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ABSTRACT In recent years, the problem of hole repairing in the 3D model has been widely concerned
in related fields. As the Generative Adversarial Network (GAN) has achieved great success in generating
realistic images, a 3D mesh model repair method based on the 3D Deep Convolutional Generative Adver-
sarial Network (3D-DCGAN) is proposed in this paper. The algorithm contains two GANs: a local GAN
and a global GAN. Four steps have been used to implement this concept. First, the 3D model is voxelized,
and a mask is used to identify the repairing area; Second, the repairing area is generated by training local
GAN; Third, the repaired region is combined with the 3D model to be repaired, thereafter, the global GAN
is trained with the combined model. Finally, a decent repaired model is obtained with the perfect transition.
The experimental results show that this algorithm can effectively generate the repairing area while retaining
the details of the area and blend it with the model to be repaired.

INDEX TERMS 3D model inpainting, GAN, local GAN, global GAN.

I. INTRODUCTION
As a way to record object information, 3D model images
possess a lot of features, significantly better than 2D images.
Nowadays, they are widely used in the fields such as 3D
printing, building modelling, spacecraft design, cultural relic
restoration and interior design. Besides, they also exist in
a variety of forms, like point clouds, curved surfaces and
voxels. Due to the limitation of current technology, 3D mod-
els will inevitably lead to model defects when scanning,
and the corrupted parts may have irreversible effects on
research. Thus, it’s particularly important to repair the cor-
rupted 3D models.

By far, image or 3D model repair, which is also named
as image or 3D model inpainting, has entered the age of
GAN methods from that of traditional geometric methods
and neural network methods. As an unsupervised learning
method, the GAN has the great ability for style transfer, super
resolution, image inpainting, denoising and so on. Motivated
by its feature learning ability, we proposed the 3D-DCGAN
to repair incomplete 3D mesh models in this paper, which
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mainly has three advantages compared to the methods pro-
posed yet:

1) The 3D-DCGAN uses the Convolution Neural Net-
work [30] to enhance the performance of the original GAN,
so as to have a better feature extraction ability.

2) The local GAN generates the repairing region with
sufficient details.

3) The global GAN generates a natural and smooth transi-
tion, and these two networks cooperate to obtain a repaired
3D model with higher quality.

The rest of the sections in this paper are organized as
follows. Section II reviews the related work; section III intro-
duces the pretreatment of training sets and the architecture
of the 3D-DCGAN; section IV presents the results of our
method and makes some comparison with other method;
section V summarizes the pros and cons of the 3D-DCGAN.

II. REVIEW OF RELATED WORK
A. GEOMETRIC METHODS
Awide variety of methods for repairing 3Dmodels have been
proposed years ago. The polynomial function [1], the radial
basis function [2], Laplacian filtering [3] and other inter-
polation algorithms carry out a certain degree of repairing,
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leaving abrupt transitions yet. In [4]–[6], people construct a
base surface using triangulation, on which surface details are
then added through continuous iteration. However, it merely
repairs the grid but not the detailed features. Besides, dynamic
programming was utilized and the augmented Lagrangian
method was introduced to cope with the variation model to
repair the hole [7], but it is of difficulty to recover the details
of the hole region when too much information is missing.
After the voxel model is obtained, [8] a symbolic distance
function is adopted to construct a directed distance field that
is extended to achieve the repair of the hole area [9], [10].
While the missing holes will be repaired by the construction
of the octree reconstruction contour surface, detailed features
of the repair part will be lost owing to the resampling surface.

B. NEURAL NETWORK METHODS
The rise of neural networks has inspired the idea of using
neural networks to solve real-world problems. In [11]–[14],
everyone discusses the self-training and learning of the image
to be repaired through the introduction of the neural network
and extracts the features for completion, each of whom has
obtained a relatively ideal effect. A novel network based on
sparse coding and the noise reduction autoencoder deep net-
work is put forward in [15], which has achieved the removal
of the image overlay text and the repair of deleted areas.
Still, it is not suitable for the removal of large-scale overlay
areas. Notably, the fully convolutional neural network [16] of
Contextual Attention [17] has achieved pretty good results on
CelebA and CelebA-HQ face datasets.

