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ABSTRACT In this article, a robust quadratic-boundedness-based model predictive control (MPC) scheme,
for a discrete-time nonlinear Markov jump system (MJS), is extended to the case with persistent bounded
disturbance and nonhomogeneous transition probability. By applying the S-procedure, the constraint condi-
tions, the persistent bounded disturbance and the sufficient stability conditions are all derived in term of a
few linear matrix inequalities (LMIs), thus the original min-max optimization problem is transformed into
a convex optimization problem in LMI paradigm. At each sampling time, the control moves satisfying the
control constraint are obtained online and implemented in the nonlinear MJS. Quadratically boundedness
and min-maxMPC are combined to achieve the closed-loop stochastic stability of the controller with respect
to the persistent bounded disturbance. A numerical example is presented to demonstrate the effectiveness of
the proposed results.

INDEX TERMS Model predictive control, nonlinear Markov jump system, quadratic boundedness, persis-
tent disturbance, stochastic stability, linear matrix inequality.

I. INTRODUCTION
In some research areas, such as biochemical system, eco-
nomic system and energy system, the structures and param-
eters of engineering systems would vary abruptly due to
sensor or actuator failures, disturbance inputs, sudden envi-
ronmental changes, economic scenarios, or temporary loss
of communication between subsystems [1]. Markov jump
systems (MJSs), a well-known class of stochastic switching
systems, were found to represent these random variations
much more suitable for over two decades of research. In gen-
eral MJSs, containing various influencing factors of stability,
such as nonlinearity, uncertainty, time-varying, time-delay,
disturbances and strong constraints, are a set of dynamic with
the switching among the modes controlled by aMarkov chain
[2], [3]. The control problems of MJSs have attracted much
attention since 1960s. Many interesting results for MJSs
can be found in the literature, such as sliding mode control
[4]–[6], neural network control [7], fuzzy control [8], [9],
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state estimation [10]–[13],H2/H∞ optimal control [14]–[16]
and model predictive control [17]–[24], etc.

The adaptive sliding mode controllers based on the
sliding surface and the switched Lyapunov function were
investigated to guarantee the stochastic stability of MJSs
with respected to time-varying actuator faults, partly
unknown transition probabilities, unknown matched nonlin-
earity or unknown external disturbances [4]–[6]. With mul-
tilayer neural network and delay-independent conditions,
a mode-depended finite-time controller was designed tomake
the MJSs stochastic stabilizable with both Markovian jump-
ing parameters and mixed time delays [7]. Extended the con-
clusions presented by [8], a fuzzy controller was designed for
nonlinearMJSswith general unknown transition probabilities
based on the Takagi-Sugeno fuzzy models in [9]. When states
of MJSs are unmeasured, the state estimation scheme is a
good choice. By employing the high-gain scaling technique,
common Lyapunov function method and backstepping tech-
nique, a novel reduced-order dynamic gain observer and an
output-feedback risk-sensitive control scheme was designed
in [10], which can eliminate the stringent assumption in [11].
By using full information estimation and moving horizon
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estimation, the fixed-horizon sliding algorithm based on the
Bayesian networks theorem can take more account of both
the constraint conditions and the nonlinearity than other state
estimation algorithms [12], [13]. In [14], a state-feedback
control scheme was analyzed for stabilization, H2 and H∞
performance under a hidden-observation which recovered
many relevant cases preciously studied in the literature of
MJSs, such as clustered observations, detector-based obser-
vations and periodic observation of the mode signal. Because
of the excellent capability to balance system performance and
robustness, mixed H2/H∞ optimal control was successfully
applied in MJSs with time-delay [15], input constraints and
disturbances [16].

Model predictive control (MPC) is a powerful optimization
control strategy for nonlinear constraint system because it
is feasible to handle hard constraints on the operated and
controlled variables in a systematic manner during the design
of controller by solving linear matrix equality (LMI) [16],
[25]–[27]. In the process of rolling optimization, contain-
ing the nonlinearity, strong constraints and disturbances,
the objective function can be solved online to obtain the
control moves or state feedback gain matrices, which would
steer the states into an ellipsoid invariant set or a polyhedral
invariant set. In recent years, MPC was applied widely in
linear MJSs, as presented in [17]–[19]. The stability and
feasibility of a tree-based MPC optimization was guaranteed
as well as the full-scenario linear MJSs in [20]. Based on the
periodic invariant set, a feedback predictive control method
can reduce more conservativeness than that of using a mode-
dependent feedback control law [21]. In [22], N suboptimal
controllers were designed offline and stored in a look-up
table. By looking up the table online, the control law can drive
the state of MJSs to a neighbor area including the origin.

