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ABSTRACT The explosive growth of IP networks, the advent of cloud computing, and the rapid progress
in wireless communications witnessed today reflect significant progress towards meeting the explosive data
traffic demands. Consequently, communications service providers should deploy efficient and intelligent
network solutions to accommodate the huge traffic demands and to ease the capacity pressure on their
network infrastructure. Besides, vendors should develop novel energy-efficient networks to reduce network
utility costs and carbon footprint. Software-defined networking (SDN) provides a suitable solution, however,
complete SDN deployment is currently unachievable in the short-term. An alternative is the hybrid SDN/
open shortest path forwarding (OSPF) network, which allows the deployment of SDN in legacy networks.
Nevertheless, hybrid SDN/OSPF also faces several technical, economic and organizational challenges.
Although many energy-efficiency routing solutions exist in hybrid SDN/OSPF networks, they are generic
and reactive by design. Moreover, these solutions are characterized by manual control plane forwarding
configurations, leading to sub-optimal performance. The recent promising combination of SDN and artificial
intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) in traffic management
and control provides tremendous opportunities. In this paper, we first provide a review of the most recent
optimization approaches for global energy-efficient routing and load balancing. Next, we investigate a
scalable and intelligent integrated architectural framework that leverages deep reinforcement learning (DRL)
techniques to realize predictive and rate adaptive energy-efficient routing with guaranteed quality of service
(QoS), in transitional hybrid SDN/OSPF networks. Based on the need to minimize global network energy
consumption and improve link performance, this paper provides key research insights into the current
progress in hybrid SDN/OSPF, ML and AI in the hope of stimulating more research.

INDEX TERMS Hybrid SDN/OSPF, traffic engineering, energy-aware routing, quality of service, scalable,
machine learning, artificial intelligence, and deep reinforcement learning.

I. INTRODUCTION
A. BACKGROUND
During the last several years, there has been a drastic increase
in data traffic volumes because of the changing manner in
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which information products are created, shared and commu-
nicated by the digital society. Statistically, the prediction from
recent Cisco Visual Networking Index (VNI) [1] reveals that
there will be a threefold rise in IP and Internet traffic by
2022. Besides, the daily use of the Internet is estimated to hit
2.6 Exabytes. This projection indicates a consolidated annual
Internet traffic growth rate of 30%. Therefore, it has become
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a matter of necessity to expand wired and wireless networks
to accommodate the current growth in traffic demand and
the need for efficient and intelligent use of scarce network
resources, to optimize network performance. The explosive
growth of IP networks, the advent of cloud computing, and
the rapid progress in wireless communications witnessed
today reflect significant progress towards meeting the explo-
sive data traffic demands. In the current condition of net-
work evolution, mainly characterized by the rising user traffic
demands and progressive expansion of network deployment,
there are twomajor issues that arise. First, the aforementioned
traffic demand condition has overstretched the capabilities
of core network domain of communication network service
providers such as Mobile Network Operators (MNOs) and
Internet Service Provider (ISPs) to the boundaries. Second,
in the current condition of network expansion, MNOs and
ISPs cannot circumvent redundant network infrastructure.
The unavoidable redundant network infrastructure has led to
unnecessary network operational expenditure, and resource
and cost waste [2]. Precisely, network energy consumption
has rapidly increased. Given the economic and environmen-
tal concerns, the environmental and regulatory authorities
have put demands on communications service providers to
embrace energy-efficient solutions.

Recently, the need for green networking in the information
and communications technology (ICT) sector has become
more important owing to its impacts [3] and the potential
economic benefits [4]. First, various research works have
indicated the massive devastating effect of Green House
Gases (GHG) emissions and their ramifications on climate
change [5]. The ICT sector is reported to produce nearly
20% of the overall human-borne emissions [6]. This trend
is estimated to worsen given the rapid developments wit-
nessed in the ICT sector [7]. The energy consumption from
the ICT sectors is envisaged to grow steadily over over-
time [8]. Second, from an economic perspective, embracing
energy-efficient networking can help communications ser-
vice providers reduce expenditure on their extensive network
infrastructures. Essentially, existing network architectures
are designed to accommodate peak traffic loads and sur-
vivability of service provisioning during degraded network
periods. This leads to low efficiency, since in the long
term, the network infrastructure is under-utilized, under nor-
mal network operations [9]. Besides, existing algorithmic
approaches for network operation management and control
are energy-unaware. Such approaches include network traffic
load balancing [10] and bandwidth minimization [11]. These
approaches disregard network resources such as nodes and
link operational energy utilization condition.

Given the above considerations, the need to employ
energy-efficient algorithmic approaches in the design of
communication networks has become significant. Recently,
the advances in green networking have enabled the use
of improved communication systems, to reduce network
energy expenditures. The technologies are employed at dif-
ferent layers of the networking architecture. Such green

networking technologies include adaptive link rates which
is employed at the data link layer to reduce the link
speed during moments of link underutilization [9], [12], and
interface proxing employed at the application layer [13],
as well as energy-aware application employed at the transport
layers [14].

B. MOTIVATION
Over the years, green networking has steadily improved
because of the various energy-efficient algorithmic
approaches developed. Although these algorithmic
approaches have been used in traditional networks, they are
unsuitable for modern networks due to certain limitations.
Primarily, modern networks are characterized by intense
uncertainties and dynamicity in traffic flow trends, and
the operating circumstances of networking devices such as
routers, network topology and the status of wireless channels.
These diverse characteristics can potentially complicate the
use of existing approaches in the management and control of
modern networks. Therefore, novel algorithmic approaches
should be developed to address the concerns.

Traffic engineering (TE) [15], aims to optimize network
performance, through dynamic measurement and analysis of
real-time network traffic, and is concerned with the design of
optimal flow forwarding and routing policies, to fulfill QoS
requirements for traffic flows with large volumes. mportant
performance metrics considered in TE include throughput,
bandwidth, jitter, packet delay and path failure. TE solutions
are categorised into heuristic algorithms (HA), model-driven
optimization algorithms and model-free optimization. Some
of the HA in common use include OSPF and border gateway
protocol (BGP) [16]. In general, HA are primarily based on
shortest path routing protocols.

Previously, fast HA were proposed to achieve cost-
effective energy-aware routing (EAR) and load balancing
with QoS guarantees, but optimization efforts in a dynamic
scenario can be a challenge. Although HA are simple to
apply, they cannot deliver optimalend-2-end (E2E) TE per-
formance.Basically, using such algorithms can complicate the
trade-off between energy savings and QoS guarantees, hence
degrading network performance.

To overcome the above limitations, dynamic HA been
proposed but such algorithms can only support limited net-
work optimization policies [16]. Most existing conventional
networks employ dynamic HA, but given the lack global
network visibility, they can barely provide high data traffic
and ensure the delivery of reliable services. This leads to poor
network operations management and control. This condition
can potentially compromise dynamic network optimization
efforts. Clearly, existing dynamic HA employ a limited range
of network optimization policies, and this can hinder their
capacity to fully adapt to the ever-changing link patterns.
They lack the capacity to robustly redirect and route requests
in an energy efficient manner, without experiencing network
performance degradation.
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Besides, various model-driven optimization approaches
have been devised for communication networks.
Model-driven approaches are based on network utility max-
imization (NUM) architecture, where the constrained maxi-
mization problem of the utility function is used to formulate
the TE problem [17], [18]. There are several limitations
pertaining the use of model-driven optimization solutions.
Primarily, model-driven solutions are based on the strong
assumptions pertaining to the network architecture. Such
network architectures include per-flow queuing configuration
per-flow queuing configuration for each link, unlimited buffer
size per queue, restricted configuration with respect to traffic
arrivals and the immediate access of the link rates. However,
these assumptions do not hold in real-life networks. Next,
they cannot be mathematically represented as explicit func-
tions of TE control parameters. Such parameters are traffic
flow splitting ratio for the respective output path link. Lastly,
they are not suitable for dynamic time-varying network sce-
narios, with ever-changing traffic demand trends. Because
of the above limitations, these model-based optimization
solutions are not implemented in TE to handle practical
multi-hop communication networks.

To address the aforementioned concerns, two promising
alternatives come to the fore. First, the Software-Defined
Networking (SDN) architecture [19] is envisioned to provide
a suitable solution, given its unique characteristics. Second,
the recent progress in ML and DRL techniques have proved
to surpass human level performance in addressing extensive
online control tasks. The motivation is to jointly leverage the
unique capabilities of the technological advances to deliver
the much desired levels of efficiency in network operations
management and control. Provided next is a discussion of
the above technologies in the scope of current and future
communication networks.

SDN refers to the technique that divides the control
plane from the data planes transmitting components, result-
ing into enhanced programmability and integrated flex-
ibility control benefit in computer-based communication
networks [19]. SDN technology provides various benefits
including enhanced configuration of networks, the ability
to support innovation in addition to better performance.
Besides, decisions such as routing and scheduling of traf-
fic flows which are secluded from the network forwarding
devices, particularly switches are supported, allowing the
required decisions to be improved, reconfigured and opti-
mized through a centralised controller [20]. However, for
communications service providers, complete SDN deploy-
ment is presently unachievable in the immediate term because
of financial, technical and organizational challenges. In this
condition, a favoured option is hybrid SDN/OSPF networking
technique.

Hybrid SDN/OSPF represents a transitional networking
architecture which allow the deployment of SDN in legacy
networks, in an incremental manner, spanning several months
or even years. The architecture is motivated by the manage-
able budgetary restrictions and technical constraints. In the

perspective of MNOs and ISPs, hybrid SDN/OSPF provides
a cost-effective option to deploy in the short-term. It requires
very limited costs in terms of equipment replacement and the
required expertise personnel. Besides, the hybrid technology
requires limited technical expertise to make the minor modi-
fications that are needed.

1) CHALLENGE
Over the years, the embrace of hybrid SDN/OSPF has
steadily gained popularity among communication service
providers, particularly MNOs and ISPs. Although this is a
positive trend, it is not devoid of challenges. Existinghy-
brid SDN-enabled energy-efficient approaches are generic
and reactive given their design nature. Besides, these
approaches are characterized by manual control plane for-
warding configurations. Consequently, such approaches can-
not support the important requirement to optimise a trade-off
between energy-efficiency and link performance [21], [22],
with regard to all the important QoS metrics. This condi-
tion leads to network performance degradation. Essentially,
the use of existing algorithmic approaches leads to sub-
optimal network performance. Precisely, communications
network vendors have a major uphill challenge to develop
novel hybrid SDN/OSPF algorithmic approaches to ensure
dynamic and flexible trade-off between the optimization
of energy-efficient routing and performance with guaran-
teed QoS performance, without degrading network perfor-
mance [23]. Principally, advanced networking architectures
are needed to jointly support dynamic high capacity trans-
mission requirements and green networking. Efforts should
be focused on reducing network-driven operational expendi-
ture (OPEX). The obtainment of such advance solutions can
ensure the much desired end-to-end quality of transmission
(QoT), by ultimately transforming service delivery, which is
mainly characterised by better performance, flexibility and
control.

To resolve the aforementioned challenge, it is essential
for solution providers to devise advanced future-driven fine-
grained network-based algorithmic approaches, that collec-
tively consider the prioritization of all the important metrics
in the operation of hybrid SDN/OSPF. Several years ago,
various attempts have been made to resolve the challenge,
but existing literature reveals that the advances in networking
can quite be slow and inefficient [24]. We believe that in the
current state of network evolution, a popular network design
trend emphasizes a progressive transition from network-
driven models based on QoSmetrics to data-driven strategies.
Precisely, these strategies consider the use of ML and DL
techniques. The recent progress in ML and DL techniques
such as convolutional neural network (CNN) and DRL, have
proved past human level performance in addressing extensive
online control tasks. Statistically, a majority of researchers
believe that a popular solution to current challenges envisions
and emphasizes combined embrace of the novel SDN archi-
tecture and learning-driven network analytics (NA), which
precisely lays additional emphasis on the use of AI-enabled
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techniques in the control and management of networks [25].
Precisely, the recent promising combination of SDN,
AI-assistedML andDL techniques in trafficmanagement and
control provides a better tremendous opportunity.

During the last couple of years, ML has drawn immense
attention from both industry and academia, owing to its supe-
rior performance in the viewpoint of extensive processing of
data, classification of traffic flows, and smart decision mak-
ing. For instance, a few recent seminal works have employed
ML to address the concern of operational management and
control in networks [26], [27].

Also, other studies have focused on the novel popular
paradigm known as knowledge defined networking (KDN),
that employ ML and cognitive approaches to ensure network
operations [28]. This design can provide a substantial benefit
to communications service providers and other actors, in the
domain of networking, given the promising central concept.

Recently, it has become clear that SDN-based technology
will advance to the next and much desired level of system
intelligence, with specific focus on self-aware, self-adaptive,
and reactive characteristic in regard to data analysis and AI in
the future times. This advancement is envisioned to promote
the use of approaches that enable the need tomonitor, analyse,
plan and execute (MAPE) policy actions. Obviously, it is
imperative for emerging networks to address the need for
more dynamic energy-efficient routing and QoS guarantees
to improve network performance. Prioritising all the metrics
is vital to the obtainment of an effective and perfect solution,
which can otherwise lead to significant network performance
degradation [29]. Specifically, the issue of energy-efficient
routing with guaranteed QoS performance is an open research
that deserves attention.