C. GAN METHODS
In 2014, the GAN proposed by Ian Goodfellow [18] learned
the characteristics through the game. Specifically speaking,
the generator and the discriminator within the network are
against each other to learn features of the training data, after
which people can barely differentiate whether the generated
picture is real or fake are then generated. The proposal of the
GAN provides a brand-new idea for image generation and
also gives rise to a large scale of research on 2D and 3D image
generation methods based on it.

Context Encoder [19], proposed in 2016, combines the
architecture of the Encoder-Decoder and the GAN to predict
the missing region, which opens the way of inpainting with
the GAN. The Context Encoder works well for filling in miss-
ing regions, but not so well for local consistency. In [20], [21],
high-resolution inpainting and on-demand learning have been
improved in line with the Context Encoder to achieve much
better results than previous methods. In [22], the local dis-
criminator and the global discriminator are set to discrim-
inate the completion part and the whole separately, which
maintains the global consistency and optimizes the details.
The finding of the coding in the training set closest to the
corrupted image and the placement of the coding into a pre-
trained GAN for semantic inpainting have ensured that the
method’s extracted information is no longer limited to a single
image [23]. WGAN-GP [24] jointly incorporates the direct

and indirect measurements, which overcomes the limitation
of incorporating only information from direct measurements
to enhance the semantic inpainting performance. A hybrid
architecture composed of the 3D-ED-GAN and the LRCN
is proposed in [25], which accomplishes the transformation
from low-resolution inpainting to high-resolution one. The
3D-RecGAN [26] obtains the mapping relationship between
the voxelized partial 2.5D views and corresponding full 3D
shapes by putting them into a GAN, and leverages the accu-
racy of the reconstructed model by introducing a generator,
which loosely follows the idea of an autoencoder with U-net
architecture and WGAN-GP as a discriminator. Although the
algorithm reconstructs the structure of simple models well,
it is hard to handle intricate models. The way the Point
Encoder GAN [27] directly deals with point clouds using
max-pooling and T-Nets [28] also gets a decent inpainting
performance. In [29], the precision of depth inpainting is
increased by using four kriging models on the basis of semi-
variance models and color-similarity functions.

III. MATERIALS AND METHODS
A. 3D DATASET AND PRETREATMENT
The training data used in this paper comes from the Mod-
elNet40 provided by Princeton University, which is a 3D
model database consisting of 40 classes with a total amount
of 12431 3D models. In the experiment, we combine the
training set and the test set in the original class into one
dataset to augment the number of training data volume as
well as extracted features. (Our experiments are all tested
in Ubuntu 18.04.4 with Python 3.7.3, Tensorflow 2.0 and
one Nvidia Tesla P100 GPU.) Then,.off format files are
transferred into.stl format files, after which the attitude is
adjusted so that they are placed at a uniform angle. After that,
we voxelized these 3D models with resolution 80× 80× 80.
Finally, the matrices of those voxelized 3D models are saved
as.mat format files.

In order to acquire the incomplete 3Dmodel to be repaired,
we crop a certain part of the 3Dmodel randomly chosen from
the training dataset.

Fig. 1 shows the voxelization of an airplane and the proce-
dure of its transformation into a repairing model. As shown
in Fig. 1 c, the cropped area in our work is the upper right
quarter of its own (the yellow part). When this section is
removed, the remainder of this model is what we called the
repairing model.

Apart from an uncomplete 3D model called the repairing
model, we also get amask used to restrict the region generated
by the GAN after cropping. In terms of the mask, it can also
be used to re-align the repair region with the repairing model
when the generator produces a model of the corresponding
region, and the aligned model is exactly what the algorithm
outputs in the end.

B. ARCHITECTURE OF 3D-DCGAN
The 3D-DCGAN proposed in this paper is comprised of
two GANs, a local GAN and a global GAN [22]. While the
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FIGURE 1. Model voxelization and crop. (a) original airplane.
(b) voxelization. (c) cropped region. (d) repairing model.

primary purpose of the local GAN is to generate the repaired
region, this region can invariably occur a very unnatural
transition or even fault after merging the repaired region and
the repairing model. To cope with this issue, a global GAN
working on the top of the local GAN that ensures a global
judgement of the combined model made by it is introduced.
In this regard, it optimizes the generator to generate a better
repaired region with great details and natural transitions.
Besides, both the local GAN and the global GAN are deep
convolutional networks, and so the excellent extraction fea-
ture of the DCGAN [31] having been discussed in [32]–[34]
is preserved in our networks.