Although much achievement of MPC had been made for
linear MJSs, most real systems are essentially nonlinear.
There is an increased interest in the study of nonlinear model
predictive control (NMPC) based on the nonlinear predic-
tive models. Thus the optimization problems of NMPC are
nonlinear and nonconvex, which are difficult to solve even
for cases involving only few variables [23]. If the nonlinear
items can be represented by neural network model [28], T-S
fuzzy model [29]–[31] or polyhedral model [23], [32], [33],
the linear analytical expressions of original systems can be
obtained and the relatively mature results on stability and
feasibility of linear MPC can be applied in nonlinear MJSs.
Considering the nonlinear MJS with nonhomogeneous pro-
cess, the constrained MPC design was proposed and avoids
solving nonlinear optimization problem through applying a
differential-inclusion-based design [23]. Lots of practical
systems are often subjected to disturbances, especially
bounded persistent disturbances, which will deteriorate the
control performance and stability of the systems drasti-
cally. For state-delayed MJSs with exponential decay distur-
bance, slidingmode controllers can guarantee the closed-loop
stochastic stability [5], [6]. For linear MJSs subjected to
the linear combinational constraints of states and input

controls, constrainedMPC synthesis based on coupled invari-
ant sets can guaranteed the convergence of the closed loop
responses [19], [24]. Considered input-to-state stable prob-
lems and Lyapunov-like sufficient conditions, MPC scheme
was a powerful tool for nonlinear systems subjected to
hard constraints and disturbances [28], [29], [32], [33].
Using quadratic boundedness, the receding-horizon esti-
mators were designed for linear systems with bounded
disturbances [34], [35].

In this article, we aim to investigate a robust MPC
design problem for nonlinear constrained MJSs with per-
sistent bounded disturbance via quadratic boundedness
approach. The main contributions are listed as follows: first,
motivated by the approach in [33], the bounded persistent
disturbance can be involved in a finite horizon optimal prob-
lem by applying the S-procedure. The LMI-based MPC con-
troller online optimizes a control move for the nonlinear
MJSs, which can restrict the states into a robust invariant set.
Second, inspired by [34] and [35] the stable constraint con-
dition is established to guarantee the quadratic bounded-
ness and the stochastic stability. A key technique for this
MPC scheme is an appropriate formulation of the disturbance
which accounts for recursive feasibility of the optimization
problem.

This article is organized as follows. In Section 2,
the problem setup and some preliminary results are pre-
sented. Section 3 provides the main results including mode-
dependent MPC design and the stochastic stability analysis.
Finally, an illustrative numerical example and some conclu-
sions are given in Sections 4 and 5, respectively.
Notations: In the sequel, for a positive-definite matrix

P > 0 and a vector x, ‖x‖2P = xTPx. E{·} denotes the mathe-
matical statistical expectation of a stochastic process or vec-
tor. The expression λmax (P) and λmin (P) denote the maximal
and the minimal eigenvalue of P separately. Prob{·} is the
probability measure of an event.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS
Consider a constrained discrete-time nonlinear MJS with
bounded persistent disturbance given below:

xk+1 = F(rk , xk , uk , ωk ), k ≥ 0 (1)

where xk ∈ Rnx , uk ∈ Rnu and ωk ∈ Rnω are the state vector,
control input vector and disturbance vector respectively. The
persistent disturbance is subjected to

ωk ∈ �Pω =

{
ω
∣∣‖ω‖2Pω ≤ 1

}
, Pω > 0 (2)

The mode rk is the discrete-time Markov stochastic process
taking values from a finite state set S0 = {1, 2, · · · ,M}. The
states and the input control of the system (1) are subjected to
the following box constrains:

−x ≤ xk,i ≤ x,−u ≤ uk,j ≤ u (3)

where i = 1, 2, · · · , nx , j = 1, 2, · · · , nu, x and u are given
constant vectors.
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Assuming that the nonlinear function F(·) is continuous
differentiable at the origin and the equilibrium of the system
(1) is F (rk , 0, 0, 0) = 0. In the neighborhood of the equilib-
rium point of the system (1), a polytopic description system
including original system can be constructed by use of the
Taylor series extension and the extreme value of partial dif-
ferentiation [32] or the differential inclusion [23]. L vertices
are assumed to vary in the set

�(rk ) = Co{Al(rk ),Bl(rk ),Cl(rk )},

l ∈ S� = {1, 2, · · · ,L} (4)

