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ABSTRACT The field of bioengineering depends on technologies for stable cell culture. Conventionally,
every process involved in cell culture has been performed manually, so the culture efficiency and stability
can vary between trials or depending on the technician. Among these processes, cell counting is particularly
important because cell density affects cell function. Conventional cell counting techniques for cell number
estimation are inefficient and unstable because they involve the manual work of collecting a sample of
the cell suspension. Thus, a cell counting method that is not susceptible to human error is needed. In this
study, we present a novel cell counting method based on smartphone imaging and convolutional neural
network-based image processing. Cells are aggregated by centrifuging in a tube and then imaged using a
smartphone. The image is transferred to a server, and the cell number is predicted using convolutional neural
networks on the server. All processes are performed by a custom-developed smartphone-compatible web
app. Compared with the conventional method using a hemocytometer, our method yields more stable cell
counting. Furthermore, the time and labor required for cell counting are significantly reduced. Our new
method could potentially replace conventional cell counting techniques and thus enhance the stability and
efficiency of bioengineering studies that require cell culture.

INDEX TERMS Cell counting, cell culture process, regression analysis, supervised learning, computational

biology, machine learning, convolutional neural network.

I. INTRODUCTION

Studies in bioengineering, including tissue engineering,
regenerative medicine, organ-on-a-chip, and biomedicine
studies [1], [2], require stable and effective cell culture
methods. Cell culture processes involve seeding, detaching,
and reseeding cells. The density of cultured cells is known
to affect their function and proliferation rate, so the num-
ber of seeded cells must be measured and adjusted before
seeding [3]-[5]. Conventionally, every process involved in
cell culture is performed manually. However, manual steps
present a risk of contamination and result in variable cul-
ture efficiency and stability between trials and depend-
ing on the technician [6]. In the interest of standardizing
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these processes, several techniques have been developed,
such as cell patterning, detaching, collecting, and harvesting
[7]1-[12]. Cell counting technologies, which are key to real-
izing stable and effective cell culture, have been devel-
oped, but they require dedicated devices or labor-intensive
processes [13], [14].

The most widely used conventional cell counting method
consists of several steps, as shown in Fig. la. First, a sam-
ple of the cell suspension is collected from the suspension
containing all cells. Second, the sample is loaded into a
hemocytometer mounted on a microscope. Finally, the cell
density of the sample is measured by a technician and used
to calculate the number of cells in the suspension, assuming
that the cell density of the sample is equal to that of the sus-
pension. This manual process is tedious and time consuming,
increasing the burden on technicians. Because the counted
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FIGURE 1. Comparison of cell counting by (a) the conventional method and (b) the proposed method. While the
conventional method comprises four steps, the developed app requires only a single step.

cells cannot be reused, this process wastes cells that may be
difficult to obtain. Moreover, the estimation of cell density
in the suspension is susceptible to human error (for example,
when counting cells on the microscope) and depends on the
skill of the technician; therefore, the results tend to vary from
technician to technician. The added steps also increase the
risk of contamination.
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Several cell counting methods based on cutting-edge tech-
nologies, such as image analysis, electronics, and optics,
have been proposed [15]-[16]. Most of these methods are
performed with a sample of cells from the cell suspen-
sion. Of these methods, image analysis-based techniques
have been most commonly implemented in practical appli-
cations. An automated cell counter designed to decrease the
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technician burden and risk of miscounting has been devel-
oped and commercialized [17]. The cell suspension is intro-
duced into a dedicated chamber, and the device automatically
measures the cell density in the sample. While this tool
does reduce the time and labor required for cell counting,
the measurement may still be susceptible to error because
it still requires manual sampling of the cell suspension.
Another method based on image analysis is based on counting
cells from microscopic images of cells adhered to a cul-
ture surface [18]. Manual sampling is not required with this
approach. However, because the density of cultured cells is
not homogeneous, the accuracy of the predicted cell number
is influenced by the cell seeding techniques used by techni-
cians [19]. In contrast, optics-based methods can be used to
measure the number of cells in the entire cell suspension, but
they require dedicated and costly devices and labor-intensive
procedures and can be used only for cell suspensions in which
the approximate cell number is known [16]. Thus, a novel
cell counting method that is more practical and robust against
error is still required.