2) EXISTING SURVEYS OF SDN AND HYBRID SDN/OSPF
As summarized in Table 2, several extensive surveys on
pure SDN such as [20], [34], [35] and hybrid SDN/OSPF
networks such as [19], [37] can be found in the literature.
Besides, a number of extensive surveys that focus on ML
and DL in SDN-enabled networks have been published, for
instance [24]–[27], [67]. Although the above surveys have
considered a range of control studies in pure SDN and hybrid
SDN/ OSPF networks, none of them has comprehensively
considered such studies in the scope of ML and DL.

To-date, hybrid SDN/OSPF networking, and ML and
DL problems have been researched independently. Gener-
ally, there are no reports on extensive crossover researches
and algorithmic solutions between these two areas. Exist-
ing crossover researches have focused ML and DL in pure
SDN. To our best knowledge, the subject domain of ML and
DRL assisted hybrid SDN/OSPF networking has not been
extensively surveyed to-date.With the current advances being
witnessed in modern telecommunication networks, existing
IP-based networks such as hybrid SDN/OSPF are envis-
aged to play a major role in the emerging networks such
as 5G. Going forward, such IP-based networks need to be

investigated to improve their potential in current and next
generation communications networks.

C. MAIN CONTRIBUTIONS
Complementary to existing works, this paper addresses the
following objectives. First, we provide a review of the most
recent optimization approaches for global energy-efficient
routing and load balancing. Next, we investigate a scal-
able and intelligent integrated architectural framework that
leverages deep reinforcement learning (DRL) techniques to
realize predictive and rate adaptive energy-efficient routing
with QoS guaranteed performance, in transitional hybrid
SDN/OSPF networks. Currently, there is a rapid rise in the
cost of energy utilization in information and communica-
tion technology (ICT) sector, particularly MNOs and ISPs.
This problem demands for mitigation approaches to respond
to the new environment of hybrid SDN/OSPF. This paper
provides key research insights into the current progress in
hybrid SDN/OSPF, ML and AI in hopes of stimulating more
research. We emphasize the viewpoint that intelligent hybrid
DRL approaches will play an essential part in the realization
of more progressive behavior in SDN-enabled networks.

1) ORGANIZATION OF THE WORK
The rest of the paper is organised as: Section II presents
the background studies on traditional IP networks and
hybrid SDN/OSPF. Section III presents an evaluation of
recent studies in hybrid SDN/OSPF networks. Section IV
presents the fundamentals of ML and DL the fundamentals
of ML and DL algorithms. Section V presents the selected
SDN-enabled ML and DL studies in the perspective of traffic
prediction, routing, routing with QoS guarantees, energy-
efficiency and hybrid or multifaceted cases. Section VI
presents present the research challenges and future research
direction. Section VII present the proposed ML and DL
framework. Lastly, Section VIII provides the conclusion.

2) LIST OF ABBREVIATIONS
The commonly used abbreviations in this work are listed
in Table 1. Observe that in this paper, we use the key words
traditional and legacy interchangeably. Also, DRL is made
up of two deferment algorithms namely Deep Q-Learning
(DQL) and policy gradient [29], and for the rest of the paper,
these two will be interchangeable used to make reference to
DRL algorithm.

3) ROADMAP
Provided in Fig. 1 is a roadmap which points out the main
aspects that are considered. The aspects are divided into two
major parts that include, the reviewed work and the proposed
framework. It attempts to provide a guide to ensure systematic
flow, in order to promote the readability of the content.

II. BACKGROUND
The aforementioned section considered the introduction and
motivation, meant to highlight to the readers the intension of
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TABLE 1. Alphabetically ordered list of abbreviations.

the paper. In this section, we consider background aspects in
networking. Initially, the basics of TE in traditional networks
is given. Subsequently, a brief account of hybrid SDN/OSPF
is considered.

A. TE IN TRADITIONAL NETWORKS
This subsection provides a brief description of TE in
traditional networks, that include IP-based network and
MPLS-based networks.

Due to the explosive expansion of the networks and the
rising volumes of traffic demands, the distribution of net-
work traffic has increasingly become uneven. When traffic
congestion occurs in a local network, it is likely that the rest
of the network have light load. Today, the rapid advance of
network hardware, high-speed switching and routing com-
ponents and high capacity network links, communications
service providers can upscale hardware resources in their
networks, a condition which minimizes network congestion
to some degree. But, the overprovisioning approach to band-
width obtainment is achieves at the cost of network utilization
and does not address the issue of network congestion in
hot-spot communications channels.

TE is a valuable method concerned with study of how
to quantity and analyze network traffic in real-time, and
develop realistic routing apparatus to schedule and forward
traffic flows, to enhance the utilization of the resources of the
network, and improve QoS demands [20], [31]. The goal in
TE is to balance traffic flows and optimize routing for traffic
delivery, to make the most benefit with network resources.
In traditional networks, the path is determined in the multi-
path scenario through cooperation between switches, a strat-
egy which leads to the inability to understand the network
topology and perception of the network state information.

Generally, two TE approaches have been developed to
achieve TE requirements in traditional networks, namely
IP-based TE andMultiprotocol Label Switching (MPLS). In a
multipath scenario, the IP-based TE approach addresses the
issue of load balancing by optimizing the IP routing algo-
rithm to overcome network congestion. Moreover, in such
networks all routers execute distributed protocols such as
OSPF [32]. Thus, as suggested in [33], traffic is routed
through the shortest path or least cost path, where network
links are assigned individual link weights or costs. As such, a
neighborhood search is done based on the attained OSPF link

166388 VOLUME 8, 2020



R. Etengu et al.: AI-Assisted Framework for Green-Routing and Load Balancing in Hybrid SDN

FIGURE 1. A roadmap showing key aspects of the reviewed works and the proposed framework.

weights to fine-tune the current routing computation strat-
egy, hence generating the multiple equivalent shortest path
between the same router pair to achieve traffic load balanc-
ing [34]. Although traditional IP networks employ IP headers
to achieve load balancing and deliver good performance, they
are unsuitable for dynamically changing network scenarios
since they use the static shortest path routing algorithms,
where mapping of flows to shortest paths does not reflect the
current state of network utilization, flow size and topology
changes [35].

In a dynamic network scenario, such a condition can
overwhelmingly overload the routers or switch buffers,

thus degrading the entire network performance. Also, static
IP-based routing algorithms cannot provide adequate TE
support in dynamic networks with a diversity of applica-
tions [20], owing to their lack of capacity to split traf-
fic flows among the generated multiple paths. In IP-based
networks, the dynamic network topology conditions with
changing traffic volumes, typical of some current and future
networks complicates the determination of accurate network
traffic matrix estimates. This is because traditional IP rout-
ing techniques employs a single table which is inaccurate
in the context of dynamic networks. So, the Multiprotocol
Label Switching was proposed to forward data packets [36],
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TABLE 2. Related top level articles and the scope of this survey in SDN-enabled networks.

as opposed to the use of IP-based headers, but the scheme is
extremely complex, potentially leading to high performance
driven overheads. This makes it hard to meet the demands
of network systems like data center networks (DCNs) that
require much bandwidth, green energy savings and high reli-
ability.

Precisely, given the increasingly enormous size, highly
heterogeneous and complex nature of modern IP networks,
the use of traditional IP approaches, such as OSPF for net-
work configuration, optimization and troubleshooting are not
efficient. Given the extensively distributed design nature,
such legacy networks lack the capacity to ensure fine-grained
network control management, and this imposes the condi-
tion to engineer novel networking architectures and related
approaches to resolve the current problem. This is the exact
context in which Software-Defined Networking architecture,
particularly the transition hybrid SDN/ OSPF comes to the
fore as a suitable alternative, to realize load balancing and
overcome network congestion.

B. HYBRID SDN/OSPF
This section is dedicated to transitional hybrid SDN/OSPF
networking architecture. Initially, hybrid SDN/OSPF is
defined. Then, a brief description of the transitional hybrid
SDN/OSPF is provided. Lastly, we provide the various hybrid
SDN/OSPF designs.

1) HYBRID SDN/OSPF DEFINED
Hybrid SDN/OSPF refers to a networking design which
enables various degrees of co-existence and communication
between the centralized and decentralized designs, to ensure
configuration, control, update and management of the behav-
ior of the network, to optimize the performance of the net-
work and user experience. In an effort to exemplify the levels

of co-existence and communication, one can consider legacy
switches that employ distributed protocols such as Interior
Gateway Protocol (IGP), in order to exert overall control on
the routing of network traffic flows, as opposed to SDNwhich
routes traffic flows from a global perspective. By conjoining
these two designs, and by assigning a portion of the traffic
flows to be under the control of the traditional design, and
by leaving the other portion to be under the control of the
SDN-enabled controller, the hybrid SDN/OSPF network for-
mation is realized. Fig. 2 is a generic representation of hybrid
SDN/OSPF networking architecture.

Principally, hybrid SDN/OSPF networks consist of single
path and multi-path scenarios. Moreover, as illustrated in
the Fig. 2, legacy devices in such networks are beyond the
scope of control of the SDN controller. Barely, one deter-
ministic next hop calculated by the routing protocol can
be used to transmit data. But, by leveraging the function-
ality of SDN, SDN-enabled nodes can assign traffic flows
to multiple next hops. Lastly, hybrid SDN/OSPF network
design contains controllable network path, basically a path
which is controllable and deployed by a SDN controller.
As given in the figure, communication between the SDN
controller and the forwarding plane is done through the south
bound interface (SBI). Also, the communication between the
SDN controller and the application plane is done through
the north bound interface (NBI). As previously stated, hybrid
SDN/OSPF is a preferred alternative to pure SDN, the main
reasons being the manageable budget constraints and limited
technical restrictions.

2) DESCRIPTION OF HYBRID SDN/ OSPF
Following the above definition, one observes that hybrid
SDN/OSPF provides a superior nonetheless significant net-
work design advance, within which both forwarding legacy
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FIGURE 2. Hybrid SDN/OSPF setup: using SDN to partition legacy OSPF network.

devices and SDN-based devices are accommodated. As illus-
trated in Fig. 2, to ensure the exchange of information
between these two categories of devices, SDN-enabled
devices should be legacy-enabled to support the forwarding
of link-state advertisements (LSA) [37]. This kind of config-
uration allows legacy devices to detect links to SDN-enabled
devices. Also, it allows SDN-enabled devices to discover
the links to legacy devices. This ultimately ensures the relay
of information to the centralized SDN controller. Assuming
legacy network implements hop-by-hop routing, based on a
typical routing protocol such as OSPF, link state information
can be captured using SDN-based devices and stored in the
OSPF link state database (LSTB). Moreover, through the
use of Link Layer Discovery Protocol (LLDP), Broadcast
Domain Protocol (BDDP) and link information from legacy
routing protocol like LSAs, the centralized SDN controller
holds the capacity to generate enough network information,
which include the network topology and link metrics. For
more details on this, the authors in [38] have provided an
in-depth coverage of network topology discovery process in
such hybrid SDN/OSPF.

3) CLASSIFICATION OF HYBRID SDN/OSPF
There are different designs of hybrid SDN/ OSPF. Provided
below is the classification of various hybrid SDN/OSPF
based on design and components.

a: CONTROLLER ONLY [39]
This hybrid SDN/OSPF design involves the institution of a
centralized SDN controller in the network, while the rest of
the network is kept the same, making it essentially cost-free.
The rationale is to improve the dispersed control plane with

inputs emanating from the centrally located control which
provides benefits such as global network visibility, quick con-
vergence and traffic flow abstraction, among others. In terms
of use, the controller only design allows the institution of a
central control and the gradual transfer of control to the SDN
controller with gradual technology maturity and acquisition
of experts and the operators.

b: SDN AND NON-SDN ISLAND [19], [39]–[41]
This is a crossbreed design, constructed from both the control
plane and data plane. The alternative name is Topology-based
hybrid SDN/OSPF, given the topological separation of the
nodes which are put under the respective control of each
design. To illustrate its use, an enterprise can take a decision
to upgrade a small part of its network to SDN-enabled, yet
other parts remain intact, thus forming islands. The net-
work is partitioned into SDN and non-SDN regions. In the
SDN region, the control is centralized at the SDN controller,
whereas in the non-SDN region, it follows a distributed
arrangement. The communication between the two regions
is based on a gateway device. The design is suitable for a
migration plan where SDN is embraced based on regions.
The motivation underlying the design is related to the need to
initiate migration based on a limited region, self-confidence
development and know-how and the then move to the subse-
quent stage. The investment cost depends on the number of
SDN-enabled nodes deployed in the target SDN island.

c: EDGE PLACEMENT [39]–[41]
This design is proposed to suit the delivery additional intelli-
gence routing within the boundary of the network, as opposed
to the centralized hub and spoke design, while ensuring
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optimization of traffic flows and security or QoS guaran-
tees without raising costs. The design is based on the view
that future networks will trend towards edge-based network
intelligence. This can potentially simplify the management
and control of networks, due to separation of the control and
forwarding operations, allowing different challenges to be
resolved.