Fig. 2 illustrates the process of the 3D-DCGAN for 3D
model repair. First, the generator and the local discrimina-
tor consist of the local GAN, which is trained to generate
high-quality repaired models. Then, combine the repaired
model with the initial repairing 3D model. Later, put the
combined 3D model into the global GAN composed of a
global discriminator and the generator in the local GAN.

Since both the local GAN and the GAN share one generator
in the training process, it is plausible to learn both local
and global features so as to enhance the final output of the
network.

As a repairing module, the local GAN itself is a DCGAN
that processes the 3D model data and generates ‘‘Fake’’
3D images, and thus the GAN’s calculating equation still
covers this (1).

minGmaxDLocalV (DLocal,G)

= Ex∼pdata(x)
[
logDLocal (x)

]
+Ez∼pz(z)

[
log (1− DLocal (G (z)))

]
(1)

As in (1), x denotes the real 3D model; z represents the
noise of the generator’s input; G (z) means the 3D model
generated by the generator.DLocal (x) denotes the probability
of the local discriminator to distinguishwhether the 3Dmodel
is real or not.

Generators and discriminators adopted in the 3D-DCGAN
and the DCGAN have the identical structure. Neverthe-
less, this paper adopts 3D model data all the way through
the entire process, and so parameters within the net-
work should be adjusted from the 2D convolutional ker-
nel to the 3D one. The 3D convolution equation is shown
in (2).

x = picture (i, j, k) =
layers−1∑
a=0

rows−1∑
b=0

columns−1∑
c=0

f (a, b, c)

× h (i− a, j− b, k − c) (2)

FIGURE 2. Structure of 3D-DCGAN.
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FIGURE 3. Architecture of Generator and Discriminator of 3D Deep Convolutional GAN.

After adapting, (1) becomes what is shown in (3).

minGmaxDLocalV (DLocal,G)

= Ex∼pdata(x)

logDLocal
layers−1∑

a=0

rows−1∑
b=0

columns−1∑
c=0

f (a, b, c)

× h (i− a, j− b, k − c)


+Ez∼pz(z)

[
log (1− DLocal (G (z)))

]
(3)

In the global GAN, due to the introduction of the original
repairing model, Eq. (3) is no longer applicable, and the new
one is shown in Eq. (4).

minGmaxDGlobalV (DGlobal,G)

=Ex∼pdata(x)

logDGlobal
layers−1∑

a=0

rows−1∑
b=0

columns−1∑
c=0

f (a, b, c)

× h (i− a, j− b, k − c)


+Ez∼pz(z)

[
log (1−DGlobal

(
G (z)+xn

⊙
(1−Maskn)

)
)
]
(4)

As in (3) and (4), the distinction between these
two lies in the introduction of xn

⊙
(1−Maskn) in

DGlobal
(
G (z)+ xn

⊙
(1−Maskn)

)
, which represents the

repairing model during merging. xn denotes any voxelized

model in the dataset, and Maskn is the mask of the repairing
region in the model n. The reverse mask is taken through
1−Maskn and it’s easy to get the unbroken region by multi-
plying the reverse mask with the original voxelized model.

Considering the importance of having a generator that
knows the repairing region well, the generator in the local
GAN and the global GAN is the same one, which helps get
lots of local and global features to merge well.

C. THE GENERATOR AND DISCRIMINATOR OF 3D-DCGAN
The generators and discriminators in this paper adopt
3D convolutional kernels, enabling both of them to handle
3D models.