As mentioned above, almost all previously developed
methods for cell counting require sampling of the cell sus-
pension, which introduces many issues. Although several
attempts have been made to replace the entire manual cell
culture process with a fully automated system, no method of
automated cell counting has been applied in practice [20].
To address the limitations of conventional approaches,
the cell number should be measured directly in a suspension
to prevent technician error and variation due to technician
skill and thus obtain consistent results. Furthermore, decreas-
ing the number of steps involved in the process is helpful for
reducing the time cost and risk of contamination.

Hence, we proposed a technique involving the use of
macro-scale images showing all cells in a suspension.
Because single cells cannot be observed or counted in a
macro-scale image as a result of their small size, we focused
on the only moment at which cells can be observed even
with the naked eye: immediately after centrifugation, when
the cells are aggregated at the bottom of the tube. Skillful
and experienced technicians are sometimes able to predict
the number of aggregated cells after centrifugation, which
demonstrates the potential for estimating the cell number at
this stage. Deep learning methods, especially convolutional
neural networks (CNNSs), have been successful in various
computer vision tasks such as classification, segmentation,
and regression [21]-[25]. Thus, we used deep learning with
CNNs to analyze images and predict the cell number from
macro-scale images of aggregated cells.

On the basis of this approach, we developed a novel cell
counting method in which an image of aggregated cells is
captured by a smartphone and transferred to a server by a
web application for smartphone. The CNN on the server
then predicts the cell number (Fig. 1b). The use of ubiqui-
tous smartphone technology offers fast computing, easy con-
nectivity to servers, and a user-friendly interface [26]-[30].
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The proposed method is simple and relatively quick, and
provides superior accuracy and consistency for cell counting.

Il. MATERIALS AND METHODS

A. OVERVIEW OF THE PROPOSED METHOD

Our method consists of three elements: image capture of
aggregated cells, a web application for smartphones and a
CNN. First, the aggregated cells in the tube are imaged
from two directions using a smartphone. The second element,
the smartphone-based web application, transfers these images
from the smartphone to the server. Then, the CNN predicts the
number of cells from the transferred images. The predicted
cell number is transferred back to the smartphone via the
web application. Therefore, in our method, the input is the
centrifuge tube containing aggregated cells, and the output is
the estimated cell number (Fig. 1b).

B. IMAGE CAPTURE

In general, datasets incorporating a large number of images
captured with a range of imaging conditions need to be pre-
pared to train the CNN to make robust inferences from images
captured under various imaging conditions [29]. To minimize
the number of training images required, we fixed the imaging
conditions by using a jig to hold the centrifuge tube and
smartphone, as shown in Fig. 2. With this jig, images can be
taken from two directions with the exposure angle, lighting,
and distance of the object from the camera kept constant.

Figure 2 shows the fabricated jig with a 15-mL centrifuge
tube containing a cell suspension. The jig comprises two
parts, each fabricated by a 3D printer (BCN3D SIGMA R19,
BCN 3D Technologies, Barcelona, Spain): The upper part
covers the side of the tube and fixes the tube position rel-
ative to the camera. The bottom part has a holder for the
smartphone, a space holding a light-emitting diode (LED;
LP-LED3SET), and a black wall. The black wall was inte-
grated to shade the tube from direct illumination and thus
prevent direct light from reflecting off of the surface of the
tube, which would occlude the view of the cells. A 15-mL
tube (TR2000, Nippon Genetics Co., Ltd., Tokyo, Japan) is
set into the jig. The 3D model files of our developed jig are
provided in the supplementary information. The smartphone
holder fixes the smartphone upside-down at a constant dis-
tance of 80.6 mm from the tube. The LED illumination helps
to maintain consistent illumination conditions.