To implement this design, SDN-enabled nodes are
deployed at the network edge, in which case the centralized
SDN controller exerts control on the forwarding decision
at the network edge positioned nodes. As per the controller,
the topology is purely restricted to the SDN-enabled nodes.
The core network traffic flows depend on the legacy proto-
cols. Moreover, the SDN design is charged with the man-
agement of network traffic exchanges beyond the network
boundary, such as the Internet. One benefit of separating the
network edge from the core network regard the requirement
to successfully map the destination IP addresses of the inward
packets to the unused IP addressed to support customizes
routing over legacy network.

By deploying edge-based SDN-enabled nodes, the
approach can dedicate the much desired SDN intelligence at
the network edge. This strategy provides a strong motivation
for SDN migration journey. However, the level of investment
is commensurate to the number of SDN-enabled devices
deployed and this can be costly. Generally, this approach
allows the maximization of network performance, while
minimizing both CAPEX and OPEX.

d: WITH MIDDLEWAR [19], [39]–[41]
Principally, this design is intended to address the require-
ment to exert SDN-like control on the existing data-plane at
reduced cost. The motivation of the design involves the need
to extend SDN-controller capacity to comprehend legacy pro-
tocol using a software component called middleware, which
facilitates the exchanges between the SDN controller and
legacy devices. To achieve the above requirement, the SDN
controller employs a legacy network protocol (middleware) to
communicate and change the configuration setting of existing
legacy devices, yet maintain control over SDN switches in the
normal way.

To implement this design, a two-stagemigration plan ought
to be embraced. As an illustration, following the maiden
transition phase from legacy to controller only design, more-
over having obtained the required confidence and know-how,
the second step involve progressive change of the data plane
by adding SDN-enabled devices, and hence progression to
complete deployment of SDN. Recall that achieving this end
involves a gradual investment approach.

e: WITH UPGRADE/AGENT [39]–[41]
This design focuses on delivering SDN-sort of control. Basi-
cally, it represents the need to twist legacy devices to allow
communication with the SDN controller, through software
upgrades, precisely agents. The design strategy helps to pro-
mote cooperation and improve the comprehension ability of

SDN protocol, to ultimately improve communication with the
SDN controller using SDN agent. The cooperation between
the distributed and the centralized routing control plane can
be based on hardware such as hybrid switches or software
components which are introduced in the legacy networks. The
approach demands for mere deployment of only the SDN
controller in the existing network. The approach is beneficial
in that it promotes least utilization of current hardware and
can hence minimize the levels of investment.

f: SDN OVERLA [39]–[41]
This design enables the construction of an SDNoverlay above
legacy networks. The design is motivated by the requirement
to maximize the benefits of SDN. Moreover, the level of
investment is dependent on the design and application of
the overlay. During the transition progression, the design
suffers protracted interruption of services, since it requires
network reconstruction. The overlay network is configured
to ensure complete support of network programmability and
policy execution and upgrade, though un-observed traffic
flows in the underlay network may not provide full support
to this. Moreover, scalability function is attributed to network
design and the logically centralized controller load. Finally,
the recovery function provided by both the SDN controller
and the legacy network protocols.

g: THE SPINNING CONTROL THEORY
Although the previous subsection has considered the various
designs of hybrid SDN/OSPF, this work is based on the
pinning control Theory [42] as the reference theory this work.
The pinning control theory, is an emerging network control
theory designed to guide themanagement and control of com-
plex networks based on partial control of nodes. In practice,
the theory enables by selection and configuration of a subset
of network nodes, to exert a wider or even global network
control. The selected subset of network nodes is deployable
to manipulate the routing of traffic in a large-size network
scenario. Recently, the pinning control theory has attracted
the interest of many networking researchers, in the control of
complex networks amidst the rising levels of dynamic traffic
demands and the need to ensure reductions in CAPEX and
OPEX, in the perspective of the telecommunications industry.

h: CHOICE OF NETWORK ARCHITECTURE
Based on the proposed pinning control theory, this work
intends to leverage the functionality of SDN, by using
SDN-enabled nodes to assign traffic flows to multiple next
hops. Primarily, there are two main designs under consider-
ation. First, we consider SDN and Non-SDN Islands design,
where hybrid SDN switches are deployed in legacy network,
among legacy IP switches to form a hybrid SDN/OSPF net-
work. Second, we consider using with upgrade/agent design.
Moreover, the cooperation amidst the distributed and the cen-
tralized routing control plane can be based on hardware such
as hybrid switches or software components which are intro-
duced in the existing legacy networks. By building a hybrid
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SDN/OSPF network, old legacy switches can be employed to
achieve SDN-like network control and operations manage-
ment in legacy network regions.

III. EVALUATION OF RECENT STUDIES IN HYBRID
SDN/OSPF NETWORKS
In the previous section, the focus was on the introduc-
tory aspects in this work, including basic coverage of SDN
and hybrid SDN/OSPF networking. Building on that foun-
dation, this section provides a detailed coverage of the
selected and reviewed load balancing and energy-aware rout-
ing research works in the recent past in hybrid SDN/OSPF
networks. These works have been carefully selected and tai-
lored towards meeting the problematic requirement for much
desired network intelligence and automation, in the existing
and future SDN-enabled energy-aware high speed communi-
cation networks. Clearly, some of the works investigated have
not been reviewed in existing works, indicating that they are
current works.

A. LOAD BALANCING STUDIES
This section provides a review of a fewmost recently selected
load balancing research works in in hybrid SDN/OSPF.

In communication networks, load balancing Load bal-
ancing represents a major traffic engineering (TE) method
whose purpose is to improve the delivery of data traffic loads
over various resources driven by a particular performance
measure [31], [34], [43], [45], [46]. With regard to hybrid
SDN/OSPF, the TE goal of attaining maximum link utiliza-
tion (MLU) can be made achievable using data traffic flow
load balancing to ensure a congestion free network. Because
the purpose of load balancing involves the determination
of average link rate utilization for the entire network links,
telecom carriers are able to reduce OPEX, hence supporting
extra network users [24], [47]. This can ultimately indi-
cate enhancements in network performance using through-
put, packet loss, link failure and delay and jitter. Owing to
the recent growth in network data traffic flows and indus-
try uncertainties, for instance capital expenditure (CAPEX)
and operational expenditure (OPEX), energy efficiency, QoS
services or application guarantees and load balancing chal-
lenge, particularly inmultipath network environment, have all
become very important issues in SDN-enabled networks [48].

Guo et al., [49] considered the challenge of inefficient
traffic flow routing and scheduling in order to alleviate net-
work congestion and improve load balancing. They devised
an innovative routing and flow schedulingmechanismswhich
uses the SOTE algorithmic framework, to achieve path
reduction, and ultimately enhance network performance. The
mechanism so proposed was meant to jointly configure the
OSPF weight setting and network traffic flow splitting frac-
tion to minimizes the MLU in the perspective of ISP net-
works, through the migration progression. They employed
SDN-based controller to optimize OSPF weight setting par-
ticularly by way of splitting the inward traffic flows at the
SDN nodes, to reduce theMLU. Besides, the legacy networks

execute OSPF given their normal operation. The proposed
mechanism can improve network performance by ensuring
resilience to path failure, owing to the re-routing technique
that it employs. Moreover, acceptable levels of performance
can be achieved using a small number of SDN-enables
switches. However, the mechanism has various challenges:
only OSPF congestion problem is considered; more CPU
time is required to compute path reduction; suffers the occur-
rence of network loops and black holes, thus resulting in
network performance degradation.

Caria et al., [50] suggested an idea to partition a given
OSPF domain to attain SDN-enabled TE. The plan was to
exploit SDN-enabled edge routers to improve control over
the various routes that interlink the sub-domains. Specifi-
cally, in TE perspective, the interest was to deal with routing
inefficiency to ensure load balancing by improving link state
updates. A unique routing mechanism was proposed where
the whole network is partitioned into multiple sub-domains
interlinked using SDN-enabled edge positioned devices. The
solution includes a TE engine which employs ILP based algo-
rithm to attain traffic load balancing goal. The performance
of the mechanism depends on the number of sub-domain
partitions within the entire network. The mechanism exhibits
low overheads with improved resilience to failure. Besides,
it provides additional flexibility because it goes beyond mini-
mizing link utilization. One limitation faced Is that the locally
placed internal domain routers cannot be put under the SDN
controller, thus they truck the OSPF network protocol and
route on the shortest paths. Lastly, it is static since the ILP
assumes that eachOSPF pathwithin the sub-domain is known
and constant.

Chu et al. [51] conducted an investigation on the issue of
traffic flow reachability and recovery in a scenario of single
link failure. Moreover, the actors contextualized a situation
where one of the links fails, in which case the proposed legacy
IP router has to handle the forwarding of the target packet to
a specific SDN switch by bypassing the link under failure.
When traffic network flow is redirected from the failed link
to the target SDN-enabled switches, based on pre-computed
IP tunnel, the existing network can rapidly respond to fail-
ures. Based on the synchronized capability exhibited among
SDN-enabled switches, coupled with the universal view of
the controller, the system can devise additional backup paths
in order to assure network traffic flow recovery with load bal-
ancing improvements. This can help to resolve the problem
of network congestion, to enhance load balancing in regard
to post network recovery efforts. However, the procedure
intensifies the precomputed control burden, thus wasting the
flow table entries.

Hu and Wang [52] considered the issue of routing in TE,
purposely to maximize controllable traffic. They proposed
a mechanism that employs a fully polynomial approxima-
tion scheme (FPAS). Moreover, one traffic class was con-
sidered, with the purpose to maximize network traffic flow,
through leverage of the barrier and hybrid network deploy-
ment modes. The performance was compared against that of
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OSPF routing scheme. The emphasis was on source redirec-
tion gain for the TE problem, based on MLU. The hybrid
SDN/ OSPF network was observed to outperform legacy net-
works. Although it is efficient in small networks, application
in dense networks is very challenging, leading to a significant
compromise in network routing efficiency. Besides, the solu-
tion is suitable for single domain ISP content distribution net-
works (CDN), making it inefficient in multi-domain scenario.
Also, it disregards the important consideration of energy-
saving requirements in TE. Lastly, only MLU, latency and
fault tolerance are considered, which limit the capacity to
guarantee QoS-based service provisioning.

He and Song [53] considered the issue of routing and
traffic scheduling in TE. They suggested a TE routing and
traffic flow scheduling centered on barrier mode in an over-
lay network setting. In terms of performance, the proposed
mechanism was compared against that of OSPF routing sys-
tem, with particular focus on source redirection as respect
to the TE problem, by using MLU metric. Precisely, it was
noted that distributing SDN traffic between various sources
can substantially enhance performance without creating over-
heads. But, source request redirection is not dynamic and
lacks the efficiency to distribute traffic flows and ensure link
utilization. Also, the mechanism only considers MLU and
cannot support priority-based QoS classification of traffic,
which degrade network performance. Overall, themechanism
in can achieve a high link utilization compared to that in [49].
This condition is especially so with a dynamic number of
SDN traffic flows, because it eliminates network congestion.
Moreover, the proposed destination-based routing leads to
high levels of latencies, with limited tolerance to path failure,
since there are no alternative routes for traffic flows. Nonethe-
less, the mechanism in [49] is tolerant to path failure, given
its efficient re-routing method.

Ren et al., [54] studied network traffic routing and schedul-
ing in TE with the purpose of enhancing network traffic
flow management. The authors proposed a routing and traffic
flow splitting mechanism to achieve efficient management
of routes, by mainly optimizing the MLU and traffic flow
splitting fraction. The proposed mechanism is limited due
to routing efficiency degradation mainly brought about by
the longer path generated, when compared with other routing
mechanisms the operate without traffic flow splitting. More-
over, the mechanism only considers MLU, latency and fault
tolerance, in which case it can potentially lead to performance
degradation. Also, the internal sub-domain routing is beyond
the control of the centralized SDN controller, in which case
such control still falls under the province of the OSPF proto-
col, which routes through the shortest path. Overall, the pro-
posed mechanism exhibits better performance as opposed
to related state-of-the-art works such as the one which is
employed in [51], wherein the OSPF domain is partitioned
into sub-domains using SDN switches.

Lin et al., [55] considered the issue of QoS-based routing
in such hybrid networks. They suggested a network design
which uses QoS-aware routing (SAQR)method, that employs

simulated annealing (SA) to update the weights for delay,
traffic loss and bandwidth demands, in a dynamic manner.
Besides, the approach uses the spanning tree algorithm to
achieve discovery of legacy switches in such hybrid net-
works. Moreover, suitable dynamic paths are defined to route
the data traffic over paths that meet the desired QoS rout-
ing demands for multiple applications, taking into account
the current network state. Besides, it employs the Learning
Bridge Protocol (LBP) to ensure coordination between legacy
and SDN devices. This removes the need to modify legacy
devices which is a requirement under ordinary circumstances.
Precisely, the protocol is based on link layer (L2) routers
and switches, although an extension to network layers (L3)
routers and switches is possible. The mechanism exhibits
better performance in terms of bandwidth, delay and loss rate
with improvements in the volume of network traffic flows that
achieve corresponding QoS demands.

