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ABSTRACT Microcode update mechanism have been widely used in modern processors. Due to the
implementation details are not public, researchers are prevented from gaining any sort of further under-
standing currently. The microcode update binary which uploaded into Central Processing Unit (CPU) is
the only accessible node in this update chain by researchers, but previous manual reverse analysis for a
small amount of microcode updates has the disadvantages of incomplete coverage, slow speed, and low
accuracy. Therefore, we first build a Sample Repository containing 504 Intel official microcode updates,
then propose a semiautomatic analytical method named SJNW-MA to analyze samples. This work has
the following merits: (1) automatic methods of similarity analysis and candidate feature mining improve
the speed; (2) manual-assisted analysis based on expert knowledge can filter important features, to avoid
redundant features or valuable common data blocks missing; (3) analysis for 504 microcode updates make
the results of reverse engineering are more complete. Finally, we extract eleven structures of Intel microcode
updates and group them into four categories. In addition, we also identify and describe some new metadata
in microcode updates of the third and the fourth category, including a new 3072-bit RSA Modulus as well as
corresponding RSA Exponent which indicates upgrade of security technology inside update mechanism.

INDEX TERMS Microcode update, reverse engineering, central processing unit.

I. INTRODUCTION
Processor manufactures have introducedmicrocode into CPU
interior to achieve greater performance and efficiency since
the 1970’s. Although microcode was initially implemented
in Read-Only Memory (ROM), an update mechanism was
introduced by means of Random-Access Memory (RAM)
to implement dynamic debugging capabilities and correcting
processor errata, especially after the infamous Intel Pentium
FDIV bug of 1994.

Intel has supported the ability to apply stability and secu-
rity updates to the CPU in the form of microcode updates for
well over decades. In fact, once erroneous CPU behavior is
discovered, manufacturers publish amicrocode update imme-
diately. The most famous is that Intel, OEM of Motherboard
and Operating System successively delivered solution for
Spectre and Meltdown vulnerabilities [1], [2] by microcode
updates in 2018. On the basis of microcode updates, pro-
cessor manufacturers obtain flexibility and reduce costs of
correcting erroneous behavior. But due to the volatility of
RAM, microcode updates are not persistent and have to be
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reloaded after each processor reset. The normal preferred
method to apply microcode updates is using the system Basic
Input Output System (BIOS), but for a subset of Intel’s
processors this can be done at runtime using the operating
system [3].

Although microcode update mechanism can be leveraged
to rectify some erroneous behavior of CPU, it is not a
panacea. Microcode updates would degrade performance due
to additional condition checks and they cannot be applied in
all cases, such as some complex design errors of hardware.
Ironically, K7 processor of AMD fails to properly validate
RAM where microcode update is loaded in during built-in
self-test (BIST), causing the microcode update mechanism
itself to be listed as a processor erratum [4].

More unfortunately, CPU vendors keep information about
all microcode secret including update and work principle
of microcode update. Publicly available documentation and
patents merely state vague claims about how real-world
microcode might actually look like, but provide little other
meaningful insight [5]. Although no vulnerability, back-
door, or error is discovered up to now, it is not enough to
prove the reliability and security of the microcode update
mechanism.
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Instead, Because the implementation details of microcode
update mechanism are not public, researchers are prevented
from gaining any sort of further understanding currently,
which means that it is impossible to study the update to
clearly establish whether any security issues are being fixed
like what developer or vendors claimed. That Intel and AMD
are reducing their internet resource of microcode updates
seems to indicate that vendors still try to strengthen tech-
nology protection and microcode update security through
closed-source instead of cooperation.

We try to conduct an in-depth analysis for the structure of
microcode update binarywhich uploaded into CPU to provide
basis for researchers who focus on this field to do some
further research, because they are the only accessible node in
this update chain by researchers now. In fact, vendors deliber-
ately hide details considering security and patents, resulting
in less research results and a lack of knowledge in this field.
The structure of microcode update has been documented and
published in Intel software developer’s manual (as shown
in Fig.1), which consists of three parts: Header, Data and
Extended Signature Table (supported since 0F_03H). How-
ever, the Extended Signature Table is not appeared in all
collected microcode updates, which also verified the work of
Chen and Ahn [6].