In the generator (as shown in Fig.3 Generator), we use
100-dimensional random noise as the initial input, and then
transfer the data into a [5× 5× 5× 512] tensor through one
fully connected layer, which is also known as reshaping.
The tensor is then calculated by four 3D deconvolutional
layers and finally output as a [80× 80× 80× 1] tensor
(which is also the final repaired model). In the first layer,
the layer is made up of 256 convolution kernels; the stride
is 2× 2× 2; the activation function is ReLU. The second
layer has 128 convolution kernels; the stride and the activation
function are the same as those in the previous layer. The
third layer highly resembles layer 2, but the convolution
kernel number is set to 64. The final layer has varied a lot.
That is to say, only one convolution kernel is set up and the
activation function becomes tanh. The output of the generator
is a [80× 80× 80× 1] sparse matrix.
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The discriminator structure used in this paper has an
inverse operational relationship with the generator structure
(as shown in Fig. 3 Discriminator). The input of the dis-
criminator is a [80× 80× 80× 1] sparse matrix (the vox-
elized image), going through 4 convolutional layers before
outputting true or false as the final estimation. The layer
1 to layer 4 in the discriminator all have LeakyReLU as the
activation function, with the strides of 2× 2× 2. Moreover,
the differences among them are the number and the size
of convolution kernels. Finally, the Sigmoid cross-entropy
function is set to determine the truth or falsity of the input
image.

The parameters of the generator and the discriminator in
our work are listed in Table 1.

D. ALGORITHM DESCRIPTION
The training procedure of the 3D-DCGAN is listed in
Algorithm I, which presents the entire 3D-DCGAN training
process. We take the voxelized 3Dmodel sets and a voxelized
3Dmodel with themissing region, which are the same class as
training and inpainting inputs. Every training epoch incorpo-
rates local GAN and global GAN training. While the former
takes inputs mentioned before as input, the latter takes output
of the local GAN as its input. Therefore, the detailed features
learned by the local GAN are conveyed to the global GAN.
The combination of the repaired region and the unbroken
region helps the global GAN obtain the relationship between
local and global regions. From the final result, which is also
the output of the global GAN, the relationship signifies a
better transition.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL RESULTS
Fig. 4 shows the results of the repairedmodels using disparate
GANs and our method proposed in this paper. In Fig. 4 c,
due to the lack of feature learning approaches for the orig-
inal GAN [18], it is impossible to effectively get traits of
the missing region, which brings about very unsatisfactory
results. Fig. 4 d shows the result of the BiGAN [35], in which
every layer is fully connected and requires a lot of calculation.
As a result, we lower the resolution, and the results turn
out to be the worst among all the algorithms. In Fig. 4 e,
the DCGAN [31] does a good job of repairing the missing
regions, but there is still much room for improvement in the
fusion of the repaired region and the model to be repaired.
More precisely, there are significant faults at the articulation
and a small amount of noise. In Fig. 4 f, the method proposed
in this paper has significantly improved in junctions, transi-
tions and noise control compared with the GAN, the BiGAN
and the DCGAN.

In Fig. 5, all of the repaired bed models have been zoomed
in. As the original GAN is dramatically affected by the miss-
ing of feature extraction, really bad results are generated.
Furthermore, the BiGAN gets even worse results than the
GAN considering the large amount of calculation that leads
to the reduction of resolution. Compared to the former two,

Algorithm 1 The Procedure of 3D-DCGAN
Input: A voxelized 3D model training set and a voxelized
3D model with missing region
Output: A voxelized 3D model with missing region
inpainted
Algorithm: Training procedure of 3D-DCGAN

for number of training epochs do:
for number of training iterations do:
Train the Local GAN:
•Train Local Discriminator with batch-size vox-

elized 3D models.
•Train Local Discriminator with generated 3D

models:
Generator produces batch-size 3D models by

noise.
Train the Local Discriminator with the gener-

ated 3D models for one iteration.
end for
•Combine Local Discriminator and Generator as Local

GAN, then train one epoch.
for number of training iterations do:
Train the Global GAN:
•Generate repaired model:
The generator produces one batch-size repaired

region.
Combine the repaired region with unbroken

region as the repaired model using maskMaskn.
•Train Global Discriminator with the batch-size

voxelized 3D models.
•Train Global Discriminator with the batch-size

repaired model.
end for
•Combine Global Discriminator and Generator as

Global GAN, then train one epoch.
end for

the DCGAN with the convolutional layers generates much
better results. The results have been largely restored to the
overall character of the missing region, but there are still
articulation jumps and detail clutter affecting the results,
which leaves so much room for improvement. In our work,
the algorithmmakes a near-perfect restoration of the bed, and
even the pillow on the bed has been perfectly reproduced.
Besides, the jumps in the articulation have been addressed
properly.

