain models
by defining the states that represent the radiation values.
Higher-order Markov chains provide higher prediction accu-
racy at the expense of the system complexity. Stochastic
models propose a less execution time compared to statistical
models, however, they achieve less prediction accuracy and
more memory requirement, such as the ASIM model com-
pared to the IPro-Energy model [20]. Moreover, stochastic
models are not applicable to medium-term predictions, while
long-term predictions can be achieved by aggregating the
energy values over one day. Physical models such as NWP
in addition to satellite-based approaches achieve reasonable
prediction results over large temporal and spatial resolutions,
however, these methods can hardly achieve precise
predictions for intra-hourly and site-specific predictions
[91], [92]. Sky imagery-based methods are more adequate for
intra-hourly forecasts, however, their performance is limited
by the assumptions of cloud shape and linear movement.
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On the other hand, machine learning approaches, such
as NN are able to automatically adapt to long-term and
sudden changes in environmental and climatic conditions.
Feed forward and model averaging NN models presented
better performance compared to back propagation and deep
learning NN models for both hourly and daily solar fore-
casting. Feedforward NN required less memory compared
to model averaged NN and backpropagation NN [83], [84].
However, deep learning models have outperformed NN,
Gaussian process regression, and support vector regression
for daily average global solar radiation due to the non-linear
mapping layer, which exploit the non-linear relationships
among the input parameters [85]. Statistical methods, such as
ICA can be used to select the most significant meteorological
parameters for the ML model [93]. Generally, minimum,
maximum, and average daily temperatures in addition to
humidity, precipitation, pressure, wind velocity, and cloud
cover are considered the most significant for hourly and daily
predictions. For SVMs, the selection of the kernel function
and regularization parameters is crucial for the optimum
performance, while non-linear kernel functions present bet-
ter performance. The selection of the input parameters for
the given dataset and time horizon could lead to different
results using the same models, which can be addressed using
statistical feature selection methods or regression models
[87], [91], [92]. Generally, non-linear models have estab-
lished higher prediction accuracy compared to regressive
models for half daily values of global solar irradiance
forecasting [90].

Nevertheless, LLR and NNARX models presented more
reliable performance in daily solar irradiance forecasting
compared to other non-linear methods [101]. The fuzzy mod-
els can improve the performance of the forecasting mod-
els by optimizing the data classes clustering process [82].
Hybrid models [82], [87], [88], [98] based on both ML and
statistical approaches, and ensembles have shown higher
accuracy compared to either approach separately for both
short-term and long-term predictions, as these models are
able to analyze and learn the linear and non-linear rela-
tionships of solar power and meteorological data. Although
few studies were proposed for RF forecasting, efficient link
quality forecasting was proposed using the GMLA approach,
which is based on Markov chain model, as an extension to the
OBD model [63]. Table 4 summarizes the main characteris-
tics of the different prediction approaches and compares their
accuracy, memory requirement, and execution time.

Several challenging issues still require thorough inves-
tigation for fulfilling the wide adoption of EH wearable
devices. These issues can be summarized as follows: i) the
size and flexibility requirements of EH modules in wearable
devices, and the potential advancements in these factors with
the nanoscale fabrication technology, while maintaining high
output power; ii) the efficient storage of the harvested energy;
iii) the tradeoff between the energy prediction accuracy,
and the high algorithmic complexity and extensive memory
requirement, especially in hybrid prediction methods; and v)
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TABLE 4. Summary of the main energy harvesting prediction approaches.

Statistical [Stochastic Machine learning

NN SVM Regression | Ensemble |Hybrid
Prediction Below Above| Above
Average Average Highest | Highest
accuracy average  [|average| average
Memory
. Low Low High High High Highest | Highest
requirements
Computational X X X X
Low Least High High High Highest | Highest
speed

Suitable | Prediction
for accuracy
short-term | increase . .
. - i Suitable for both short-term and long-term predictions
Characteristics | predictions with . L
at the expense of higher memory and execution time
Markov

chains

complexity

the integration of energy prediction models at the differ-
ent levels of the communication protocol stack to achieve
network neutral operation (NNO).

From the investigation of the given studies, statistical tech-
niques are recommended for short-term predictions due to
their reasonable performance in terms of the tradeoff between
the prediction accuracy on one hand, and the memory require-
ments and execution time on the other hand. However,
the hybridization of linear and non-linear ML techniques
proposes a better solution for long-term predictions due to
its ability to capture both the linear and non-linear patterns of
the applied long-term weather parameters.

VI. CONCLUSION
Recent advances in microelectronics, soft computing and Al
techniques have fueled the emergence of wearable devices
that can be used to monitor vital human signs, detect abnor-
mal behavior or to make the elderly live more indepen-
dent lives. Together with the introduction of 5G, these
intelligent devices are bound to make an enormous impact
on the advancement of mobile and personal healthcare.
In fact, we have demonstrated that wearable devices resemble
EH-WSN nodes in their architectural design and their depen-
dency on conventional or finite energy storage mechanisms,
such as batteries and capacitors. We have also indicated that
their reliance on such finite storage mechanisms is among
the obstacles for a deeper market penetration. Thus, existing
wearable technologies cannot be used for continuous and
uninterrupted physiological patient monitoring, since batter-
ies need to be replaced or recharged. Consequently, energy
harvesting technologies aim to extend or mitigate the limita-
tions of these batteries. However, as we discussed, energy har-
vesting techniques such as PV, piezoelectric or thermoelectric
technologies are either location or time dependent. Moreover,
RF energy harvesting technologies yield low power densities.
Consequently, the ability for a wearable to forecast or predict
the amount of harvestable energy is of paramount importance.
In doing so, wearable devices will be able to manage their
energy resources more effectively.

Energy prediction techniques have been widely adopted in
EH-WSNss for efficient power management and high quality
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of service (QoS). However, the application of these methods
for wearable devices requires the consideration of several
critical parameters that include memory, execution time and
prediction accuracy. To maintain maximum comfort for the
wearer, these parameters need to be considered to ensure that
wearables are small and light weight. Furthermore, wearables
need to be low-cost to ensure that they can be adopted by
a large tranche of healthcare seekers. In this paper, a com-
prehensive review of different prediction approaches was
provided. The most important evaluation metrics were also
discussed. Such metrics aim to provide a baseline or a refer-
ence for appropriately selecting the most applicable energy
prediction techniques for wearables. These approaches were
inspired by EH-WSN prediction techniques, which use the
same energy sources as current wearable devices, such as
PV and RF sources.

Based on our critical review, we believe that the hybridiza-
tion of several linear and non-linear ML techniques is a
promising domain for long-term predictions in terms of
achieving reasonable prediction error. However, the biggest
challenge is to optimize the proposed models in terms of
required memory and execution time. On the other hand,
statistical techniques are the most appropriate method for
short-term predictions, since they deliver efficient short-term
performance with the least memory and execution time
requirements.
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