Moreover, there exist parameters αl(k) ≥ 0 such that
L∑
l=1
αl(k) = 1 and

�(rk ) = [A(rk ),B(rk ),C(rk )]

=

L∑
l=1

αl(k) [Al(rk ),Bl(rk ),Cl(rk )]

=

L∑
l=1

�l(rk ) (5)

5(k) = {πij(k)}, i, j ∈ S0 denotes the time varying tran-
sition matrix of the nonhomogeneous MJS, where πij(k) =
Prob{rk+1 = j

∣∣rk = i} ≥ 0 is the transition probability from

mode i at time k to mode j at time k + 1 and
M∑
j=1
πij(k) = 1.

If 5(k) is a constant matrix, the system (1) reduces to a
homogeneousMJS. Assuming that the time varying transition
matrix5(k) hasH vertices,5h(k) denotes the vertex h of the
transition probability matrix 5(k). Hence, the time varying
transition matrix of MJS (1) is constructed as

5(k) =
H∑
h=1

βh(k)5h(k) (6)

where βh(k) ≥ 0,
H∑
h=1

βh(k) = 1, h ∈ S5 = {1, 2, · · · ,H}.

The polytopic description of the system (1) is described by

xk+1 = Al(rk )xk + Bl(rk )uk + Cl(rk )ωk ,

l ∈ S�, rk ∈ S0 (7)

A mode-dependent state feedback control input is defined as

uk = Fk (rk )xk , rk ∈ S0 (8)

where Fk (rk ) is the state feedback gain matrix for mode rk at
time k .

Let 8l(rk ) = Al(rk ) + Bl(rk )Fk (rk ), then the closed-loop
MJS can be described by

xk+1 = 8l(rk )xk + Cl(rk )ωk , l ∈ S�, rk ∈ S0 (9)

We aim to design a MPC controller to stabilise the system
(1) with the persistent disturbance (2) in the quadratically

boundedness andmean square sense, while guaranteeing con-
straints (3) and optimising the state responses of the closed-
loop system (9). Definitions and lemmas of various stochastic
stability concepts for MJSs are presented next.
Definition 1 [23]: For an initial state x0 and any initial

mode r0, the discrete-timeMJS (9) is said to be stochastically

(mean square) stable if E
{
∞∑
k=0

xTk xk
∣∣x0, r0} <∞.

Definition 2: For any disturbance ωk ∈ �Pω (k ≥ 0),
if there exist γ (k) ≥ 0 and a set of symmetric positive definite
matrices P̂k+1 and Pk (rk ) satisfied the stable constraint

xTk Pk (rk )xk ≥ γ (k)⇒

xTk+1P̂k+1xk+1 ≤ xTk Pk (rk )xk (10)

the closed-loop MJS (9) is quadratically bounded with
stochastical Lyapunov matrix Pk (rk ), where Pk (rk ) is the
stochastical Lyapunov matrix for mode rk at time k , P̂k+1 is
the stochastical Lyapunov matrix for mode rk+1 at time k+1,

P̂k+1=
M∑

rk+1=1

H∑
h=1

βh(k)πhrk rk+1 (k)Pk+1(rk+1),
H∑
h=1

βh(k) = 1,

βh(k) ≥ 0.
Alessandri et al. in [34] proposed quadratic boundedness to

deal with stability and design of receding-horizon estimators
for linear system. Based on quadratic boundedness, Ding
and Pan in [35] developed an output feedback robust MPC
design for linear polytopic uncertain system with bounded
disturbance. Now,we extend this result to the nonlinearMJSs.
Lemma 1 [33]: For any real number ε > 0,the inequality

(11) holds.

MT
1 NM2 +MT

2 NM1≤ εMT
1 NM1 + ε

−1MT
2 NM2 (11)

whereM1 andM2 are real matrices and N is a positive matrix
of compatible dimensions.
Lemma 2: Suppose that there exists a symmetric positive

definite matrix Pk (rk ) such that

V
l
k+1 = 8

T
l (rk )P̂k+18l(rk )− Pk (rk ) < 0,

rk , rk+1 ∈ S0, l ∈ S�, h ∈ S5 (12)

then the closed-loop MJS (9) with ω ≡ 0 is stochastically
stable.