It seems that the structure of microcode update is very clear
at present, especially the documented metadata of Header
and Extended Signature Table, but in fact other metadata has
been found in Data. Hawkes has found that there is a 96-
byte prefix and other encryption-related fields in Data of
some microcode updates [7]. In addition, because Data Size
inHeadermust be a multiple of 4 bytes while Total Sizemust
be a multiple of 1024 bytes, which indicates that there may be
random padding data in Data, i.e. Data is not all valid data.
A key to solve challenges and difficulties of research

without knowledge or basis is collecting enough microcode
updates and filtering some features or criterions that are
important for classification and structure reversion from
them. First, we build a Sample Repository of microcode
updates from Intel. Above of all, a semiautomatic analytical
method called SJNW-MA is proposed to analyze samples in
the Sample Repository, which helps us select five features
and other interesting common data blocks for classification
and analysis. Finally, we complete reverse engineering based
on summary for the results from the above method, and list
the possible structures of Intel microcode updates as well
as some significant information inside update mechanism.
In summary, our main contributions in this article are as
follows:

(1) Sample Repository of Intel microcode updates con-
taining 504 samples is built, capacity of which is more
than existing repository (MCE DB r153, 411) supported by
CPUMicrocodes project [8], and those samples supported to
be uploaded into CPU by loader.

(2) SJNW-MA semiautomatic analytical method for sam-
ples is proposed to improve efficiency, accuracy, and lower-
granularity. Compared to manual analysis [6], it can search

more common data blocks, among of them are used as fea-
tures for classification.

(3) Analysis for 504 samples in the Sample Repository
is completed. The results of reverse engineering, such as
11 structures and some significant discoveries inside Intel
microcode updates, are explained in detail in chapter 4,
which provides basis for follow-up researchers to continue
to expand research.

(4) Especially, some newmetadata ofData is identified and
described in some specific structures, such as Flexible Field
1, Flexible Field 2, etc. In addition, 24 public keys of RSA
used for signature are determined which is 12 more than that
found by Hawkes [7], and the implement of recovering the
originally signed data is also finished.

(5) A new structure is extracted and a 3072-bit RSA modu-
lus which used for signature is identified in updates with this
structure. Although not stored in updates, we determine that
the value of RSA Exponent is 65537 (10001H) by enumera-
tion method and recover the original signed data successfully.

II. RELATED WORK
Although Wilkes first introduced the concept of microcode
into computer engineering as early as 1951 [9], researchers
have paid most attention to diverse branches of research
related tomicro-programming and optimization ofmicrocode
for a long time [10]–[12]. No one had realized that microcode
may be threatening until Thompson proposed the concept
of a malicious compiler which is undetectable even by
source code analysis in 1984 [13]. Regrettably, likely due
to the proprietary nature of processor microarchitecture and
microcode, little published work has analyzed processor
microcode from a security perspective.

There has been some reverse analysis of microcode
updates. Molina and Arbaugh published the metadata accom-
panying Intel microcode updates in 2000, determining the
purpose of certain fields within the microcode update header
[14], but Intel published details of microcode update header
on their software developer’s manual [15] after soon. Like-
wise, an anonymous report published in 2004 provided sim-
ilar information about microcode updates of AMD [16].
Hawkes published a technical report in 2013 to disclosure
the presence of additional metadata within Data of Intel
microcode updates, suggesting that RSA signature with a
non-standard Secure Hash Algorithm (SHA) is used for
verification of some microcode updates [7]. Chen’s work
[6] attempted a high-level security analysis for microcode
updates for both Intel and AMD, which guiding some ideas
in this article. Although Triulzi presented that he had been
able to patch the microcode of AMD K8 microarchitecture
at TROOPERS 15 and 16 [17], [18], no details of his reverse
engineering nor the microcode encoding is published. A real
landmark work is Proof-of-Concept Microprograms of AMD
K8 and K10 microarchitecture completed by Koppe et al
in 2018 [5], [19].