Bi et al. [56] addressed the problem of intelligent QoS-
driven forwarding of traffic in hybrid SDN/OSPF indus-
trial Internet, precisely to support existing and emerging
industrial manufacturing. Based on recent observation, indus-
trial Internet has gained much attention from researchers
in both industry and academia. It was also observed that
traditional industrial networks can barely meet the QoS
needs of certain mission-critical industrial applications or
services. Accordingly, they proposed smart-QoS-guaranteed
forwarding mechanism to enhance the QoS in these applica-
tions. In the work, they employ a minimum cost single-path
forwarding approach and k-path algorithmic framework to
ensure multipath forwarding.

This subsection has focused on the different routing mech-
anisms with traffic load balancing in hybrid SDN/OSPF net-
working, a summary of which is provided in Table 3 and 4.

B. ENERGY-AWARE ROUTING STUDIES
While the previous subsection has discussed the various
selected studies on load balancing in hybrid SDN/OSPF,
this subsection focuses on the various energy-aware routing
approaches, with and without load balancing in such hybrid
networks.

In legacy networks [57], [58], the growing energy utiliza-
tion of networking elements result in challenges such as rising
levels carbon dioxide (CO2) emission and cost of network
operations. Specifically, a large portion this utilization is due
the core and backbone networks, especially IP routers, while
a minimal share is owed to the carried network traffic load.
Realistically, communication networks are devised to support
the distribution of traffic demands during peak time, however
during off-peak times the volumes of carried traffic fall below
the defined network capacity.

Precisely, it is the above context that researchers have been
driven to proposed innovative energy-efficient approaches
and mechanisms to minimizes the number of active network
links, necessary to assure traffic flow routing and forwarding
without experiencing link overload. Although past researches
have attempted to put emphasis on the issue of performance
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TABLE 3. A comparative summary of different routing mechanisms with traffic load balancing.
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TABLE 4. Continued from TABLE 3.

and cost of ICT, there is an urgent call for networking research
community to devise working solutions to energy-efficiency
problem. The need to resolve these requirements necessitate
the design of energy-efficient network optimization, alterna-
tively termed green network design criteria [58]–[61].

Wang et al., [62] studied the need to minimize excessive
energy utilization in communication networks. The authors
suggested a dynamic spanning tree grouping scheme with
the aim to determine network sub-sets with minimal energy
consumption, to consequently put-off unused network ele-
ments and links to deliver the varying traffic loads. But,
because of the static nature of the scheme, energy saving
can only be realized when network loads are low, such as
night-time. This condition can be a significant limitation to

energy-efficient routing in practical networks. It is observed
that only SDN nodes and the connected links can get into
sleep state, while legacy devices are kept fully active. Also,
computational overheads arise especially, during high peak
periods leading to link overloads, causing undesired delays
and packet loss. Additionally, the solution only considers
MLU, throughput and power saving gain, while disregarding
QoS prioritization of different traffic classes leading to link
performance degradation.

Wei et al., [63] investigated the problem energy-efficient
routing and traffic scheduling in the backbone domain of
hybrid SDN/OSPF network. Subsequently, they proposed a
heuristic-based energy aware traffic engineering (HEATE)
scheme for such hybrid networks. Their objective was to
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achieve minimal network energy utilization by computing
the optimal link weight setting of legacy OSPF, including
the splitting fraction of SDN switches. The scheme was
revealed to perform joint optimization of OSPF link weight
setting of legacy IP routers and flow splitting fraction of
SDN-enabled switches. This enables the aggregation of con-
trollable and uncontrollable traffic flows on partial links, thus
turning off underutilized links to ensure energy conservation.
The solution performs well in terms of energy-savings when
energy-aware OSPF is combined with energy-aware forward-
ing algorithm (EA-FA). But, the mechanism lacks the desired
dynamicity and efficiency to allow execution in the backbone
network. Also, it not possible to achieve a balanced trade-off
between energy-saving and TE performance, a condition
which degrades network performance. Lastly, the solution
only considersMLUwhich is amajor performance limitation.

Recently, Huin et al., [64] conducted a study on routing
in TE in order to resolve the issue of energy consumption
in hybrid SDN/OSPF networks. They proposed a two-stage
energy-aware routing mechanism to turn unutilized network
links to sleep mode to reduce energy use in such hybrid net-
works. However, a major challenge of the scheme is the need
to ensure a high level of QoS guarantees when certain net-
work components are in sleep mode. Specifically, the mech-
anism cannot provide the desired levels of link performance
as per the defined indicators, much as this condition is crit-
ical in the correct operation of hybrid SDN/OSPF networks.
Additionally, the proposed solution is limited since only SDN
elements and the related links are made to sleep, whereas
legacy IP devices are kept fully active. The routing solution
can potentially be extended to prioritize QoS provisioning
to ensure effective solutions, mainly by determining the best
balance between quality and challenges that are related to the
environment.

Jia et al., [65] conducted a study on segmented traffic flow
routing and scheduling in hybrid SDN/OSPF. They examined
the challenge of path control and energy-efficient routing in
the context of incrementally deployed hybrid SDN/OSPF,
in ISPs and data center networks (DCNs). A more viable
explicit path control (EPC) solution that is based on seg-
ment routing and scheduling was proposed. The solution
can significantly improve network performance through flow
re-route in small networks. But, it is not efficiency in multi-
domain networks with large traffic volumes and dynamic
traffic flow demand patterns. Although the scheme considers
various QoS metrics such as MLU, throughput and power
gain, this is done more generically and so cannot prioritiz-
ing traffic flows, a condition which can degrade network
performance.

Finally,Maaloul et al., [66] considered energy saving prob-
lem in the case of carrier-grade Ethernet network. In their
work, the authors suggested a traffic-aware routing and load
balancing scheme to shut down the minimum set of net-
work elements and links, so as to achieve energy-saving
and QoS guarantees free of network performance degrading.
The mechanism so proposed takes into consideration rules

space capacity restriction of SDN switches, conservation
of network traffic flow and restrictions on resource usage.
With regard to performance, the proposed scheme is capable
optimizing the trade-off between energy-efficiency, network
resource use and performance. The solution can also be able
to ensure near-optimal performance within a much reduced
time frame. But, the adjustment of the proposed solution
to support the processing of port status and line rates can
result into overheads in the scope of the control plane and
increase transmission delay amidst the SDN controller and
the forwarding plane.
Summary: As summarized in Table 5, green computing

and networking has become a very important area of research
in recent years. To date, many load balancing schemes have
been suggested with the aim of ensuring energy-efficiency in
SDN-enabled networks, but many challenges still exist, and
these call for comprehensive approaches to be resolved.

IV. OVERVIEW OF ARTIFICIAL INTELLIGENCE
TECHNIQUES
This section reviews the fundamental aspects of artificial
aspects of artificial intelligence (AI), paving the way for an
in-depth discussion of pertinent techniques in the field.

AI represents a rapidly growing field of science and engi-
neering which features the use of methods that empower
or endow computing devices (machines) and systems with
advanced capabilities to imitate human behaviour [68].
Besides, AI is considered as an increasingly growing compu-
tation paradigm, whose objective focuses on teaching com-
puting devices how to work and respond in a human-like
manner. Moreover, such computing devices are endowed
with advanced capabilities that include natural language
processing, knowledge representation, automated reasoning,
machine learning and computer vision. For a long time,
AI has been employed in the optimization of communication
networks with diverse requirements. Based on the above
capabilities, diverse AI techniques fall under the broad field
of machine learning (ML), expert systems and evolutionary
algorithm. In relation to these, ML allows artificial proce-
dures to capture knowledge from available raw and execute
decisions without need for explicit programming.

A. MACHINE LEARNING
ML refers to data-driven analytical techniques that are capa-
ble of being trained to learn from data and make decisions.
In terms of tools, ML technique employs computer programs
which are trained on the collected data as opposed to prepro-
gramed instructions. One should observer that ML concepts
are simple and are concerned with a simulative reflection
‘‘induce’’ and ‘‘predict’’ employed in practical learning and
growth process in humans. Generally, the concept of ML
approach is built on induction and synthesis, as opposed to
deduction.

Much as ML is an old technology, its use has not been
widespread until recently when it re-emerged as an intel-
ligent approach that promises to transform the domain of
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TABLE 5. A comparative summary of different energy-aware routing approaches with and without load balancing.
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event classification and prediction. Owing to the advances
in ICT in the last decades, the increasing expansion and
complexity on networks and huge growth in data rates have
driven researchers to advance and embrace the intelligent
power of ML and DL to perform network management and
control, let alone harness the growth in data volumes. The
progress in ML and DL techniques are envisioned to per-
form a significant part in current and future networks. For
a comprehensive review of ML algorithms used in SDN
traffic classification, optimization or routing and QoS and
QoE prediction, see [67], [68].

Historically as hinted above, ML was a less popular area,
however with the advances in computational power, graph-
ical processing units (GPUs) and the increasing availability
of data, machine learning field has advanced by leads and
bounds. These advances have motivated modern research
to unleash the substance of huge data by state-of-the-art
technologies. Principally, the ML approach entail imple-
mentation phases that include pre-processing, training and
testing. Included under pre-processing are actions like data
pre-processing, sifting, imputation, in addition to tuning for
specific purposes. After processing the data, ML learning
techniques are applied to perform data training. Then, the sys-
temmakes decisions based on the input and out of the training
phase.
Machine Learning and Related Algorithms: This subsec-

tion considers the basics of traditional ML, including the
available learning algorithms. Moreover, we describe various
ML types techniques.

ML is a science concerned with the study of algorithms
that employ statistical methods to enhance the performance
of computerised systems by leveraging past experience [68].
The use of ML techniques enables computerized systems to
generate unique patterns and inferences to effectively execute
the desired operations. Over the last few decades, ML tech-
niques have enjoyed wide application to address a variety
of classification and prediction issues, and have generated
accurate outcomes in terms of performance [69], [70]. Based
on the type of activity performed, ML approaches can be
categorized into three, namely classification, regression and
structural. First, classification approaches are divided into
binary classification approaches and multiple classification
approaches. Besides, regression or prediction approaches
are characterized by numerical output nature which can-
not be computed. However, the result of structured learning
approach cannot be fixed based on length.

Based on the parameters under consideration, ML
approaches can follow two categorizations including linear
and non-linear approaches. A linear approach is a somewhat
simple approach with a defined role, and forms the basis for
non-linear approaches. One of the most popular non-linear
ML approaches includes deep learning (DL) approach [24].

(i) Categories of Training Methodologies: To investigate
the training process of machine learning algorithmic frame-
works, three different categories of training methodologies
can be employed, including unsupervised, supervised and

reinforcement learning, each of which is described in the next
part of this subsection.

Supervised Learning Technique: The design goal of
the supervised learning (SL) techniques is to construct a
numerical framework using a labelled training input data
sample, and the corresponding output. Basically, a super-
vised learning algorithmic technique is fed with a given
labelled input data, with the aim of inferring or predicting the
unknown target function (quantity) that does the mapping of
the labelled training input samples into corresponding output
labels. Examples of the predicted function include regression
and classification of the category in an already defined set
of labels. The above capability can be realized through opti-
mization of the NN parameters by supplying training data.

Unsupervised Learning Technique: The unsupervised
learning (USL) technique is designed with the goal of con-
structing a numerical framework using the input training data
samples without the corresponding output samples. USL dif-
fers fromSL in that it has no target goal prediction, but the aim
is to infer a NN model that could have generated the training
samples. The requirement is to reveal the hidden pattern in
the unlabelled input data. It emphasizes the use of unlabelled
training data to generate information by way of clustering,
through resemblance within the observation points. To throw
more light, one can consider the clustering of ungrouped data
samples and the creation of new samples through learning
the accurate distribution of data. A generative model is an
example in this category.

Reinforcement Learning Technique: Reinforcement
learning (RL) is a ML technique that is modelled as a Markov
decision process (MDP), with the design goal of supporting
dynamic adjustment of the principal parameters to maxi-
mize reinforcement indicator (or signal). Principally, the RL
technique represents a reward regulated conduct learnt by
an RL agent using a trial-and-error mechanism, to perform
actions and collect cumulative rewards, by interfacing with
the environment [24], [70], [71].

To achieve the target goal, a reinforcement learning sys-
tems (RLS) employ a RL agent in an environment to perform
an optimal action at a specific current state, based on the
interaction between the agent’s action and the state through
the environment. Unlike traditional ML methods, RL has no
instance of input data. The need to maximise the reinforce-
ment indicator generated from the environment can produce
a decent or bad evaluation result of the action, as opposed to
informing the system to generate the right action.

The RL technique is assumed to be appropriate in circum-
stances where the input data is delayed. Moreover, RL is
beneficial in that it can perform much as there may be lack
of sample unseen training input and output data. But, it is
unfavourable because it takes long to attain convergence [71].
Today, RL techniques has become an essential ML approach,
which is widely employed in addressing network-oriented
problems. One should observe that the techniques can only
characterise the interplay procedures as opposed to availing
another learning approach. Also, every learning algorithmic
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TABLE 6. Comparison of the three training methodologies.

model can be transformed into a RL, and is envisioned to be
widely employed for traffic analysis and prediction.