B. RESULTS EVALUATION
To assess the quality of the 3D complementary model, we use
two evaluation metrics most commonly used in 2D images:
the mean square error (MSE) function and the peak signal-to-
noise ratio (PSNR) function.

The MSE function reflects the difference between original
images and processed images, and the value of the mean
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TABLE 1. Parameters list of the generator (top) and the discriminator (bottom).

FIGURE 4. Comparison with state-of-the-art methods to repairing the repairing models. (a) Original Model. (b) Repairing Model.
(c) GAN [18]. (d) BiGAN [35]. (e) DCGAN [31]. (f) Ours.

square error is used to determine the level of distortion.
Because the data in this paper is 3D models, the equation
needs to be modified as the image converted from 2D to 3D,
and the modified equation is shown in (5).

MSE =
1

NRows × NColumns × NLayers

×

NRows−1∑
x=0

NColumns−1∑
y=0

NLayers−1∑
z=0

(f (x, y, z)− f̂ (x, y, z))
2

(5)

As in (5), NRows, NColumns and NLayers represent the num-
ber of pixels of all three dimensions, respectively. Besides,
f (x, y, z) and f̂ (x, y, z) denote the original 3D model and the
repaired 3D model, respectively.
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FIGURE 5. Zoom-in on the images of repaired bed models. (a) Original Model. (b) Repairing Model. (c) GAN. (d) BiGAN. (e) DCGAN.
(f) Ours.

FIGURE 6. Repaired airplane model quality evaluation. (a) MSE. (b) PSNR.

The peak signal-to-noise ratio function is used as ameasure
to evaluate the quality of reconstruction in image processing
with (6).

PSNR=10×log10

(
(Imax)2

MSE

)
=20×log10 (

Imax
√
MSE

) (6)

Since the 3D model in this paper is a (0,1) sparse matrix,
the maximum possible pixel value of the image represented
by Imax is taken as 1. As an indicator to reflect the degree of
distortion, the smaller the value of the MSE is, the smaller
the distortion is. On the contrary, the larger the value of the
PSNR is, the better the image is.

Fig. 6 shows the MSE and PSNR value curves of the
repaired airplane models of dissimilar algorithms, which
conveys the same information as in Fig. 5. In all algorithms,
the repairing capability of the GAN and the BiGAN is at the
bottom, and that of the DCGAN is in the middle. The results
of our proposed method get the best grades in both evaluation
criteria.

Table 2 shows the comparison of the repairing degree
among the GAN, the BiGAN, the DCGAN and our method,
which is determined by the Hausdorff Distance between the

TABLE 2. Hausdorff Distance of GANs.

repaired model and the original model. It can be seen from
the table that the BiGAN has the highest Hausdorff Distance
value among all these methods; the DCGAN is somewhere
between GAN and our method; our method gets the lowest
value. From the GAN to the method proposed by us, we have
got decent progress in both value and effect, signifying that
the results obtained from our work produce both fewer jumps
and much better transitions.

V. CONCLUSION
The 3D-DCGAN proposed in this paper, which is a repair-
ing algorithm, allows the repaired region to maintain the
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detailed characteristics of its region through the local GAN
and the global GAN. Besides, the repaired region can also
be integrated into the entire model, improving the quality of
the repaired model efficaciously. Compared with the existing
algorithm, it can not only be applied to small holes but also
large holes or even multiple holes.

With the increase of demand for higher image resolution,
there will be an exponential increase in the computation of
the algorithm proposed in this paper. In the following work,
we will mainly focus on diminishing the redundant compu-
tation among layers in the network so that the algorithm can
be applied to higher resolution. Also, the proposed algorithm
is effective for the repairing models with low complexity
structure. However, as the complexity of the model structure
increases, the effectiveness of the repairing model lowers,
which makes a deeper study of such cases inevitable.
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