Overall, few studies of microcode update security seem to
have attracted little experts’ attention on this field, and the
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FIGURE 1. The structure of Intel microcode update documented in Intel software developer’s manual. The size of Header is fixed at 48
bytes. Note: the triads (Processor Signature[i], Processor Flags[i], Checksum[i]) in the Extended Signature Table will be used by utility
software to decompose a microcode update into multiple microcode updates where each of the new updates is constructed without the
optional Extended Signature Table.

intensifying processor security issues also have not strongly
promoted the research on the effectiveness and security of
microcode updates.

III. METHOD AND EXPERIMENT
In this chapter, we will describe implementation details of the
Sample Repository and the SJNW-MA method. First, how
to build the Sample Repository of Intel microcode updates
is described in section 3.1. Then, the SJNW-MA method
for analysis of samples is introduced in section 3.2. Finally,
the process and results of experiment is described in section
3.3. Although we only analyze available microcode updates
for Linux operating system, the data on microcode_ctl,
BIOS or other operating systems is identical.

A. SAMPLE REPOSITORY OF MICROCODE UPDATES
There are two types of available microcode update packages
for Linux operating system from Intel official distribution.
DAT files for older version were released from around 2000,
which with ASCII or UTF-8 encoded text format and big-
endian endianness. Multiple independent microcode updates
are encapsulated in one DAT file. The little-endian binary
files containing a single microcode update have been applied
since 2018. So, we would make treatment for microcode
update packages to obtain microcode update samples with
uniform naming and format, which facilitates the reverse
analysis of structure and application later. As shown in Fig.2,
the workflow of packages processing is as follows:

(1) Extract: This step as well as (2) Format Transform
is only executed for DAT files. Because storing multiple
microcode updates and other notation, such as copyright
and title, DAT files must be parsed to extract independent
microcode updates.

(2) Format Transform: The process of Format Transform
can restore microcode update to binary from DAT, which also
ran at official microcode update loading.

(3) Deduplicate: Since microcode update packages which
released in various periods often stores the same microcode
updates, Deduplication is necessary to avoid duplicate
microcode updates in the Sample Repository.

(4) Rename: Renaming rule must make sure that name of
microcode update samples is unique and unambiguity, thus
Processor Signature, Processor Flags and Update Revision
are chosen to make up name of samples in the layout of
Processor Signature_Processor Flags_Update Revision.
Processor Signature, a 32-bit words, is a unique repre-

sentative of the CPU hardware model that the microcode
update will apply to; Processor Flags, also called Platform
ID, is used to determine ‘‘slot’’ information for the processor
and the proper microcode update to load [15]; Update Revi-
sion indicates version information of the microcode update.
All of these can be obtained from microcode update self.
Both ofProcessor Signature andProcessor Flags are strongly
associated with checking compatibility of microcode update,
encoding of which is shown as Fig.3.

(5) Checksum Check: Finally, Checksum would be
checked to verify the integrity of the microcode update.
Checksum is correct when the summation of all theDWORDs
that comprise the microcode update result in 0H. If checksum
passes, the update will be stored into the Sample Repository,
while the error update will be logged and abandoned.

In addition, considering the strong coupling between
microcode updates and hardware, the samples are labeled
with DisplayFamily_DisplayModel, which referring to the
description of the correspondence between Processor Sig-
nature and processor products in the Intel technical man-
ual [20]. The values of DisplayFamily_DisplayModel could
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FIGURE 2. The collection and processing of microcode update packages. We download Intel microcode update
packages from Intel download center (closed) and project supported by Intel in Github to ensure credibility.

FIGURE 3. Encoding of Processor Signature and Processor Flags in microcode update.

be extracted from fixed fields in Processor Signature (as
shown in Fig.3). It is worth mentioning that the binary
files released since 2018 are also named after DisplayFam-
ily_DisplayModel_Stepping, but other fields such as Stepping
only represents small change within the specific processor
model. If introducing them into label, the results will be more
complicated, which is not convenient for manual-assisted
analysis later.