To illustrate the use of RL in the maximization of the
predicted cumulative reward, we can consider Q-learning.
By performing Q-learning, one can maximize the Q value
for the respective states. But, a major problem in the use of
Q-learning involves the state dimension explosion. Precisely,
the larger the state dimension, the more the computation
required to be performed. In an attempt to address this
problem, recent works have employed deep Q-learning by
employing the NN to estimate the Q-function and generate
the Q values from the state. Such RL techniques based value
undertake action merely by using Q-values which are not
essentially needed. The alternative is to perform straightaway
policy learning which maps individual states into optimal
actions. This technique termed policy-based RL learning,
but the accompanying problem is the variance that enlarges
extensively [76].

To deal with the problem of computational complexity
and state explosion problem, actor-critic RL technique is
employed. The actor-critic technique leverages a combination
of NN that trains a policy (actor NN) and a second NN
which evaluates the corresponding Q value (critic NN). Due
to the generic nature, RL domain is studied in other different
specialities that may include information theory, game theory,
control theory, operations research, simulation-oriented opti-
mization smarm intelligence, multiagent systems, statistics
and hence genetic algorithms. The relationship between DL,
ML and AI is as given in Fig. 3. Provided in Fig. 4 is a
summary of the available DL techniques [24], [75], [77].

B. DEEP LEARNING
This subsection focuses on deep learning (DL) and the related
algorithms. Moreover, we describe various DL techniques
which are applicable to current and future SDN-enabled com-
munications networks.

Deep learning is a subdivision of ML whose aim is
to devise machines with the capability to interact with
the environment, even when unexpected situations take
place [78], [79]. Essentially, the DL approach can be used to
perform prediction, classification and decision making using
available data without any explicit programming.

DL techniques employmulti-layered neural networks com-
posed of input, hidden and output layers for constructing
interrelated neuron-driven nodes. They can be used to address
diverse and difficult problems typically encountered in the
ICT industry. Normally, contained in the nodes are activation
functions. In terms of implementation, the information is
input by use of the input layer. Subsequently, the hidden
layer deals with pattern recognition activity through the use
of activation function, upon which the decision outcome is
forwarded to the output layer. Recall that every layer in the
system takes in the output from the preceding layer as input,
upon which the non-linear transformation is applied to gen-
erate important feature necessary to support the classification
process.

Typical DL techniques include k-nearest neighbours clas-
sifier, regression, and Q-learning. Different from traditional
ML tools which are heavily dependent on features that are
defined by area experts, DL algorithms hierarchically mine
knowledge from the available raw data using a multiplicity of
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TABLE 7. Summary of the traditional ML algorithmic techniques.

nonlinear processing units, predict of perform actions based
on the defined goal. Today, the most popular DL techniques
include neural networks (NN). Clearly, however, only NNs
having two or more layers are regarded as deep techniques or
models. Others deep NNs architectures or structures exist and
these include neural processes, deep Gaussian processes and
random forest. Principally, as opposed toML, DL technology
is beneficial in that it ensures automatic features generation,
by which handcrafted feature engineering can be circum-
vented. The relationship between DL, ML and AI is as given
in Fig. 3.
Deep Learning Algorithms: Provided in the rest of this

subsection is a description of the various categories of deep
learning algorithmic techniques.

i) MLP: This represents a feedforward neural net-
work (FNN) where the output of individual layers is fed
forward to the successive layer. The multilayer percep-
tron (MLP) provides the default (vanilla) baseline of the FNN.

InMLP, the output of each perceptron is forwarded directly to
the subsequent layer’s perceptron’s, however without of any
recursion and computation besides the activation function.
Much as the structure of MLP is simple, it can distinguish
data that are not linearly separate so long as the number of
perceptrons, precisely the NN model size is large enough.
The training approach of a MLP is called backpropagation.
By using backpropagation approach, theMLP is trained using
gradient decent optimization algorithmic techniques.

ii) RNN: Recurrent neural network, RNN represents a
category of NN where the output of a layer encounters
internal recursions. RNN represents a form of multi-level
perceptron (MLP) which is made up a feedback loop at the
hidden layers. Similar to the behaviour of humans, RNN
performs a decision by taking into account the available
information and the previous experience obtained through the
inbuilt loops. They are designed to maintain the input given
to the internal memory that it so contains. RNN operates
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FIGURE 3. The relationship between AI, ML and DL.

FIGURE 4. DL techniques.

by backpropagation of the computed errors by the layers to
train and learn in a recurrent way. The training process of
RNN requires the hidden layers to be sequentially stretch

out. This requirement allows previous hidden layers to the
feedback loop to be connected to the hidden layer subse-
quent to the loop. The connectivity construction supports a
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series of inputs, which is acceptable. Currently, varnishing
gradient problem is a major challenge to vanilla RNNs. The
vanishing gradient problem emanates due to inability of the
iterative feedback loop to generated a feature containing
long-term correlations. The solution requires the embrace of
long short-term memory (LSTM) unit to replace the hidden
layers in vanilla RNN [77]. By using the LSTM unit a mem-
ory cell is incorporated to store values for the current hidden
layers in memory, which memory is under the control of
various gates that ascertain the need to perform storage of
forget. Similarly, gated recurrent unit (GRU), equipped with
gates can be employed to perform the same operations [80].

iii) CNN:Convolution neural network, is a category of NN
designed to resolve the problem associated with the genera-
tion of a large number of MPLs required to process a large
number of image-based data samples. Themotivation of CNN
construction is based on the following three concepts: the
convolutional layers, weight sharing layers and pooling lay-
ers. To address the problem, CNN incorporates two process-
ing layers which are stuck between the hidden layers. First,
the convolutional layer employs the convolutional operation
to process the information input and perform feature extrac-
tion. This is done in addition to information compression.
Second, the out of the preceding layer are pooled into one
perceptron in the subsequent layer, by selecting themaximum
value or using their average value [81]. Third, feature infor-
mation so compressed is reverted to a convolutional MLP
construction to generate the output, resultant forming con-
nected layers. Precisely, whereas the convolutional and the
weight sharing layers work as filters to extract local features
in the data and hence reduce the parameter numbers, the pool-
ing layers additionally minimize the feature dimension and
maintain the variation of the data.

iv) Autoencoders:Autoencoders (AE) represents unsuper-
vised learning techniques that handles the encoding of the
data through dimensionality reduction. The purpose of AE
is to train the network by rebuilding its input. As provided
in the figure, the primary NN performs the learning of the
representative input data features, called encoding. Next, the
NN obtains the features in form of input to approximate
the primary input as the ultimate output, called decoder. The
emphasis of AE involves the learning of valuable input data
features, intended for replication of the input. So, need to
exactly reproduce the same output like the initial data can
turn out to be extremely accurate to extract the hidden fea-
tures. The variations of AE include stacked, convolutional,
contractive, denoising and sparse.

v) DBN: Deep belief network, DBN is a category of
neural network designed to address the infamous vanishing
gradient problem experienced when training a deep NN [82].
Using DBN, the vanishing gradient problem is addressed
by employing the divide-and-conquer technique. Initially,
the network is partition into subnetworks called restricted
Boltzmann machine (RBM), each of which is individually
pre-trained. Subsequently, are RBNs are pooled and entirely
fine-tuned. The outcome of this is a pool of pre-trained

RBMs. every RBM is constructed of one hidden layer and one
visible layer which take in input or generates outputs. The two
layers are bidirectional connected. This marks the difference
between RBN and FNN. Following pre-training process, the
individual RBNs are strategically combined to connect each
RBN’s hidden layer to the following visible layer. This makes
a DBN to be an FNN. Moreover, by extending a DBN,
a CNN construction can be realized, mainly by partitioning
individual hidden layers into several groups and employing a
convolutional operation for each group.

vi) GAN: Generative adversarial network (GAN) repre-
sents a generative category of NN in USL charged with
the role of generating first-hand data samples given by the
predictable distribution of the input data samples [83]. The
above is realized through training two NNs RNNs, precisely
the generator and discriminator, like the perform a zero-sum
game. On the one hand, the generator does the faking of data
samples used to fool the discriminator.

On the other hand, the discriminator attempts to identify
the faked samples. As the faking and discrimination games
gets to equilibrium, precisely completion of the training pro-
cess, the generator attains the capability to produce fake but
genuine samples that cannot be distinguished from genuine
samples.

As provided in the Table 8, the most commonly used
DL algorithmic techniques are RNN, CNN, AE and DRL.
Besides, DRL and RBN are algorithms constructed based on
two techniques. Lastly, MLP and RBM represent algorithmic
techniques which have not yet gained popularity in terms of
use

TABLE 8. Categorization of deep learning techniques.

C. META-HEURISTIC ALGORITHMS
Currently, heuristic algorithms have dominated current net-
work solving situations. Such algorithms are employed to
address problem-specific issues. With the increasing com-
plexity of modern network HA cannot suffice. To bridge
the gap, the growing embrace of meta-heuristics provides
a suitable alternative. Different from existing heuristic,
meta-heuristic refers to general purpose approach, geared
towards resolving a diversity of problems that cut across
disciplines, that may include accounting and finance, through
science and engineering to communication networks [84].

Recently, the application of meta-heuristics has increas-
ingly gained popularity in solving complex optimization
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problem [85], such as those in modern large-sized dynamic
networks. Basically, such approaches are focused on problem
solving conditions that cannot be resolved using determin-
istic or exact technique, moreover within reasonable time
scope. By background, meta-heuristic approaches are moti-
vated by and are applicable in complex problem solving
situations. Such situations may include optimization prob-
lems that include combinatorial and extremely non-linear and
multi-modal scenarios [86].

Given that various meta-heuristic algorithms possess dif-
ferent capabilities, they provide different levels of benefit.
So, the need to generate better benefits in terms of outcomes
demand for the embrace of integrated strategies [85]. Asmen-
tioned in [84], such a strategy emphasizes a trade-off between
exploration and exploitation. While exploitation involves the
determination of the most likely high quality outcomes in
the search space, exploration considers the need to perform
a search in specific areas, based on past search outcomes.
A major drawback of meta-heuristic approaches is the fact
that it can barely suggest a good outcome and not the most
optimal solutionwith certainty. Besides, such approaches rely
on the definition of a large number of hyperparameters that
need fine-tuning, to generate a good outcome [87]. The rest of
this part is dedicated to some of the common meta-heuristic
algorithms.

1) ANT COLONY OPTIMIZATION
Ant colony optimization, which is ACO for short refers to
a meta-heuristic based swarm intelligence population-driven
algorithmic technique used to address combinational opti-
mization problem-solving situations [97]. The inspiration
behind the ACO algorithm is by nature related to the foraging
behavior of ants. Initially, the ants embark on a random
exploration of the area that surrounds their resident nest.
Then, they select specific path along which they deposit a
chemical pheromones trace, to guidance the rest of the ants to
food sources that previous ants discovered. Over a given time,
duration, there occurs an increase in the concentration of the
pheromones on the shortest food source path. The evaporation
of pheromones is useful because it overcomes the concern of
premature convergence [84].

2) EVOLUTIONARY ALGORITHMS
The Evolutionary Algorithm also referred to as Evolutionary
Computation (EC) represents optimization algorithmic tech-
niques inspired by Biological Science and more so advanced
in the context of Darwinian theory of the capability of nature
to select (adopt) and ensure survival of the fittest [84]. Pre-
cisely, the area of EA encompasses evolution approaches,
evolution program design, genetic algorithms, and genetic
program design.

3) GENETIC ALGORITHMS
Genetic Algorithm (GA) techniques represent one of the
most renowned and dominantly applied population-driven
meta-heuristic techniques in this category [89]. Basically,

GA uses Biologically inspired genetic material called a chro-
mosome to represent an optimization problem solution.When
several chromosomes are grouped together, a population is
generated. The application of GA is based on two impor-
tant operations, which include crossover and mutation. First,
the crossover operation integrates formerly selected charac-
ters through exchange of some of their parts. Besides, muta-
tion considers the randomization of the search procedure to
avoid the issue of local optima. Observe that to better execute
a GA, it is imperative to consider two factors that include the
selection approach and the kind of crossover and mutation
mechanism [84].

4) PARTICLE SWARM OPTIMIZATION
The particle swarm optimization algorithm which is short-
ened as PSO, represents another meta-heuristic algorithm
that is based on swarm intelligence and population-driven
strategy [90]. Basically, the PSO algorithm that imitates
birds’ flocking behavior to devise solutions to optimization
problems. The realization of PSO features a swarm which is
composed of N particles, which are stochastically generated
from within a given search space. In PSO, the respective par-
ticles are identified using a velocity, a location, with memory
to store and recall the best positions or solutions. Much as
PSO has exhibited success in the determination of optimal
regions in the search space, the feature to enable convergence
on optima is still lacking.