Proof: Consider a potential Lyapunov function for the
closed-loop MJS (9) with ω ≡ 0 and given below

V (xk , rk ) = xTk Pk (rk )xk (13)

Define

1V (xk , rk , rk+1)

= V (xk+1, rk+1)− V (xk , rk )

= xTk
[
8T
l (rk )(

M∑
rk+1=1

H∑
h=1

βh(k)πhrk rk+1 (k)

Pk+1(rk+1))8l(rk )− Pk (rk )
]
xk

= xTk V
l
k+1xk (14)
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From inequality (12), it yields1V (xk , rk , rk+1) < 0. Let ρ =
min

l∈S�,rk∈S0
λmin(−V

l
k+1), then 1V (xk , rk , rk+1) ≤ −ρx

T
k xk

holds. Obviously,

K∑
k=0

1V (xk , rk , rk+1)

= V (xk+1, rk+1)− V (x0, r0)

=

K∑
k=0

xTk V k+1xk ≤ −ρ
K∑
k=0

xTk xk (15)

Hence
K∑
k=0

xTk xk ≤
1
ρ

[
V (x0, r0)− V (xk+1, rk+1)

]
≤

1
ρ
V (x0, r0) (16)

Thus, lim
K→∞

E
{ K∑
k=0

xTk xk
}
≤

1
ρ
V (x0, r0) ≤ ∞ holds. From

Definition 1, the closed-loop MJS (9) admits stochastically
stable.

III. ONLINE MODE-DEPENDENT MPC DESIGN
In this section, a robust online MPC scheme will be con-
structed to minimize the performance function J (k). Let uk
be calculated online as uk+0|k , and the future optimal control
input be uk+n|k for n = 1, 2, · · · ,N , where N is the length of
predictive horizon.

min
uk+n|k

max
ωk∈�Pω

J (k) = J10 (k)+ J
∞

1 (k)

s.t.(2)− (3), (9) (17)

where J10 (k) = ‖xk|k‖
2
Q+‖uk|k‖

2
R, xk|k = xk is the initial state

at time k , J∞1 (k) =
∞∑
n=1

(
‖xk+n|k‖2Q +‖uk+n|k‖

2
R

)
. Q > 0 and

R > 0 are the weighted matrices of compatible dimensions.
Let us define the Lyapunov function

V (xk+n|k , rk+n) = xTk+n|kPk+n(rk+n)xk+n|k (18)

for n = 1, 2, · · · ,N , where Pk+n(rk+n) ∈ Rnx is the symmet-
ric positive definite matrices for mode rk+n at time k + n.
Suppose that MJS (9) satisfies the stable constraint

V (xk+n+1|k , rk+n+1)− V (xk+n|k , rk+n)

≤ −
(
‖xk+n|k‖2Q + ‖uk+n|k‖

2
R
)

(19)

Summing the inequality (19) from n = 1 to ∞, we can get
the upper bound of J∞1 (k)

J∞1 (k) ≤ V (xk+1|k , rk+1) (20)

From Lemma 1, we have

V (xk+1|k , rk+1)

= xTk+1|k

M∑
rk+1=1

πhrk rk+1 (k)Pk+1(rk+1)xk+1|k

= xTk+1|kθ
T
h (rk )Pk+1θh(rk )xk+1|k

= [Al(rk )xk + Bl(rk )uk + Cl(rk )ωk ]T θTh (rk )

×Pk+1θh(rk )[Al(rk )xk + Bl(rk )uk + Cl(rk )ωk ]

= [Al(rk )xk + Bl(rk )uk ]T θTh (rk )Pk+1θh(rk )

×[Al(rk )xk + Bl(rk )uk ]+ [Cl(rk )ωk ]T θTh (rk )

×Pk+1θh(rk )[Cl(rk )ωk ]+ [Al(rk )xk + Bl(rk )uk ]T

×θTh (rk )Pk+1θh(rk )[Cl(rk )ωk ]+ [Cl(rk )ωk ]T

×θTh (rk )Pk+1θh(rk )[Al(rk )xk + Bl(rk )uk ]

≤ (1+ ε)[Al(rk )xk + Bl(rk )uk ]T θTh (rk )Pk+1
×θh(rk )[Al(rk )xk + Bl(rk )uk ]+ (1+ ε−1)

×[Cl(rk )ωk ]T θTh (rk )Pk+1θh(rk )[Cl(rk )ωk ]

≤ ε1[Al(rk )xk + Bl(rk )uk ]T θTh (rk )Pk+1
×θh(rk )[Al(rk )xk + Bl(rk )uk ]+ ε2µk+1 (21)

where µk+1 = λmax(Pk+1)/λmin(Pω), ε1 = 1 + ε, ε2 =
(1 + ε−1)λmax(CT

l (rk )θ
T
h (rk )θh(rk )Cl(rk )), ε is any positive

constant.