B. SJNW-MA SEMIAUTOMATIC ANALYTICAL METHOD
Further research will be based on the following reasonable
assumptions: At least, the structures of microcode updates
applied to processors within the same product model should
have similarity or even share some common data [6], [7],
[15]. To this end, an SJNW-MA semiautomatic analytical
method aimed to similarity calculation and feature selection
is proposed, the results fromwhich are finally used to achieve
effective samples classification. The complete framework of
SJNW-MAmethod is shown as Fig.4, which consists of three
stages:

(1) At SJ stage (section 3.2.1), Jaccard index between two
samples is calculated based on k-shingling algorithm, and
stored in Jaccard index matrix to characterize the similar-
ity between any sample pairs. Meaningfully, Jaccard index
matrix and samples can be regarded as adjacency matrix and
node of graph respectively.

(2) At NW stage (section 3.2.2), during traverse of Jaccard
index matrix based on Depth First Search (DFS) algorithm,
the best matching sequence of two nodes (i.e. samples) with
edge is determined using Needleman-Wunsch algorithm,
which then is separated into multiple common data blocks
as candidate features.

(3) At MA stage (section 3.2.3), researchers conduct
manual-review for candidate features (common data blocks)

from NW stage. The main purpose is to slicing, deduplicate
and evaluate, and finally obtain an efficacious and simplified
feature set for sample classification.

1) SIMILARITY ANALYSIS BASED ON JACCARD INDEX
The Jaccard index, also known as Intersection over Union
and the Jaccard similarity coefficient (originally coined
coefficient de communauté by Paul Jaccard), is a statistic
used for comparing the similarity and diversity of sample
sets [21]. The Jaccard index measures similarity between
finite sample sets, and is defined as the size of the inter-
section divided by the size of the union of the sample
sets:

J (A,B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A| + |B| − |A ∩ B|
(1)

Obviously, the value range of Jaccard index is [0, 1]
and higher value means higher similarity between two sets.
0 means that set A is completely different from set B
and 1 means that set A is exactly same as set B, while
set A and set B are both empty sets, Jaccard index of
A and B is 1.

The calculation objects of Jaccard index are sets, so,
the data of little-end binary samples must be converted to
sets using k-shingling algorithm [22], [23], which is also the
segmentation method commonly used in document similarity
research. Considering that the size of field which represent
certain information independently in microcode updates is
4 bytes, i.e. the smallest unit of microcode updates may be
4 bytes, we take the value of k as 4. The complete calcula-
tion algorithm is shown in Listing.1. It must be stated that
Header of microcode update (the offset is 0 to 48 bytes)
would not be processed and analyzed because has been
disclosed.
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FIGURE 4. Framework of SJNW-MA method.

LISTING 1. Jaccard index calculation algorithm of sample pairs at SJ
stage.

2) CANDIDATE FEATURE MINING USING
NEEDLEMAN-WUNSCH ALGORITHM
Although able to indicate the similarity between samples,
the results obtained at SJ stage can’t mark key information
about offset, size, order, etc., since Jaccard index is based on
disordered and non-repetitive sets. So, we introduce a new
method to seek key information at NW stage.

Needleman-Wunsch algorithm is a method to match
protein or DNA sequence based on the knowledge of
bioinformatics, also known as optimization matching algo-
rithm or overall sequence comparisonmethod [24]. The intro-
duction of this algorithm can help to search for common data
blocks as candidate features between sample pairs. we regard
Jaccard index matrix as Adjacency Matrix and single sample
as node of graph. if Jaccard index is greater than 0 and less
than 1, there is an edge between sample_A and sample_B.

During traverse of Jaccard index matrix using DFS algo-
rithm, if edge existed between sample_A and sample_B,
Needleman-Wunsch algorithmwill be called to seek common
data blocks between them, the overall algorithm design is
shown in Listing.2.

LISTING 2. Candidate feature mining algorithm at NW stage. Note: it is
considered that no edge between the sample pair when Jaccard index is
equal to 1.