5) SIMULATED ANNEALING
Besides the above, simulated annealing (SA) represents a
met-heuristic solution that presents a single solution. The
motivation of the algorithm is based on the annealing strategy
used to provide a suitably well-ordered solid state of least
energy [91]. Moreover, to minimize the objective function
of the target problem in SA, the temperature parameter T is
introduced. This is a key parameter in the algorithm [84]. For
each iteration, the SA algorithm randomly chooses a resolu-
tion at the neighborhood of the current solution. To determine
the acceptance level of the new solution, the objective func-
tion value is used, and the T parameters value, which drops
in the progression of the search process.

6) BEE COLONY OPTIMIZATION-BASED ALGORITHMS
These represent innovative swarm intelligence-driven
meta-heuristic algorithmic techniques whose development is
foundation on cooperative honey bees’ behavior. The bee
colony optimization algorithm is mainly inspiration by the
collective behavior of honeybee colony [84]. A well-known
and popularly used algorithm in this category is the artificial
bee colony (ABC). ABC is a popular foraging-motivated
optimization algorithm, which employs the decentralized
foraging behavior of bees to perform optimization.Moreover,
a more interesting consideration in this case is the require-
ment of honey bees to ensure a trade-off amidst the exploita-
tion of already recognized food sources and the exploration of
possibly improved food sources at the neighboring settings.
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FIGURE 5. Structure of fuzzy inference system.

Generally, a beehive consists of bees which are grouped
into three, including the employed, onlookers and scout bees.
Moreover, the total number of employed bees is equal to
the total number of food sources that are available. Assum-
ing a particular source of food is drained, an unemployed
bee becomes a scout bee, to randomly begin a search for
new food sources. Additionally, the employed bees per-
form information exchange regarding food sources with
a certain probability, using the waggle dance [84]. The
ABC provides a global search capability which is realizable
based on source production mechanism [92], [93]. Other
meta-heuristic algorithms include Grey Wolf Optimization
(GWO), Bat Algorithm (BA), Teaching Learning BasedOpti-
mization (TLBO), Firefly Optimization (FFO) and Whale
Optimization Algorithm. For further reading, details of these
meta-heuristic algorithms can be found in [94].

D. FUZZY INFERENCE SYSTEMS
This represents a system which relies on the application of
the principle of fuzzy set theory to achieve the mapping of
an input variable to the appropriate output. Different from
classical binary logic where a given fact is true or false, fuzzy
logic (FL) is a multi-valued logic which is concerned with
the degree of truth or membership. To illustrate this, we can
consider mapping of values in the range of 0 to 1 [95]. More-
over, we can consider Boolean logic as a unique example of
FL. Basically, FS employs fuzzy rules to make use of fuzzy
rules to perform the representation and mapping.

By composition, as illustrated in Fig. 5, the construction of
fuzzy inference systems is based on four key components that
include fuzzier, inference engine, fuzzy rules and defuzzier.
Whereas the fuzzier accepts input variable, the defuzzier is
concerned with the output of the desired value in the map-
ping. The use of fuzzy systems provides the main benefit
of human-like manner of knowledge representation and the
ability to explain. However, fuzzy systems lack the ability to

adjust their behavior in-line with the changing environment.
Moreover, the construction of these architectures calls for
continuous tuning of fuzzy sets and fuzzy rules to match spe-
cific requirements. Today, there is an urge to embrace hybrid
approaches, particularly neuro-fuzzy systems in combination
with the learning power of NN, and the representation and
explanatory capabilities of fuzzy systems to produce better
outcomes.
Summary: The previous section has considered the basics

of ML and DL techniques. We provide a description of the
various ML types and common ML techniques that include
the sub-division of DL, to give insight into these data-driven
technologies.

V. EVALUATION OF SELECTED ML AND DL STUDIES IN
SDN-ENABLED NETWORK
This section is dedicated to evaluation of carefully selected
key SDN-enabled supervised ML and DL-based frame-
works in the context of traffic prediction, flow routing and
QoS-guaranteed with energy-efficiency.

Recently, traffic prediction, energy-efficient routing opti-
mization and QoS provisioning have developed into essential
areas of network traffic management and control, an aspect
which has continued to register increasing levels of ML and
DL application.

A. ML AND DL TECHNIQUES FOR TRAFFIC PREDICTION
IN SDN
This subsection focuses on SDN-enabled network traffic flow
prediction frameworks that employ ML and DL techniques.
Recently, traffic prediction has developed into essential areas
of network traffic management and control which has contin-
ued to register an increasing level of ML and DL application.

Given that SDN controller is limited to ensuring network
intelligence through its programmability and global visibility
feature, it can only allow the semi-automation of simple to
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fairly complex tasks. For network conditions that demand for
complete automation of complex decisions, for instance in the
case of large-sized dynamic networks, the management and
control of such tasks can be delegated and handled through
ML and DL schemes, since they are capable of perform-
ing the required analyses based the huge volumes of data
in real-time, to perform better global routing decisions and
achieve outcomes with higher levels of accuracy. Given next
is a discussion of the most recent ML and DL algorithmic
frameworks in such SDN-enabled networks:

Moreover, Oliveira et al. [96] investigated an algorithmic
framework that employs ANNs to address the issue of traffic
forecasting based in a general Internet scenario. Based on
the work and by using general Internet traffic data, RNN
revealed more superiority and suitability over stacked AE for
performing time-series network traffic prediction. But, it was
observed that to leverage the benefits of ML in the embrace
of intelligent management of 5G network, there is need for a
more complete study, using mobile traffic dataset is needed.

Zhao et al. [97], studied traffic matrix (TM) prediction
in communication networks and suggested a DL framework
which uses LSTM and RNNs to characterize the network
spatial-temporal features. The authors proposed a new TM
prediction framework which employs LSTM-RNN and linear
regressionmethod in a typically large-sized network scenario.
The framework was trained and validated based on real-world
dataset generated from Abilene network topology.

Azzouni and Pujolle [98] proposed NewTM, precisely
a dynamic traffic matrix (TM) prediction framework that
employs LSTM-RNNs technique to achieve future TM esti-
mation, in large-sized networks. Basically, TM prediction tar-
gets the estimation of future network TM, using previous and
current data traffic. This is largely employed in the scope of
network planning, resource management and security provi-
sioning. Accordingly, LSTM has become an appropriate and
hence popular RNN design for data training and classification
or prediction of time series with lags of unknown dimension.
Precisely, LSTM have proved capable of modelling long-
term dependencies, with much accuracy in comparison tra-
ditional RNNs. Unlike the previous work which wasbased
on real-life data traces from Mininet simulator of GAENT
network topology [98], this work employed data generated
from GAENT backbone network traffic. In terms of perfor-
mance, the framework was validated on real-time network
data, and it exhibited fast convergence. But, it reveals high
level of complexity.

Bayati et al. [99] proposed an algorithmic framework
where traffic is modelled at various time-frames, while
employing Gaussian process regression (GPR). The aim was
to reveal different patterns at different timescales. Data that
features both short-time scales and long-time scales was
employed to generate the prediction outcome. Two different
datasets were employed and evaluation outcome revealed low
error propagation values compared to similar algorithms in
LSTM and convolutional LSTM. Perhaps, to resolve the error

propagation problem in the time-step-ahead prediction, this
characteristic can be adapted in future research works.

Tang et al. [100], investigated channel assignment problem
in Internet of Things (IoT) and proposed a novel SDN-based
algorithmic framework that uses deep learning techniques
on the historical data to perform prediction of future net-
work traffic load of the switches and network congestion
and thus allocate channels to each link in an intelligent way.
Their objective was to provide a flexible channel assign-
ment scheme to ensure improved transmission quality for IoT
network system. Originally, the authors employed a simple
deep belief network approach and deep convolutional neural
network (CNN) during the data training phase. Subsequently,
a DL-driven predictive channel allocation algorithmwas inte-
grated to ensure intelligent routing of traffic flows.

Alvizu et al. [101] proposed a ML-based algorithmic
framework which combines RL and MILP (mixed integer
linear programming) to optimise resource allocation in a
dynamic manner, in mobile metro-core network orchestration
system scenario. They focused on the objective to ensure
offline traffic flow demand prediction in such mobile net-
work operator. They proposed a framework to predict traffic
flows by dynamically allocating network resources (slices)
in advance. Here, dynamism means the resource allocation
based on network state variability. Also, the TMvariations are
predicted and used to computes qualsi-optimal assignment
of resources in a pro-active manner. The outcomes reveal
that the solution can decrease the optimal gap for virtual
wavelength path and wavelength path per-hour.

Alawe et al. [102] suggested a novel algorithmic frame-
work which employs ML techniques to anticipate traffic load
variability through prediction, to scale 5G core resources.
A novel mechanism is proposed to scale network resources
in the core domain of 5G networks. To forecast the network
traffic load forecasting, the proposed solution employs real-
life training dataset of traffic arrivals, in a typical mobile
communication network scenario for training a neural net-
work. The solution uses two techniques, namely LSTM-RNN
and deep neural network (DNN). Moreover, the study con-
sidered latency in the scope of system response to network
traffic variability and delay so as to make sure new network
resources are readied to use by the VNF reflect the traffic
increases.

Kaushik et al. [103] proposed a framework which employs
DNN to evaluate and predict traffic activity in a telecom
network scenario. The authors employed a ML algorithmic
techniques that uses auto-regressive integrated moving aver-
age (ARIMA) in comparison with various non-deep learning
algorithmic frameworks. During implementation, the neural
network model was constructed and implemented using Ten-
sorflow library to achieve the functionality and Adam was
used to optimize the loss function. Then, training and testing
was performed based on a publically available open source
big dataset from Telecom Italia, training and testing was
performed.
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TABLE 9. Comparison of SDN-based supervised ml and dl traffic prediction approaches.

VOLUME 8, 2020 166407



R. Etengu et al.: AI-Assisted Framework for Green-Routing and Load Balancing in Hybrid SDN

TABLE 10. Continued from TABLE 9.

Lazarus et al. [104] conducted a detailed investigation and
proposed an SDN-based DL algorithmic framework that uses
LSTMs to aggregate and predict network traffic at short time
scales, for future short-term decisionmaking in TE in produc-
tion networks. The focus was to address the current issue of
short-term scales prediction requirement, which is different
from traditional TM prediction approaches which are basi-
cally on longer-term time scales and so are much easier to
predict. The frameworkwas evaluated based on dataset of real
network traces, by comparing the different variants of LSTM,
including traditional network traffic modelling frameworks.
Different levels of traffic aggregation and time scales were
used in the evaluation.

Le et al. [105] considered the problem of traffic prediction
in the backbone networks, with missing historical data. They
proposed a novel DL framework that employs ConvLSTM to
predict traffic flows in the backbone network. Different from
existing approaches which basically capture ground-truth
input from time-series data, the proposed framework lever-
ages ConvLSTM to treat the spatiotemporal features of the
TMs in the backbone networks, then build an architecture that
conjoins the forward and backward ConvLSTM networks.
Besides, the framework is built with an added model to
determine the flow to be selectively measured in the future

time frame. The proposed solution can perform corrective
action on the data input to enhance the accuracy of traffic
prediction.

Lastly, Chen et al, [106] proposed a DL genetic algorith-
mic (GA) framework that uses LSTM techniques to address
the issue of traffic prediction in dynamically time-varying
networks. The proposed framework is two-fold: first to
employ LSTM techniques to extract temporal data traffic
features. Second, to employ GA to identify the appropriate
hyper-parameters for the build LSTM network. Ultimately,
the authors successfully modelled a GA-LSTM network
design for the prediction of traffic. Using a big dataset,
the GA-LSTMs framework was trained and network traffic
predicted.

This previous subsection has focused on and compared the
different SDN-based supervised ML and DL traffic predic-
tion approaches in SDN, a summary of which is provided
in Table 10.

B. ML AND DL TECHNIQUES FOR ROUTING
OPTIMIZATION IN SDN
This subsection focuses on SDN-enabled network traffic
routing frameworks that employ ML and DL techniques.
Recently, traffic routing optimization has developed into
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essential areas of network traffic management and control
which has continued to register an increasing level of ML and
DL application.

In communication networks, routing objective represents
the principle function undertaken to overcomes link overload
hence transmission delays, a condition which can ultimately
compromise network performance. Of late, many researches
have been conducted to address traffic flow routing prob-
lem. Given the use of SDN, the global visibility and pro-
grammability characteristics can be leveraged to flexibly
configure the network switches and ensure flow routing to
reduce traffic congestion and balance the load. Currently,
two popular routing algorithmic frameworks are available:
first, there exist Shortest Path First (SFP) algorithm which
is a best-effort algorithm, which forwards packet based on
hop-count or delay criteria; second, is the Heuristic Algo-
rithm (HA). Although best-effort SPF algorithmic solutions
are employed, they are not suitable for optimal resource
utilization. Besides, HAs are employed in existing SDN net-
works, but a major challenged that is owed to the use of these
algorithm regard their computational complexity. This condi-
tion can potentially overstretch the SDN controller during the
flow-by-flow routing policy computation.