θh(rk ) =
[√
πhrk1

(k)I
√
πhrk2

(k)I · · ·
√
πhrkM (k)I

]T
(22)

Pk+1 =


Pk+1(1) 0 0 0

0 Pk+1(2) · · · 0
...

...
. . . 0

0 0 · · · Pk+1(M )

 (23)

In order to guarantee stochastic stability of MJS (9),
we impose, at each sample instant k

V (xk+n|k , rk+n) ≥ γ (k)

⇒ V (xk+n+1|k , rk+n+1)− V (xk+n|k , rk+n)

+
(
‖xk+n|k‖2Q + ‖uk+n|k‖

2
R
)
≤ 0 (24)

In (24), γ (k) is an upper bound as follows:

‖xk‖2Q + ‖uk‖
2
R + ε1[Al(rk )xk + Bl(rk )uk ]

T

×θTh (rk )Pk+1θh(rk )[Al(rk )xk + Bl(rk )uk ]

+ε2µk+1 ≤ γ (k) (25)

Theorem 1: For MJS (9) subjected to constraints (2), (3),
(24) and (25), take Qk+n(rk+n) = P−1k+n(rk+n), Yk+n(rk+n) =
Fk+n(rk+n)Qk+n(rk+n), Pω = γ (k)Pω and Qk+n+1 =
P
−1
k+n+1. Then (17) can be solved by the following optimiza-

tion problem

min
uk ,γ (k),Qk+1,µk+1,Qk+n(rk+n),Yk+n(rk+n),Qk+n+1,Pω

γ (k)

s.t.(2)− (3), (27)− (28) (26)
γ (k)− xTk Qxk ∗ ∗ ∗

uk R−1 ∗ ∗

θh(rk )[Al(rk )xk + Bl(rk )uk ] 0 ε−11 Qk+1 ∗

I 0 0 ε−12 µk+1I


≥ 0 (27)
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
(1− η)Qk+n(rk+n)

0
θh(rk+n)[Al(rk+n)Qk+n(rk+n)+ Bl(rk+n)Yk+n(rk+n)]

Qk+n(rk+n)
Yk+n(rk+n)

∗ ∗ ∗ ∗

ηPω ∗ ∗ ∗

θh(rr+n)Cl(rk+n) Qk+n+1 ∗ ∗

0 0 Q−1 ∗

0 0 0 R−1

 ≥ 0 (28)

where rk , rk+1 ∈ S0 , l ∈ S�, h ∈ S5, n = 1, 2, · · · ,N ,
µk+1 = µ

−1
k+1, η ∈ (0, 1) is a suitable scalar.

Proof:Applying the Schur complements to inequality (25),
we have

γ (k)− xTk Qxk −

 uk
θh(rk )[Al(rk )xk + Bl(rk )uk ]

I

T
R ∗ ∗

0 ε1Pk+1 ∗

0 0 ε2µk+1I

 uk
θh(rk )[Al(rk )xk + Bl(rk )uk ]

I


≥ 0 (29)

Applying the Schur complements again, the above inequality
is equivalent to

γ (k)− xTk Qxk ∗ ∗ ∗

uk R−1 ∗ ∗

θh(rk )[Al(rk )xk + Bl(rk )uk ] 0 ε−11 P
−1
k+1 ∗

I 0 0 ε−12 µ−1k+1I


≥ 0 (30)

let µk+1 = µ−1k+1, Qk+1 = P
−1
k+1 and we can obtain

inequality (27).
Since the disturbance ω satisfies the constraint (2),

the inequality V (xk+n|k , rk+n) ≥ γ (k) is equiva-
lent to V (xk+n|k , rk+n) ≥ γ (k)ωTk+n|kPωωk+n|k for all
ωTk+n|kPωωk+n|k ≤ 1. By applying the S- procedure, it is
shown that (24) is equivalent to

V (xk+n+1|k , rk+n+1)− (1− η)V (xk+n|k , rk+n)

+
(
‖xk+n|k‖2Q + ‖uk+n|k‖

2
R
)
− ηγ (k) ≤ 0 (31)

and is also equivalent to

V (xk+n+1|k , rk+n+1)− (1− η)V (xk+n|k , rk+n)

+(‖xk+n|k‖2Q + ‖uk+n|k‖
2
R)− ηγ (k)ω

T
k+n|kPωωk+n|k ≤ 0

(32)