Particularly, we do not deal with the situation where Jac-
card index is equal to 1 at this stage. One of reasons is to avoid
meaningless common data blocks which is the whole data of
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sample, another is to try to find the reason for this situation
during manual analysis at MA stage.

3) MANUAL-ASSISTED ANALYSIS BASED ON EXPERT
KNOWLEDGE
The most important reason for the necessity of manual-
assisted analysis based on expert knowledge is that, there is
no way to automatically recognize or know the meaning and
role of these common data blocks. In fact, we have deter-
mined some questions which may make some elements in
candidate feature set invalid during the feasibility analysis of
this method: (1) some common data blocks are substrings of
others; (2) multiple common data blocks with different sizes
are zero, which may be used as reserved fields. A redundant
and incorrect feature set will interfere with the analysis and
reverse engineering, so the candidate feature set from NW
stage cannot be used to the analysis of samples directly.

For common data blocks with Q-1, the common data block
containing others is divided into two or more common data
blocks; For common data blocks with Q-2, we will ignore
temporarily and decide whether to select it as feature during
evaluation; For common data blocks whose signification is
known, we will filter and judge whether it can be selected
as a classification or analytical criterion based on expert
knowledge. Finally, we will consider size, data, and position
of common data blocks, simultaneously utilizing knowledge
and achievement from [6], [7], to determine the feature set.

C. EXPERIMENT
1) SETUP
The research object of this article is Intel microcode update,
so the experiment of SJNW-MA method must depend on
the Sample Repository. We download 42 microcode update
packages (2009.03.30-2020.06.16) from Intel official way
and process them as described in section 3.1 to build a Sample
Repository containing 504 little-endian binary files of Intel
microcode update samples, which are labeled by 56 values of
DisplayFamily_DisplayModel corresponding to the specific
processormodels. Interestingly, only 54 labels have been doc-
umented in Intel developer’s manual [20], and 06_06H and
06_16H are undocumented. But for unknown reasons, these
microcode updates are also released publicly. Although Intel
no longer supports update of some microcode updates for
early processors, we still analyze all samples in the Sample
Repository using SJNW-MA method.

We have implemented the SJNW-MA method based on
python 3.7, and ran it on hardware environment with Intel
Core i7-9700T and 16GB memory.

2) PROCESS AND RESULTS
Wewill describe in detail the intermediate results and analysis
of each stage of the SJNW-MA method experiment. These
valuable results have greatly guided the breakthrough of
reverse engineering.

First, 126756 valid data of Jaccard index which stored in
matrix are obtained at SJ stage. The number of data is equal to
C2
504. We use mathematical statistics to visually display these

data, the heatmap and histogram of Jaccard index are shown
in Fig.5. From heatmap (left), it can be intuitively found that
some Jaccard index is higher and shows the characteristics of
dense distribution, which verifies the rationality of previous
assumption preliminary; From histogram (right), the amount
of Jaccard index equaling to 0 is 58885, only accounting
for 46.5% of all; there are even 33 cases where Jaccard
index is 1, which means that the data except Header of two
samples is the same. Those statistical results fully validate
our assumption that there is a large amount of common data
blocks between sample pairs, and thus they are similar.

Then, A total of 127 common data blocks, which as candi-
date feature set, are obtained at NW stage. Sizes of common
data blocks range from 4 bytes to 72064 bytes and increments
are irregular. These common data blocks do not appear in
all samples. On the contrary, some special ones only appear
between a sample pair.

Next, we completed the analysis of candidate features and
5 features were selected (As shown in Tab.1). In addition,
we identify 24 RSA public keys from common data blocks,
size of which is 260 bytes (256-byte RSA modulus and 4-byte
RSA Exponent), and they will be explained in Section 4.2.
Similarly, we also do not abandon those interesting and mys-
terious common data blocks which were not be selected into
feature set, we will give our views on them in Section 4.1.

The cases where Jaccard index is equal 1, i.e., the data
exceptHeader of samples is identical, appear in some sample
pairs with the same Processor Signature but different Proces-
sor Flags. This may be due to these microcode updates being
interchangeable on these platforms.