To prepare cells for imaging, a cell suspension is cen-
trifuged (H-19«, Kokusan, Saitama, Japan) in a 15-mL tube
for 2 min at 370 x g. The cell density in the suspension is
measured using an automatic cell counter (TC20TM Auto-
mated Cell Counter, Bio-Rad, CA, USA) three times as the
reference standard.

C. DESIGN OF THE CNN

We implemented a CNN model that predicts the number
of cells from images of aggregated cells taken from two
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FIGURE 2. Structure fabricated to fix the conditions for capturing images.

directions (Fig. 3a). Our CNN model comprises consec-
utive convolutional layers, max pooling layers, and fully-
connected layers. The last fully-connected layer consists of
one neuron for the objective function (Fig. 3b). Every con-
volutional layer and all fully-connected layers except for the
last are followed by rectified linear units [30]. We applied
dropout (rate: 0.5) to the fully-connected layers [31]. Because
the CNN model learns the task of regression, the mean-
squared error was used for the objective function. The details
of the hyperparameters of the CNN model are provided in
Supplementary Table 1.

D. DESIGN OF THE CELL COUNTING APP

We designed a web application (herein referred to as cell
counting app, CCA) to serve as an interface between the
smartphone and the CNN model on a server. The CCA
consists of three main components: a web-based user inter-
face, a web server for providing an application programming
interface (API) for cell counting, and a server for machine
learning (Fig. 4). The user interface allows the user to upload
two images and displays the counting results. The web
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server receives the images and carries out the analysis using
the trained CNN model. This CNN model was trained by
machine learning on the server and transferred to the web
server in advance. The web-based CCA algorithm performs
the following steps: (1) the images are received; (2) the
CNN model carries out the image analysis; and (3) the user
interface receives the result of the analysis (i.e., the number
of cells).

The user interface and cell counting API were implemented
in HTML, CSS, and Python 3.6. We developed separate
Django applications to implement the API and user interface
independently. The API for cell counting was implemented
by using the Django web development framework because
the API used to interface with the trained CNN model via
Python is based on Django. The web server receives and
saves the trained CNN model from the server for machine
learning via the cell counting API. The user interface was
designed with a single-page application concept using the
Django template language with Bootstrap 4. The source code
of the CCA is available from https://github.com/funalab/
CellCountingApp.
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FIGURE 3. (a) Image pre-processing before input into the CNN model. (b) CNN architecture for predicting the number of cells. “Conv,”
“Pool,” and “Fc” represent the convolution layer, pooling layer, and fully-connected layer, respectively.
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FIGURE 4. Schematic of the app designed for cell counting based on our CNN model.

E. PREPARATION OF THE TRAINING AND TEST DATASETS
We prepared a training dataset to train the CNN model.
We captured images of cells centrifuged and aggregated at
the bottom of the conical centrifuge tube using a smartphone
(iPhone 8, Apple Inc., Cupertino, CA, USA) set into the
jig; images were captured from two directions (Fig. 3a).
The number of cells was varied from 1.0 x 10° cells to
1.0 x 107 cells in increments of 1.0 x 10% cells, and 50 image
sets were acquired for each cell number. We defined the
number of cells measured by the automatic cell counter as
the true value. We divided these datasets into five subsets and
performed cross-validation.

To evaluate the developed method, a test dataset was
prepared in the same way as the training dataset. The numbers
and the densities of cells in each sample were randomly
determined. In addition, cell counting was also performed
using a hemocytometer as a conventional cell counting
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method for comparison; the cell counting was repeated three
times with the same sample. The datasets are available from
https://github.com/funalab/CellCounting App.