Apply the quadratic function (18) to rewrite (32) as

[8l(rk+n)xk+n|k + Cl(rk+n)ωk+n|k ]T θTh (rk+n)

Pk+n+1θh(rk+n)[8l(rk+n)xk+n|k + Cl(rk+n)ωk+n|k ]

−(1− η)xTk+n|kPk+n(rk+n)xk+n|k + x
T
k+n|kQxk+n|k

+xTk+n|kF
T
k+n(rk+n)RFk+n(rk+n)xk+n|k

−ηγ (k)ωTk+n|kPωωk+n|k

=

[
xk+n|k
ωk+n|k

]T
{
[
8l(rk+n) Cl(rk+n)

]T
θTh (rk+n)

Pk+n+1θh(rk+n)
[
8l(rk+n) Cl(rk+n)

]
+2

}[
xk+n|k
ωk+n|k

]
≤ 0 (33)

where 8l(rk+n) = Al(rk+n) + Bl(rk+n)Fk+n(rk+n), 2 =
diag{21,22} = diag{−(1 − η)Pk+n(rk+n) + Q +
FTk+n(rk+n)RFk+n(rk+n),−ηγ (k)Pω}. Thus (33) holds if and
only if[
8l(rk+n) Cl(rk+n)

]T
θTh (rk+n)Pk+n+1

θh(rk+n)
[
8l(rk+n) Cl(rk+n)

]
+2 ≤ 0 (34)

By using the Schur complements, inequality (34) can be
rewritten as 21 ∗ ∗

0 − ηγ (k)Pω ∗

θh(rk+n)8l(rk+n) θh(rk+n)Cl(rk+n) − P
−1
k+n+1

 ≤ 0

(35)

which is equivalent toQk+n(rk+n) ∗ ∗0 I ∗
0 0 I

T
 21 ∗ ∗

0 −ηγ (k)Pω ∗

θh(rk+n)8l(rk+n) θh(rk+n)Cl(rk+n) −P
−1
k+n+1


Qk+n(rk+n) ∗ ∗0 I ∗

0 0 I

 ≤ 0 (36)

and is also equivalent to −(1− η)Qk+n(rk+n)
0

θh(rk+n)[Al(rk+n)Qk+n(rk+n)+ Bl(rk+n)Yk+n(rk+n)]

∗ ∗

−ηPω ∗

θh(rr+n)Cl(rk+n) −Qk+n+1

+ [Qk+n(rk+n) 0 0
Yk+n(rk+n) 0 0

]T
[
Q ∗
0 R

] [
Qk+n(rk+n) 0 0
Yk+n(rk+n) 0 0

]
≤ 0 (37)

By using the Schur complements again, we can get
inequality (28).
Theorem 2: If the optimization problem (26) has a solution

at time k , MJS (9) is quadratically bounded with stochastical
Lyapunov matrix Pk (rk ). The set � = {xk |xTk Pk (rk )xk ≤
γ (k)} is a robust invariant ellipsoid of MJS (9) and (26) is
feasible at time k + 1.
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Proof: Since the optimization problem (26) is feasible,
(27) and (28) are satisfied and (28) guarantees (24). Since
‖xk+n|k‖2Q + ‖uk+n|k‖

2
R ≥ 0, (24) is equivalent to

V (xk+n|k , rk+n) ≥ γ (k)

⇒ V (xk+n+1|k , rk+n+1)− V (xk+n|k , rk+n) ≤ 0 (38)

Multiplying (38) by the coefficients βh(k + n) to sum from
h = 1 to H , we see that (38) implies (10), where βh(k +

n) ≥ 0,
H∑
h=1

βh(k + n) = 1. From Definition 2, MJS (9)

is quadratically bounded with stochastical Lyapunov matrix
Pk+n(rk+n). Moreover, the inequality (27) guarantees (25).
From (21) and (25), we can obtain

‖xk‖2Q + ‖uk‖
2
R + V (xk+1|k , rk+1)

≤ ‖xk‖2Q + ‖uk‖
2
R + ε1[Al(rk )xk + Bl(rk )uk ]

T

θTh (rk )Pk+1θh(rk )[Al(rk )xk + Bl(rk )uk ]

+ε2µk+1 ≤ γ (k) (39)

Multiplying (39) by the coefficient (1− η), we obtain

(1− η)
(
‖xk|k‖2Q + ‖uk|k‖

2
R
)

+(1− η)V (xk+1|k , rk+1) ≤ (1− η)γ (k) (40)