TABLE 1. Feature set.

Finally, we create a vector {x1, x2, x3, x4, x5} for every
sample. If equation xi = −1 holds, the feature does not exist
in this sample, while xi is greater than 0, it indicates the offset
of feature. 11 different vectors are extracted from all samples
(as shown in Tab.2).

IV. RESULTS OF REVERSE ENGINEERING
Based on the work in chapter 3, we will give the detailed and
objective results of reverse engineering about Intel microcode
updates in this chapter. The structure analysis of microcode
update and security technologies applied to update mecha-
nism are described in section 4.1, 4.2 respectively.
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FIGURE 5. Heatmap (left) and histogram (right) of Jaccard index. Note: To show clearly, the step of axis scale in the heatmap (left) is not in units of 1, but
it does not insinuate that the data has not participated in the calculation. The axis labels in the histogram (right) indicate the range of Jaccard index, e.g.
[0.0001-0.001) represents the value of Jaccard index is equal to or greater than 0.001 but less than 0.001.

TABLE 2. Eleven different vectors.

A. STRUCTURE
The 504 Intel microcode updates and their structures are
grouped into four categories according to the feature repre-
sentation. The first category includes updates with vectors
as 1, 2, 3, 4, and 5; the third category includes updates
with vectors as 6, 7, 8, 9; and the second, fourth category
respectively includes updates with vector as 11, 10 in Tab.2.

The sizes of updates belonged to the earliest and first
category are 2048 bytes or 4096 bytes, which containing an
unknown data block of 2000 bytes or 4048 bytes respectively.
The detailed structures are shown in Fig.6, (1), (2) and (3)
are the structures of 2048-byte updates. (4) and (5) are the
structures of 4096-byte updates. Compared to (2), the offset
of feature F1 in (1) ismoved forward to 912 and a 80-byte data
block (only shared in (1)) is added at the end; and in (3), F1 is
replaced by another 1056-byte common data block consisting
of F2 and a 104-byte common data block. Compared to (5),
the offset of feature F2 in (4) is moved forward to 2120 and

a 920-byte data block (only shared in (4)) following a 104-
byte common data block is added at the end; there is a 1056-
byte common data block containing F2 between (3) and (4).
Those common data blocks have been preliminary confirmed
as garbage data to deter reverse engineering, which do not
affect acceptance of microcode update by processor [6], [25].

The mapping relationship of processor products and struc-
tures is shown in Appendix C. It is emphasized that there
are two structures of updates targeting 06_0EH, (4) is used
by processors whose Stepping is CH and (5) is used by that
whose Stepping is 8H. In addition, the latest update of the first
category is released in 2010, i.e., Intel is no longer supporting
its update.

The microcode updates of the second category target pro-
cessors whose DisplayFamily_DisplayModel are 06_06H,
0F_00H, 0F_01H, 0F_02H, 0F_03H, 0F_04H or 0F_06H
(not all). Although there is no obvious characteristic in
updates of this category like that in the first category, we still
discern some irregular and different-size common data blocks
(one of them is shown in Appendix A). Above of all,
‘‘EFFFFFFFH’’ frequently appears in the first four bytes
in Data of updates. Similarly, Intel is no longer supporting
update of such updates.

The earliest microcode update of the third category is
released in 2006 (0x00000.65_0x00000001_0x00000008,
0F_06H), and this structure is still in use now. The most
obvious characteristic is that a 692-byte prefix in Data,
the data structure of which is shown in Tab.3. the value of
Flexible Field 1 is not static and we give the detailed value in
Appendix B. when the value of Flexible Field 1 is not equal
to Processor Flags, which is a sufficient and unnecessary
condition, the value of Flexible Field 2 must be taken as 0H.
Surprisingly, a common data block after the range marked

by Update Length usually appears in updates with size more
than 71680 bytes, whose size is different and some are
even shared with microcode updates of the first category
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FIGURE 6. Structures of microcode update (The First Category). The numbers above bar are offset of the
data blocks, and the numbers in bar are size of data blocks, e.g. ‘‘2072B’’ represents the size of this data
block is 2072 bytes.