F. TRAINING PROCEDURE FOR THE CNN MODEL

We implemented and trained the CNN model using Chainer,
an open-source software for deep learning [32]. We trained
the CNN model with five-fold cross-validation. At each fold,
we trained the CNN model for 100 epochs using Adam
with mini-batches of five images. For each epoch, we eval-
uated the loss of the CNN model using validation data. The
loss, L, was calculated based on the mean-squared error as
follows:

ey

L&
Z—Z(yi—ti)z,
N3
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FIGURE 5. Results of CNN model training with five-fold cross validation. The vertical axis represents loss and the horizontal axis
represents the epoch. The blue line represents the loss of the training dataset, while the orange line represents the loss of the
validation dataset. The blue and red dot plots represent the epochs with the lowest losses in the training and validation datasets,

respectively.

where N, y, and ¢ represent the size of the mini-batches,
the output, and the ground truth multiplied by 107°,
respectively.

In the pre-processing step, a 320 x 320 pixel region of
interest (i.e., the cell aggregate) was cropped from the original
image (Fig. 3a). Then, data augmentation was performed by
adding perturbation with a uniform distribution to the cropped
image and randomly flipping the cropped image in the hori-
zontal direction. These data augmentations were performed to
prevent overfitting of the CNN model [31]. To ensure robust-
ness against variations in illumination intensity, the pixel
values of the cropped input image were normalized to the
range of [0, 1] by subtracting the minimum pixel intensity and
then dividing all pixel intensities by the difference between
the maximum and minimum pixel intensities [33].

To compare the conventional cell counting method with our
CNN model, we used the model with the least loss in cross-
validation and applied it to the test data.

G. CELL PREPARATION

The mouse fibroblast cell line, 1L.929 (RCB1451, Riken
BioResource Center, Ibaraki, Japan), was used to demon-
strate the proposed cell counting method. Cells were cul-
tured in growth medium (modified Eagle’s medium (MEM)
“Nissui,” Nissui Pharmaceutical Co., Ltd., Tokyo, Japan)
supplemented with 5% fetal bovine serum (CELLect Gold,
MP Biomedicals, Inc., CA, USA) in a 5% CO, humidified
incubator at 37 °C. Cells were passaged by trypsinization in
0.050% trypsin-EDTA (25300, Life Technologies, CA, USA)
with pipetting.
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H. STATISTICAL ANALYSIS

We used a concordance correlation coefficient to evaluate the
degree of agreement between the cell numbers determined
by the proposed method and the true values [34]. The concor-
dance correlation coefficient represents the variation between
groups. We also used the F value to evaluate the variance
in the cell numbers. The F value is the ratio of the variance in
the group means to the mean of the variance within the group.
The F test and unpaired Student’s t-test were performed to
compare the two groups. Values of p < 0.05 were considered
statistically significant.

IIl. RESULTS

A. TRAINING AND VALIDATION OF THE CNN MODEL

FOR PREDICTING THE NUMBER OF CELLS

We used the training dataset to train our CNN model by
five-fold cross-validation and evaluated the training and vali-
dation loss for each epoch (Fig. 5). In every fold, the training
and validation loss decreased with each epoch and converged.
The mean of the lowest training loss across epochs was
0.021 £0.002, and the mean of the lowest validation loss
across epochs was 0.006+0.002. We defined the convergence
model for each fold as the epoch with the lowest valida-
tion loss (Fig. 5, orange plot). The fold-1 model with the
lowest loss was used for verification with the test dataset,
as described in the next section.

B. EVALUATION OF OUR CNN MODEL

We compared our method with the conventional method in
terms of accuracy and stability. Accuracy was defined relative
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FIGURE 6. Comparison of accuracy of the proposed cell counting method
with that of the conventional hemocytometer-based method. The number
of cells measured using Automated Cell Counter was regarded as the true
value. The blue and red lines indicate linear fits to the results obtained
using the proposed method and the hemocytometer, respectively. The
black line represents the ground truth. CCC represents the concordance
correlation coefficient. The predicted value is shown as mean + SD.

to the true value, while stability was defined as the con-
sistency of the measurements. The concordance correlation
coefficient and F value were used to evaluate each estimative
metric.