For n = 1 adding (31) to (40), we obtain

V (xk+2|k , rk+2)+ (1− η)
(
‖xk|k‖2Q + ‖uk|k‖

2
R
)

+
(
‖xk+1|k‖2Q + ‖uk+1|k‖

2
R
)
≤ γ (k) (41)

For n = 2 adding (31) to (41) multiplied by the coefficient
(1 − η) and computing recursively for n = 3, 4, · · · , we can
obtain

V (xk+n+1|k , rk+n+1)+
n∑
i=0

(1− η)n−i
(
‖xk+i|k‖2Q

+‖uk+i|k‖2R
)
≤ γ (k) (42)

Since η ∈ (0, 1) and
(
‖xk+n|k‖2Q + ‖uk+n|k‖

2
R

)
≥ 0, (42) is

equivalent to

V (xk+n+1|k , rk+n+1) ≤ γ (k) (43)

From (43), if the optimization problem (26) has a set of solu-
tionmatrices u∗k , γ

∗(k),Q
∗

k+1,µ
∗

k+1,Q
∗
k+n(rk+n), Y

∗
k+n(rk+n),

Q
∗

k+n+1, P
∗

ω at time k + n, the closed-loop system state will
converge to the set � at time k + n+ 1. Hence, the set � is a
mode-dependent robust invariant ellipsoid of MJS (9).
Lemma 3: Suppose that xTk+n|kPk+n(rk+n)xk+n|k ≤ γ (k) is

satisfied. Then, the state constraint and the input constraint
(3) can be guaranteed if the following inequalities hold[

u2I ∗
uk I

]
≥ 0 (44)[

ξ (k)u2I ∗

Y Tk+n(rk+n) Qk+n(rk+n)

]
≥ 0 (45)

[
ξ (k)x2I ∗

QTk+n(rk+n) Qk+n(rk+n)

]
≥ 0 (46)[

ξ (k) ∗
1 γ (k)

]
≥ 0 (47)

where ξ (k) ≥ 0.
Proof: First, the constraint on the current control move uk

is driven directly as (44). For the remaining control inputs
uk+n|k = Fk+n(rk+n)xk+n|k , n = 1, 2, · · · ,N , considering
the constraint (3) and ξ (k)γ (k) ≤ 1 we can obtain

|uk+n|k |2

= |Yk+n(rk+n)Q
−1
k+n(rk+n)xk+n|k |

2

= |Yk+n(rk+n)Q
−1/2
k+n (rk+n)Q

−1/2
k+n (rk+n)xk+n|k |2

≤ |Yk+n(rk+n)Q
−1/2
k+n (rk+n)|2γ (k)

≤ Yk+n(rk+n)Q
−1
k+n(rk+n)Y

T
k+n(rk+n)ξ

−1(k)
≤ u2 (48)

|xk+n|k |2

= |Q1/2
k+n(rk+n)Q

−1/2
k+n (rk+n)xk+n|k |2

≤ |Q1/2
k+n(rk+n)|

2γ (k) ≤ Qk+n(rk+n)ξ−1(k) ≤ x2 (49)

Applying Schur complements, from ξ (k) ≤ γ−1(k) we can
get (45), (46) and (47).

Then (26) can be solved by the following optimization
problem

min
uk ,γ (k),Qk+1,µk+1,Qk+n(rk+n),Yk+n(rk+n),Qk+n+1,Pω,ξ (k)

γ (k)

s.t.(2), (27)− (28), (44)− (47) (50)

Algorithm 1:
Step 1. Select Q > 0, R > 0, ε > 0, η > 0, N > 0 and

r0 ∈ S0;
Step 2. At time step k = 0, 1, . . ., measure the state x(k);
Step 3. Solve problem (50) online;
Step 4. Apply the control input u∗k to system (1);
Step 5. Set k = k + 1 and go to Step 2.
Theorem3: The optimal solution of the optimization prob-

lem (50) can guarantee MJS (9) (ω ≡ 0) is stochastically
stable.

Proof: From Theorem 2, MJS (9) is quadratically
bounded with stochastical Lyapunov matrix Pk (rk ), which
means that xTk Pk (rk )xk ≥ γ (k) implies

V (xk+1|k , rk+1)− V (xk , rk ) ≤ 0 (51)

Substituting (9) with ωk ≡ 0 into (51), we can obtain

8T
l (rk )

M∑
rk+1=1

πhrk rk+1 (k)Pk+1(rk+1)8l(rk )

−Pk (rk ) ≤ 0, l ∈ S�, rk ∈ S0 (52)

Multiplying (52) by the coefficients βh(k) to sum from
h = 1 to H , we can obtain

8T
l (rk )P̂k+18l(rk )− Pk (rk ) ≤ 0,

l ∈ S�, rk ∈ S0, h ∈ S5 (53)

where βh(k) ≥ 0,
H∑
h=1

βh(k) = 1.
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From Lemma 2, MJS (9) with ωk ≡ 0 is stochastically
stable. If xTk Pk (rk )xk ≤ γ (k), the set � = {xk |x

T
k Pk (rk )xk ≤

γ (k)} is a robust invariant set of MJS (9). Thus, xk → 0
as k →∞.