The recent advances and application of ML and DL tech-
niques in SDN provide a suitable solution. In terms of bene-
fit, ML-based solutions can be trained realize near-optimal
routing solutions in a short time. ML algorithmic solu-
tions are also advantageous because they are based on
data-free model-driven to provide routing optimization opti-
mal decision-making activities. So, RL techniques can be
effectively employed to optimize routing decision. Addition-
ally, supervised learning are employed to achieve routing
optimization decisions. Provided next is a summary of the
most recent studies that are related to predictive network
routing optimization.

Huang et al. [107] proposed a supervised multitask learn-
ing (MTL) architectural framework to perform mobile-based
Internet traffic prediction. The focus was to investigation
how effective that framework is in performing spatial and
temporal feature extraction. In terms of design, the proposed
MLT-based DL network structure include LSTM-RNN and
3D CNN. A supervised MLT-based traffic prediction was
conducted and evaluated using the big dataset from Telecom
Italia.

Also, Sendra et al. [108], proposed an intelligent
SDN-enabled routing framework that leverages RL to
enhance routing performance. Their work emphasized the use
of unique feature of SDN and pattern generation power of
AI to improve routing in such networks. The author leverage
the RL process to compute and select the best routing data
delivery path using the best criteria, while considering the
status of the network. The framework was implemented using
the Quagga suite.

Stampa et al. [109] studied a SDN-enabled determin-
istic policy gradient (DDPG) routing algorithmic frame-
work that leverages DRL and network traffic prediction to

perform dynamic generation of the most optimal path from
the DRL agent. Then, future traffic demand is performed
using the popularly used LSTM. This was motivated by
the need to optimize routing through the knowledge plane
intelligence provided by SDN, in combination with ML and
DL. These advances have provided options to resolve net-
work challenges such as QoS-aware routing optimization
of performance, in typically large-sized dynamic networks.
To determine the state of DRL, they use the TM. Besides,
the action is performed by the tuple upon the weights of
the links. Then, the reward computation is derived from the
average delay of the network. All these were determined
by DDPG. The proposed solution revealed very promising
performance, by providing the benefits of global network
visibility. But, the work was dedicated to the minimization of
the mean latency of the network, disregarding the problem of
QoS routing using various metrics such as latency and packet
loss rate. Also, the solution is complex especially in the cased
of large-sized networks.

Azzouni et al. [110], suggested NeuRoute, a dynamic
SDN-enabled RL framework that employs supervised
LSTM-RNN learning technique for traffic matrix prediction
and routing. The motivation involves the recent growing
popularity of RL techniques in addressing the prediction
and dynamic control challenges in the absence of labelled
data. They proposed a controller-agnostic routing framework
capable of learning a given routing algorithmic scheme and
thus imitate its results through the use of neural network in
real-time. The solution can in real-time perform traffic matrix
prediction and hence train the NN to learn the features of
flows. Ultimately, it extracts the forwarding rules to optimize
the throughput of the network. The approach is effective and
performs better than efficient dynamic routing HA through
computation of the near-optimal shortest path in a short time,
given the available data. But, it requires adequate inferred
data to train the NN.

Mestres et al. [111] investigated the use of neural network
to accuratelymodel delays as a function of input network traf-
fic. Based on ML techniques, a configuration-based search
model is employed to satisfy the target policy requirement.
Different neural networks designs where trained based on
various network scenarios that feature units like network
topology, network size, traffic intensity, and routing. This
consideration is vital to formulate instruction bout how these
neural networks are trained.

Mao et al. [112] proposed a novel SDN-enabled
non-supervised DRL framework that employs DBN. The
framework employs CNN technique to compute the best path
combinations and thus improve path control in SDWNs. The
goal is to alleviate the explosive traffic growth rates typical of
modern large-sized network. The SDN controller is charged
with training the CNN algorithm to learn how to adapt to the
changing traffic patterns, and hence route traffic flows based
on previous experience. In essence, the controller monitors
network performance, captures the network traffic traces
after executing the DL-based routing strategy, to periodically
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retrain the CNN algorithm. The CNN-based solution serves
two roles: performing intelligent routing and self-adaption
to network state variability. The solution repeatedly labels
data capture in real-time, which is then used to retrain the
DL-CNN network architectures. This process allow adapt-
ability to network variabilities. In terms of outcome, the pro-
posed solution can control network traffic as opposed to
traditional routing algorithms, leading to superior quality
service delivery. The solution performs better compared to
legacy OSPF.

Sun et al [113] proposed an intelligent network control
architectural framework that employs DRL to dynamically
optimize routing plans in an SDN-enabled network without
the need for human involvement. The proposed framework
in called TIDE. It was deployed and validated on a real-
world network scenario. Much as many routing optimiza-
tion approaches have been devised over the years, most of
these are complex in terms of application and cannot achieve
optimal performance.

Hossain and Wei [114] proposed an SDN-enabled
QoS-aware intelligent and situation-driven routing frame-
work that leverages RL technique to address situation-aware
and intelligent network routing management. Precisely,
the framework is based on two algorithmic modules. The
continuous QoS monitoring (CQM) module and RL module.
While the SDN-based CQM performs the monitoring of the
state of the network based on QoS metric of the network
(including packet loss and delay), the RL module performs
intelligent routing optimization task. The solution can poten-
tially ensure situation awareness, to overcome network chal-
lenges such as traffic congestion and resource overutilization.

Almasan et al. in [115] propose an a novel SDN-based
OTN-driven ML and DL framework which combines the use
of GNN and DRL to achieve routing optimization in commu-
nication networks. The objective was to optimize routing to
ensure generalization in certainly not seen previously arbi-
trary network topologies. The model employs the GNN to
represent or model the computerized network setting. The
GNN was designed to extract useful information regarding
the correlations between the network links and data traf-
fic flow over the network topologies. Additionally, DRL is
employed to construct an agent-based mechanism that is able
to learn and generalize on how to optimize based on unseen
network topology to achieve the desired goal optimization
function.

Liu et al. [116] proposed an intelligent SDN-enabled rout-
ing framework based on DRL to address the issue of resource
allocation and performance guarantees in traditional DCNs.
The authors focussed on routing and traffic scheduling for
the various traffic categories with different requirements in
SDN-based DCNs. They constructed DRL-R solution based
on deep Q-Network (DQN) and DDPG. Deployed at the
controller, the DRL agent performs frequent interaction with
the network to ensure adaptive and reasonable routing. The
network state is employed to achieve optimal resource allo-
cation to the incoming traffic. The evaluation results reveal

the effectiveness of the DRL-R solution. Besides, the work
leverages the global network view coupled with continuous
learning to improve throughput by 40% over OSPF.While the
flow completion time improved by up to 47%, load balancing
reported an improvement of 8.8%. Overall, DDPG performed
better than DQN.

Ali et al. [117] proposed a dynamic SDN-enabled
DRL framework which employs deep double queue net-
work (DDQN) algorithmic technique to achieve packet rout-
ing. The focus was to address the lack of scalability in the
centralised path computation approaches and the lack of E2E
performance awareness of the distributed approaches. They
considered a hierarchical cluster-based dynamic per-flow
path computation scheme by exploiting theDDQNalgorithm,
where E2E path computation is done at source nodes, with
the help of cluster leader at the various hierarchical levels.
The proposed solution can scale in large-sized networks and
adjust to traffic demand variability, to efficiently employ
network resources. Moreover, the solution is applicable to
segment routing.

Sun et al. [118] proposed a SDN-enabled ML framework
called SINET, that employs DRL to ensure scalability in the
optimization of path routing. To achieve more robustness and
scalability, the framework selects several key nodes, which
are under the direct control of the DRL agent. Moreover,
the agent performs dynamic generation of routing policies to
optimization network performance. After training, the eval-
uation outcomes reveal that SINET solution can reduce the
average completion flows by 32% in a network deployment
of 82 nodes. It also exhibits robust performance against min-
imal time of network topology variability, when compared
against similar DRL-based schemes.

Kumar et al. [119] proposed SDN-based ML algorithmic
framework to ensure efficient routing of the required traffic
flows. The proposed framework is composed of two sub-
units: first is the training unit which learns from the recently
provisioned paths for a particular network state; second is
the deployment unit, upon which the controller is enabled
to perform queries at defined time intervals so as to select
the finest path using the current network state, to provision
new path with the help of the received information.Moreover,
the ML unit performs adjustments to the network topology,
to eventually make intelligent decision about traffic flow
routing. Based on the account of network congestion and
traffic pattern history, network traffic flow routing is done.
Therefore, by using the proposed solution, a list of possible
routes is constructed by the SDN controller through leverage
of network traffic statistics.

Hu et al. [120] proposed an intelligent experiential SDN-
enabled DL framework known as EARS to automate traffic
routing. The focus was to maximise network utilization using
throughput and delay metrics. The work considered various
flow features to develop a DDPG-based automatic routing
algorithm as DRL decision brain. The algorithm was used
to determine the near-optimal paths that, respect to mice
and elephant flows. The solution was evaluated in a real-life
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environment and the evaluation outcomes reveal a signifi-
cant improvement in the network throughput, coupled with
reductions in average packet delay, when compared against
baseline schemes such as OSPF and ECMP.

Fu et al. [121] proposed a SDN-enabled ML algorithmic
framework that employs deep Q-learning (DQL) to optimise
routing path computation in DCNs. The focused on meeting
the traffic demands of elephant flows and mice flows by
considering throughput, latency and packet loss. To define
the network state, they employed port rate and flow table
utilization. To achieve the above requirement, Q-network
was trained. The evaluation outcome reveals that the rout-
ing optimization solution can outperform ECMP routing and
selective randomised load balancing (SRL) + FlowFit.

Zhang et al. [122] proposed a CFR-RL (Critical Flow
Rerouting-Reinforcement Learning), a Reinforcement Learn-
ing based scheme that learns a policy to select critical flows
for each given traffic matrix automatically. CFR-RL then
reroutes these selected critical flows to balance link utiliza-
tion of the network by formulating and solving a simple
Linear Programming (LP) problem. Extensive evaluations
show that CFR-RL achieves near-optimal performance by
rerouting only 10%-21.3% of total traffic.

Provided in the previous subsection is a comparison of the
different SDN-based supervised ML and DL routing opti-
mization studies in SDN, a summary of which is provided
in Table 11.

C. ML AND DL TECHNIQUES FOR QOS PREDICTION
IN SDN
This subsection focuses on the related SDN-enabled QoS pre-
diction frameworks that employ ML and DL techniques. The
purpose is to give a summary of ML and DL QoS-guaranteed
traffic prediction in the scope of SDN networks. Lately,
QoS prediction has developed into essential areas of network
traffic management and control, which has continued to reg-
ister an increasing level of ML and DL application. QoS
prediction is essential because it enables communications
service providers such as operators and ISPs to estimate net-
work performance to better deliver enhance QoT of services
or applications, to ultimately improve customer satisfaction
and overcome churn by customers. Some of the commonly
used network-driven QoSmetrics by communications service
providers to measure network performance include through-
put, delay, jitter and packet loss rate. Moreover, these met-
rics are related to network key performance indicator (KPIs)
like queue length, packet size and the rate of transmission,
among others.With the popularity of SDNparadigm, network
operators can now leverage the centralized characteristic of
SDN to capture traffic statics from the network switches in a
fine-grained (port by port and flow by flow)manner. Based on
the collected data statistics, ML algorithmic techniques can
be employed to achieve QoS prediction.

Generally, by leveraging ML techniques to discern the
quantitative correlations amidst KPIs and QoS metrics, net-
work operators can be able to predict QoS parameters based

on KPIs and enhance the management of QoS. One important
observation is that, while QoS metrics are primarily contin-
uous data, QoS prediction issue can be regression. Precisely,
supervised ML has moved to the fore as a suitable technique
for network QoS prediction. Provided next is a discussion of
selected SDN-enabled ML and DL studies in the scope of
QoS prediction:

Jain et al. [123] investigated the requirement to predict
traffic congestion and suggested a multi-layer SDN-enabled
QoS-aware routing (QAR) framework which employs
M5Rules. The framework employs a combination of decision
trees (DT) linear regressions to improve QoS management.
The two-stage analytical framework features a multi-layer
tiered SDN-based network application scenario. Moreover,
the SDN control plane consist of a three levels of con-
troller designed to reduce signaling-drive delays. The work
considered efficiency, adaptability and packet forwarding
application requirements. The proposed framework features
a multi-dimensional analysis of key performance indica-
tors (KPIs) from the networks and apply ML algorithmic
schemes to automatically discover and extract new correla-
tions, which are divided into estimated correlations, deter-
mined correlations and unpredicted correlations. Thereafter,
root cause analysis of future network trends is performed
to make traffic predictions. Basically, the approach is able:
discover correlation data using big data analytics; make pre-
dictions; and support trend analysis. The proposed system
is able to achieves better accuracy ration with minimal false
alarms.

Lin et al. [124] proposed a multi-layer SDN-enabled
DRL framework to ensure QoS-aware adaptive routing
(QAR), in distributed hierarchical control plane architectural
deployment. Different from the use of traditional Q-learning
approach, the framework employed softmax action selection
policy and state-action-reward (SARSA) algorithmic tech-
nique to ensure quality update. For every traffic flow, the cen-
tralized SDN controller performs update of the optimum
routing policy by using the QoS needs and hence providing
the forwarding table to every node along the forwarding path.