First, the accuracy of each method was evaluated by com-
paring each measured value with the true value (Fig. 6); here,
the number of cells measured by the automatic cell counter
was considered as the true value. The concordance correla-
tion coefficients of our method and the conventional method
were 0.956 and 0.804, respectively. This finding indicates
that the cell numbers estimated by our method were more
accurate relative to the true value than those estimated using
the conventional method, implying that the proposed method
has higher accuracy than the conventional method.

The stability of each method was evaluated by plotting the
cell numbers determined by our method or the conventional
method against the true values and then determining the
variance of the residuals of a linear fitted line. The variances
for our method and the conventional method were 3.12 x 10
and 7.23 x 107 cells, respectively. The difference between
these results was statistically significant (F value = 2.32,
p-value of Ftest = 0.03 < 0.05). This result indicates that our
method is more stable than the conventional method because
it has a lower variance of residuals (i.e., prediction error).

C. DEMONSTRATION OF OUR METHOD
Next, we evaluated the entire proposed method from the
viewpoints of the simplicity of the procedure and the time
required to conduct the measurement.

To evaluate the simplicity of the proposed method,
we compared the procedures of the conventional method and
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our method. As shown in Fig. 1(a), the conventional cell
counting method using a hemocytometer involves four steps:
After centrifugation, the supernatant is removed, and the cells
are diluted in fresh medium to realize an appropriate cell
density for counting (step 1). Then, a sample of the cell
suspension is introduced into a hemocytometer, which must
be washed daily (step 2). The hemocytometer is then mounted
on a microscope, and the cell density is visually counted
and used to calculate the total cell number (step 3). Finally,
the sample is centrifuged once more (step 4) and resuspended
in the volume of media needed to realize the desired cell
density. In contrast, our method involves only a single step,
namely using the CCA, as shown in Fig. 7; the remainder
of the process is automated. One of the advantages of our
method is that there is no need to maintain a homogeneous
cell density. To use the CCA, the aggregated cells in the
tube are imaged with a smartphone from the left side of the
jig (sub-step 1-1) and again from the right side of the jig
(sub-step 1-2). The captured images are then loaded into the
appropriate location on the user interface of the CCA, and
the ‘Counting’ button is pressed (sub-step 1-3). The estimated
cell number is returned after tens of seconds (sub-step 1-4);
the mean and standard deviation of the time from pressing the
counting button to obtaining the result was 31.080 £ 3.806 s
(n = 10). These findings demonstrate the simplicity and lim-
ited burden of the proposed method. Supplementary Movie 1
shows a comparison of the proposed and conventional cell
counting methods.

We also measured the time required to carry out these two
cell counting methods, as shown in Fig. 8. Our method was
faster than the conventional method: while the conventional
method (steps 1 through 4) required around 383.7 s, our
method (a single step) required around 56.3 s, and this differ-
ence was statistically significant. This finding indicates that
the proposed method realizes simple and quick cell counting.

IV. DISCUSSION

In this study, we demonstrate a novel automated smartphone-
based cell counting method that is more convenient, accurate,
and stable compared with the conventional hemocytometer-
based cell counting method. The conventional technique is
inconvenient because of the multiple steps and manual cell
counting required. The proposed method can significantly
reduce the time and involved procedures for counting cells.
The use of smartphone technology with its seamless inputs
and outputs of data enabled the rapid response of the pro-
posed method. Furthermore, the required run-time of the
proposed method is expected to be reduced in the near future
as data transmission speeds increase. The steps required in the
conventional method are complicated. A comparison of the
proposed and conventional methods shows that our method
could reduce the burden on technicians and the risk of con-
tamination. Furthermore, the proposed method is promising
not only from the viewpoint of functionality but also in terms
of environmental protection; as shown in Supplementary
Movie 1, the use of many consumables and washing of the
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hemocytometer (both of which are considered environmen-
tally unsustainable) are required in the conventional method,
but not in the proposed method [35]. Furthermore, the method
is more readily applicable because the jig is the only special
device required to apply the proposed method for practical
use given the ubiquity of smartphones.