TABLE 3. Prefix of microcode update (the third category).

(vectors7, 8, 9). But we do not know the role of it currently.
This may indicate the presence of shared loader or exit
handler code, or alternatively common patches for the same
processor errata.

At present, only two microcode updates for Ice Lake
microarchitecture is grouped into the fourth category,
the structure of which also is the newest (the filename of ear-
liest one is 0x000706.5_0x 00000080_0x 00000046, released
on September 5, 2019). The first part of prefix, Description,
is also discovered and it should be inherited from updates of
the third category, but the values of some fields have changed,
such as Magic Number, Unknown 2. The most important
change is that RSA Exponent does not exist.

B. ENCRYPTION, DIGITING DIGEST AND SIGNATURE
Although all microcode updates adopt checksum for integrity
verification, this mechanism is relatively simple and public,
attackers can easily modify the update data and forge a new

checksum. Therefore, encryption, digiting digest, signature,
or other technologies are also used into the microcode update.

Microcode updates of the first category may be encrypted
using a block cipher with a block size of 64 bits or less, this
block cipher does not appear to be chained [6], our results
show that gcd(864, 944, 2072, 3096) = 8 bytes. No much
is known about updates of the second category, but we think
it may still use the similar encryption algorithm as the first
category.

The technology that using RSA signature for digiting
digest to protect the integrity of encrypted data has been
discovered in updates of the third category. Referring to the
work of Hawkes, a total of 24 RSA public keys are extracted,
which are shared among microcode updates for different
processors. The detailed information is seen in Appendix D.
The recovered results show that digiting digest is padded
following PKCS#1 v1.5, with a private key operation set for
the block type. The 160-bit digiting digest (SHA-1) is used
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for earlier processor, including 0F_06H, 06_0FH (Stepping is
BH) and 06_17H; Others use a 256-bit digiting digest (SHA-
2 even SHA-3). It can be confirmed that Encryption-then-
MAC has been applied in microcode updates of the third
category as described in the patent [26], but the specific
encryption algorithm of block cipher is unknown.

When analyzing the microcode updates for 06_0FH (Step-
ping is BH), it was found that the results of RSA Signature
extracted from updates with the same Processor Signature
andUpdate Revisionwhile different Processor Flags are also
the same, but data out after the range marked by Update
Length is not unanimous. This fact proves that the digiting
digest is only for the data within the range which marked by
Update Length, due to considering efficiency of microcode
update loading.

Although no visible RSA Exponent is found in updates of
the fourth category, a 3072-bit common data block whose
offset is 176 to 560 bytes may be a potential RSA Modulus.
It meets the following conditions:
• 3072 bits is a size of commercial RSA Modulus with
higher security level,

• The value is odd numbered,
• The value is not factorable by any value between 2 and
232.

FIGURE 7. The original signed data (red) of microcode update (the fourth
category). The data block marked by green frame is the 19-byte common
data block.

The value of 3072-bit data block whose offset is 560 to
944 bytes is less than the potential RSA Modulus, so it may
be an RSA signature. We try to determine the value of RSA
Exponent using enumeration method, and when the value is
taken as 65537 (10001H), the original signed data meeting
PKCS#1 v1.5 is obtained (shown in Fig.7). Due to avalanche
effect, the 19-byte common data block appearing in the origi-
nal signed data seems to be additional information rather than
part of the digital digest. Therefore, updates of the fourth
category still use SHA-2 or SHA-3 to generate the digital
digest whose size is 256 bits.

V. EVALUATION AND DISCUSSION
A. THE NEW DISCOVERIES
The previous manual analysis as well our semiautomatic
method cannot give precise time, accuracy, or coverage to

compare. We only introduce some new discoveries to illus-
trate the effectiveness and advanced of our method.