IV. ILLUSTRATIVE NUMERICAL EXAMPLE
Consider the discrete-time nonlinear MJS with two modes
(M = 2) [23],

Mode 1:{
xk+1,1 = 0.2x3k,1 + 0.2xk,2 + 0.15uk + ωk,1
xk+1,2 = 0.5xk,1 + 0.3x2k,2 + 0.2uk + ωk,2

(54)

Mode 2:
xk+1,1 = 1.05xk,1exp(−0.05xk,2)− 0.3xk,2
+0.26uk + ωk,1
xk+1,2 = 0.5x4k,1 + 0.5xk,2 + 0.12uk + ωk,2

(55)

The control input constraint |uk | ≤ 4 and the state con-
straints |xk,i| ≤ 2, i = 1, 2 are imposed for all k . Assuming
the equilibrium of the system is the origin, the nonlinearMJSs
can be described by polytopic description as follows [23]:

A1(1) =
[
0 0.2
0.5 −0.6

]
, A2(1) =

[
0.8 0.2
0.5 0.6

]
,

A1(2) =
[
0.9501 −0.3
−4 0.5

]
, A2(2) =

[
1.1604 −0.3

4 0.5

]
.

B1(1) = B2(1) =
[
0.15
0.2

]
, B1(2) = B2(2) =

[
0.26
0.12

]
,

C1(1) = C2(1) = C1(2) = C2(2) =
[
1 0
0 1

]
.

The nonhomogeneous transition probability matrices are

given as follows: 51 =

[
0.9 0.1
0.55 0.45

]
, 52 =

[
0.81 0.19
0.65 0.35

]
.

FIGURE 1. Comparison of terminal regions.

In the simulation the parameters are Q = diag{1, 1},
R = 1, N = 5, r0 = 1, ε = 0.1, η = 0.1. Solving the optimal
problem (50) online, the simulation results are depicted in
the following figures. Compared with the algorithm in [23],

FIGURE 2. Comparison of trajectories.

FIGURE 3. Trajectories of the closed-loop system for 100 simulations.

FIGURE 4. Terminal regions for initial states [2.1,−2.1] and [−2.2,1.7].

the proposed Algorithm 1 in this article gets a larger terminal
region as shown in Figure 1. For an initial states x0 =
[1.8, 1.9] and ωk = 0, the comparison of the state responses
and control inputs is shown in Figure 2. Algorithm 1 steers
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FIGURE 5. Trajectories of the closed-loop system for initial states
[2.1,−2.1] and [−2.2,1.7].

the closed-loop system faster to the origin. For an initial state
x0 = [−1.7,−1.9] and persistent disturbances generating
from the interval [−0.3, 0.3] randomly, the closed-loop state
responses and control inputs of the MJSs for 100 random
realisations of the Markov chain are shown in Figure 3.
It is shown by these simulations that the proposed algorithm
is recursively feasible and guarantees the hard constraints
on the states and control input. Staring from initial states
x0 = [2.1,−2.1] and x0 = [−2.2, 1.7], trajectories of the
closed-loop system with ωk ∈ [−0.1, 0.1] are shown in
Figure 4 and 5. Although the initial states don’t satisfy the
state constraints, the closed-loop states can converge into the
terminal regions, so the proposedMPC controller has a strong
robustness.

V. CONCLUSION
In this article, we have proposed a new robust MPC design
method for nonlinear MJSs with persistent bounded distur-
bance. Based on double polytopic descriptions of the nonlin-
ear MJSs and transition probability matrices, the persistent
bounded disturbances are involved in the stability condi-
tion via quadratic boundedness and all constraint conditions
are converted into a convex optimization problem described
by some LMIs. Solving the optimization problem at each
sampling instant, the control move can guarantee the states
of MJSs converge into the terminal region. The simulation
results have demonstrated the effectiveness and performance
of the proposed method. It appears that the methodology is
extend to low online computation burden and low conserva-
tion of the ellipsoidal terminal region.
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