While we found that the accuracy and stability of the
proposed method were statistically better compared with the
conventional method, the actual cell number cannot be mea-
sured precisely. In this study, we defined the number of cells
measured by an automatic cell counter as the true value,
but there is no practical method to measure the exact cell
number. In fact, even though there is a generalized protocol
for bioengineering experiments, researchers need to make
their own protocols. However, the exact number of cells is
generally not of great importance. The estimated cell number
derived with conventional methods is unreliable because of
the numerous manual steps that are required to measure the
cell number, as well as variation resulting from differences
in the approach of individual technicians. Thus, the method
proposed here is valuable in that it can serve as a consistent
standard that is independent of technicians’ skills.

Although our method provided superior accuracy and sta-
bility, further improvements could be achieved with two
modifications (aside from simply increasing the size of the
training datasets). The first involves the hardware, namely,
modifying the size of the jig to obtain a clearer image with
more consistent imaging conditions. Because of the gap
between the jig, the tube, and the smartphone, the ROI can be
shift within the image frame (Supplementary Fig. 1), and the
focus of the image can shift (Supplementary Fig. 2); the latter
of these issues is more problematic. This could be solved
by the use of a larger jig with appropriate dimensions. This
modification should yield images better suited to the training
dataset, which would thus presumably improve the results of
the proposed method. The CNN model predictions in this
study were based on images captured from only two direc-
tions. However, cell aggregation occurs in three dimensions.
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Accordingly, the accuracy of the results could be further
improved by modifying the jig to allow images to be captured
from more directions. With regard to software improvements,
the accuracy of the proposed method could be improved by
changing the structure of the CNN model. The CNN model
used in this study was based on a conventional architecture,
VGG16 [36]. Future versions of the CNN model can be
supplemented with modules, such as residual modules and
attention modules, which have been reported to be effective
in improving prediction accuracy [37], [38].

Here, we validated our method with a single cell type,
constant centrifugation conditions, and one type of tube.
Because cells of different species have different sizes, dif-
ferent centrifuging conditions result in cell aggregates of
different sizes, even with a constant cell number [39], [40].
The jig used in this study was developed for a 15-mL tube,
and cannot be used with other tube sizes. Thus, while we
successfully demonstrated the potential performance of the
proposed method, the results are specific to the conditions
tested here. For our method to be used with other cell species,
datasets must be collected for each cell species, and the CNN
model must be trained by these datasets on the server to
prepare a tailor-made trained model. These updates would
make the present method more robust against conditions such
as different cell species and various imaging conditions.

While several cutting-edge cell counting technologies have
been proposed, there remains a need for techniques that do not
require manual sampling and that can return results quickly
for daily cell culture processes. In this study, we demonstrated
the value of our novel cell counting method. We believe that
our method has tremendous potential for easy cell number
measurement in routine applications. To increase the ubig-
uity of the developed approach using macro-scale images,
the CNN model can be incorporated into an automatic cell
culture process rather than implementing a web application.
The smartphone camera and jig could be replaced with higher
quality equipment to improve and stabilize the imaging con-
ditions, and thus facilitate the use of a CNN model with an
automatic cell culture system.

V. CONCLUSION

In this paper, we introduced a novel cell counting method
for estimating the cell number from images of a tube in
which cells have been aggregated by centrifugation. The pro-
posed method exhibited superior accuracy, stability, and con-
venience compared with the conventional and widely-used
hemocytometer-based cell counting method. Our method is
expected to be broadly applicable in bioengineering studies,
and its implementation is expected to significantly reduce the
burden of cell culture processes.
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