Compared with the traditional and sporadic manual anal-
ysis [6], [7], SJNW-MA is a fine-grained, accurate, and
efficient method to analyze and reverse microcode updates.
Base on the results from the analysis of 504 Intel microcode
updates using it, we have completed the reverse engineering.
Some new structures of updates are discovered and the values
of metadata are determined, and we also extract 24 RSA
public keys more 12 than that found by Hawkes [7]. The
most significant result is that we extract a new structure, and
identify a new 3072-bit RSA Modulus in microcode updates
of the fourth category and recover the original signed data
successfully.

B. ACTUAL ATTACK CHAIN
Of course, our work is only a preliminary study for the
security of microcode updates. There is still much work
to be done for actual available attack chain, such as crack
of encryption algorithm and secure hash algorithm used in
microcode update, reverse engineering of micro-ops encod-
ing, etc. In addition, it is also to consider whether the security
of microcode update is affected by BIOS or operating system,
which will also be our next work. All in all, we hope that
results of this article can provide a basis for further research.

C. THE CONFRONTATION BETWEEN ATTACK AND
DEFENSE
From our results of reverse engineering, Intel has adopted a
variety of methods to strengthen the security of microcode
update mechanism, such as encryption, signature, checksum,
even on-chip execution. The microcode updates for early
processor do not seem to be so secure, but these technical
measures have achieved their goals to a certain extent.

Many new technologies have been used for hard-
ware or software reverse analysis, which may be affect
research of microcode updates. Side channel attack has been
shown effective in disclosing secret encryption keys stored
within commercial FPGAs, but may be difficult to apply to
processors due to increased silicon complexity. Hardware-
based epoxy decapping and analysis under a microscope with
fuming sulfuric acid has been successful in revealing the con-
tents of secret memories within microcontrollers. There also
exist proprietary physical debugging interfaces for processors
via exposed surface mount pads or land grid array pins, e.g.
Intel’s XDP or other JTAG debuggers, which may be useful
for obtaining more information about processor internals [6].

Moreover, it is not ruled out that there are security risks
in the microcode update supply chain. As stated in introduc-
tion, researchers are difficult to study the updates to clearly
establish whether any security issues are being fixed like what
developer claimed or new security issues are introduced, even
backdoors reserved by manufacturers. What is more terrible
is that all users, including professionals, have no effective
way to verify whether the microcode update in their devices
is malicious. This means that once attacked, the problem will
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FIGURE 8. A common data blocks between microcode updates of the second category.

TABLE 4. The value of flexible field 1.

not be fixed and perceived by user, until the next time a new
version of the microcode update is installed.

VI. CONCLUSION
In this article, we build a Sample Repository containing
504 Intel microcode updates and propose a semiautomatic
analytical method SJNW-MA. Compared with previous man-
ual analysis, this method improves efficiency and accuracy,
which is used to make a more precise division and analysis
of the microcode update structure. Finally, 11-kind structures
of Intel microcode updates are identified from 504 samples,
and are grouped into four categories. Only updates of the third
and fourth category are still in use now. In addition, we do not
find that Extended Signature Table documented in the Intel
technical manual was used in all updates.

All microcode updates adopt encryption technology to
protect the data. Updates of the third category are cur-
rently the most widely used. The values of Flexible Field 1,
Flexible Field 2 and other meaningful metadata are identi-
fied and described in this article. Digiting digest and RSA
signature used for integrity in updates of the third cate-
gory are also reversed, we obtain 24 public keys of RSA
which is 12 more than that found by Hawkes, and deter-
mine that digiting digest is only for the data marked by
Update Length.

Microcode updates of the fourth category only target Ice
Lake microarchitecture and structure of which is the newest.
The structure of the fourth category is similar with that of the
third category, but no RSA Exponent. Fortunately, we identify
a new 3072-bitRSAModulus in updates of the fourth category
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TABLE 5. Processors with microcode updates of the first category.

TABLE 6. RSA modulus in microcode updates of the third category.

and recover the original signed data successfully by taking
RSA Exponent as 65537.

APPENDIX A
See Figure 8.

APPENDIX B
See Table 4.

APPENDIX C
See Table 5.

APPENDIX D
See Table 6.
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