Yan et al. [125] proposed an SDN-enabled multi-layer
on-demand network monitoring framework. The aim was
to extend network analytics to the converged optical and
packet network. In the design, big data analytical platform
is employed to generate big data processing services. The
framework also employs the network monitoring hub to
capture and pool various monitoring information originating
from the different layers for processing at the centralized
server location. By using the on-demand network design,
many network monitoring tools are provided in form of net-
work services. Moreover, deployed at the SDN controller
are the various applications that deal with the processing of
the captured information, to enable multi-layer analysis by
employing the SDN-enabled monitoring framework.

Carner et al. [126], proposed a ML framework that relies
on traditional network model and NN model to estimate net-
work traffic delay. To assess the performance, the researchers
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TABLE 11. Comparison of SDN-based supervised ML and DL routing optimization studies.
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TABLE 12. Continued From TABLE 11.

employ the traffic load and the overlay routing policy to
automate model training, to ultimately achieve network
delay estimation. The evaluation outcome reveals that the
NN-based estimation techniques outperform the traditional
counterparts, when accuracy of delay is taken into con-
sideration. Unlike the traditional regressor-based estimator,
the human user can barely interpret the trained generic adap-
tive NN-based estimation solution.

Pasquini & Stadler [127] investigated and proposed an
SDN-enabled ML framework that employs RG and RT to
ensure application-aware QoS estimation. The two tech-
niques were employed to estimate frame rate and response
time parameters in video on demand (VoD) application.
To perform the estimation effort, the authors relied on the
generated device statistics, that precisely feature the operat-
ing system (OS), port and flow granularity.

Pasca et al. [128], considered the use of ML technique
with the objective of achieving application identification.

They focused on the classification of traffic flows
by application-aware multipath routing approach for
SDN-enabled networks. Moreover, the work featured con-
trolled network resources such as bandwidth and low latency
paths based on their specific priorities. An AMPS frame-
work was proposed to automatically classify inbound traffic
flows and employ QoS-based policy per flow, on the basis
of its needs. The proposed solution consists of a Machine
Learning Trainer (MLT) and Machine Learning Classifier
(MLC), which are integrated into the SDN controller. The
outcome reported an accuracy rating of 98% compared to
other approaches, such as SVM, Bayesian Network, Naïve
Bayes Kernel Estimation and Naïve Bayes. But, there was no
report on the degree of precision, recall, and f-measure.

Pham et al. [129] proposed an SDN-enabled QoS-aware
routing framework that employs DRL with CNN. This study
was undertaken in the scope of knowledge defines network-
ing (KDN). Moreover, the research effort was motivated by
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the highly complex requirement to support the much desired
QoS-aware routing optimization, in the context of modern
networks that feature many traffic flows which are coexistent
in the same network. To address the issue, ML-based CNN
technique was employed to capture the relationship between
the network traffic flows and hence provide improved routing
configurations.

Yao et al. [130] proposed an SDN-enabled network mon-
itoring framework, that employs RL techniques to exert net-
work control in an intelligentmanner. Generally, the approach
relies on big data analytical platform to support big data
processing services. The drive was to resolve the issue of
manual operational processes that characterize the configura-
tion of forwarding approaches in SDN. The proposed solution
leverages the SDN and network monitoring tools to build a
fully centralized network view and exert management and
control of physically separated network. Then a centralized
intelligent-based agent is constructed to a provide network
control policy through DRL. Precisely, the centralized intel-
ligent agent is constructed to ensure policy learning through
network-driven interaction. This requirement is vital to meet
the much desired needs of modern large scale dynamic net-
works. The solution can provide self-learning control in SDN
through the use of RL and network monitoring tools to
generate dynamically network control policies. The concept
of centralization enables improved application of ML in the
network to resolve the network issues.

Al-Jawad et al. [131] suggested an SDN-enabled RL
algorithmic framework called LearnQoS, which employs
Q-learning for policy-driven networkmanagement. The focus
is to ensure specific QoS optimization requirement for mul-
timedia service provisioning. Three elements where consid-
ered to model the proposed RL framework, namely state,
action and reward. The state is represented by the generated
TM. Besides, to represent the agent, four various actions were
considered: do nothing; upscale the data transmission rate;
downscale the data transmission rate and perform a reroute.
Moreover, the rewards were considered based on SLA con-
straints. Although the solution has network overheads, there
was a major improvement in QoS performance, when com-
pared against existing multimedia-enabled System.

The previous subsection has compared the different
SDN-based supervised ML and DL QoS-based routing stud-
ies in SDN, all of which are summarized in Table 13.

D. ML AND DL TECHNIQUES FOR ENERGY-EFFICIENT
ROUTING IN SDN
This subsection gives a discussion of some selected
SDN-enable energy-efficient routing algorithmic framework
using ML and DL. Featured in the works discussed are
important system parameters such as QoS optimization,
congestion control, delay and reliability. Recently, various
researchers conducted a number of studies aimed at combin-
ingmachine learningwith SDN, details of which can be found
in [132]. Following is a discussion of the recently selected
SDN-enabled energy-efficient ML and DL studies:

Lin et al. [124] proposed a data center server-driven power
utilization technique that leverages ANN. The study was
motivated by the reactive nature of existing cloud-based
server-oriented energy-aware scheduling approaches, a con-
dition which leads to the lack of capacity to dynamically
adjust to different workload variability. To address this, the
authors conducted fine-grained and in-depth performance
analysis that features power utilization attributes of the CPU,
memory and server disk. In the analysis the considered the
execution of various kinds of task loads. Different power
utilization approaches were established based on BP, Elman
and LSTM-ANN, respectively. To evaluate the performance,
data from various kinds of task load were capture and used to
train, validate and test the three power models.

Bayati et al. [133] proposed an improved multi-step-
ahead energy-efficient framework to ensure predictive traffic
demands forecasting. The proposed framework is called pre-
dictive adaptive link rate (PALR). The study was motivated
by the undesirable reactive nature of current model-based
energy-efficient routing frameworks, where the link speed
is only adjusted on receiving a fresh traffic demand. Also,
current energy-saving approaches put emphasis on energy
utilization, disregarding the cost of network changes such as
traffic routes and link rates during an entire session. Such
a condition can lead to sub-optimal performance, especially
in the future dynamic and large sized networks. With this
condition, the requiring to ensure re-optimization during a
session cannot be overemphasized, to improve the overall
performance rating. To address the problem, the authors for-
mulated an ILP approach and devised a simulated annealing
scheme to compute its solution.

Bayati et al. [134] proposed a novel multi-step futuristic
framework to predictively optimize link rates through traffic
demand forecast. They formulated a multi-objective integer
programming (MIP) mathematical model for energy-efficient
link adaptation problem and proposed a heuristic simulated
annealing algorithm to resolve it. The obtained result reveal
that improved energy-savings with a significant reduction in
re-optimization rounds in the energy-efficient routing. This
work represents an improvement in previous link rate adap-
tive, emphasizing the effectiveness of link rate adaptation in
network energy-savings though re-optimization of the traffic
flow assignment process.

Covered in the previous subsection is a comparison of the
different SDN-based supervised ML and DL energy-efficient
routing studies in SDN, a summarized in Table 14.

E. HYBRID ML AND DL TECHNIQUES FOR IN
SDN-ENABLED NETWORKS
This subsection gives a discussion of some selected hybrid
or multifaceted SDN-enabled ML and DL algorithmic tech-
niques. Various researchers have proposed many hybrid ML
and DL architectural frameworks that employ at least two
intelligent techniques to improve the overall performance of
such algorithms.
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TABLE 13. Comparison of SDN-based supervised ML and DL QoS-based routing studies.
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TABLE 14. Comparison of SDN-based supervised ML and DL energy-efficient routing studies.

Sabih et al. [135] proposed an innovative hybrid
SDN-enabled framework that employs intelligent-based tech-
niques and ANN network architecture to investigate per-
formance optimization requirement in such networks. The
objective function was on maximal optimization of network
performance and computational time. To select the best input
set of network configuration for network efficiency optimiza-
tion, the ANN architecture was trained using unseen data,
taking into account the computational efficiency and per-
formance index metrics in SDN-enabled network scenario.
Then, the trained model was applied to study the behavior
of the SDN network. Moreover, the two HA algorithms were
applied independently: GA and Particle Swam Optimization
(PSO). The outcome reveals that PSO exhibits better perfor-
mance with a faster convergence time compared to GA.

Huang et al. [136] proposed an SDN-enabled framework
which employs DNS response exploration andML to achieve
QoS-guaranteed application identification. They considered
the application of a classification system which applies a
polling strategy based on the use of RF, rotation forest, ran-
dom committee with random tree. Their work was motivated
by the increasing demand for application-driven manage-
ment of QoS. Moreover, using the generated data of traffic
flows, the system was evaluated and the outcomes shows that
combined hybrid solution can achieve higher accuracy when
compared against independentML approaches. The proposed

solution performs performed highly in terms of application
identification accuracy. The average F-measure of 93.48%
was reported.

Assefa and Ozkasap [137] proposed a hybrid SDN-enabled
energy-efficient routing framework that employs ML and
RL technique to improve link performance. The researchers
considered a strategy where network traffic is represented as
features, upon which feature size reduction can be performed
using numerically proven algorithmic techniques, to provide
heuristics that can potentially improve the accuracy assess-
ment to 100%. The work modelled a dynamic SDN-enabled
energy-efficient routing algorithm that use RL technique.

Yao et al. [138] proposed a hybrid SDN-enabled ML algo-
rithmic framework that integrates a distributed intelligence
control with a centralized intelligence control to provide vari-
ous network services. The distributed intelligence is called AI
routers, while the centralized intelligence is called network.
Moreover, the framework deploys a centralized AI control to
support connection-oriented tunneling-enabled routing pro-
tocol, like multiprotocol label switching and segment routing
to provide high QoS. Besides, for the hop-to-hop IP rout-
ing, the intelligence control role is moved to the AI router,
to minimize the control overhead exerted by the centralized
control, and employ the network mind to improve the global
convergence. The solution was evaluated by considering
throughput, packet loss and link utilization. The results reveal
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TABLE 15. A summary of hybrid supervised ML and DL studies in SDN-enabled networks.

that the hybrid solution can outperform baseline routing pro-
tocols like OSPF and ECMP.

VI. CHALLENGES AND FUTURE DIRECTION
The previous section covered the use of ML in SDN-enabled
communication networks, including ML types, common ML
and DL techniques and a discussion of selected supervised
ML and DL-based studies, while featuring traffic prediction,
QoS-guaranteed routing optimization and energy-efficient
routing. This section is dedicated to a comparison of the
most recent studies, identification of the relevant research
challenges and a description of future research in transitional
hybrid SDN/OSPF networks. The section is sequentially
structured into research analysis and identification of cur-
rent research challenges, followed by a description of future
research direction.

A. GAP ANALYSIS AND EMERGING RESEARCH
CHALLENGES
This subsection gives a summary of the research gaps iden-
tified and the emerging research challenges. First, the work
identifies and summarizes the gaps and challenges of load

balancing and energy-efficient routing studies conducted for
hybrid SDN/OSPF networks, as given in Section III. Second,
we identify and provide a summary of studies in the field of
ML andDL in SDN-enabled networks, as detailed in Section .
Based on this summary, we point out emerging research
challenges.

1) ANALYSIS OF SELECTED LOAD BALANCING AND
ENERGY-EFFICIENT ROUTING STUDIES IN HYBRID
SDN/OSPF NETWORKS
The realization of fine-grained traffic prediction is an impor-
tant requirement in the management and control of a wide
range of TE functions [104]. Some of the important TE tasks
that demand for enhancement in terms of network control and
operations management include traffic flow routing, load bal-
ancing, energy-efficiency and QoS-aware service provision-
ing. The emergence of SDN architecture provides a suitable
solution, however, complete deployment of SDN is currently
unachievable. A preferred solution is hybrid SDN/OSPF net-
works, but it faces many challenges. Section III of this article
has reviewed the most recent studies of load balancing and
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energy-efficient routing techniques for hybrid SDN/OSPF
networks.

Provided in this part are the observations made given the
analysis conducted to define future research directions. Based
on the analysis conducted, an important observation made
is that the majority of these studies have mainly featured
model-based algorithmic solutions that employ generic QoS
provisioning strategies. Such model-based generic solutions
are constrained to the use of single QoS metric. Moreover,
the model-based solutions employed are based on the use of
traditionally configured network control plane mechanisms
for traffic forwarding which can degrade network perfor-
mance.

One of the key challenges faced in the optimization of
energy-efficient routing while ensuring QoS guarantees is
the slow network convergence and slow response to net-
work variability in such hybrid SDN/OSPF networks. Today,
the increasingly fine-grained network control requirement
rapidly scales the network, and this is coupled with the
exponential traffic growth. This makes traditional routing
algorithms such as OSPF unsuitable for SDN, due to its slow
convergence and slow response to network dynamicity.

Another challenge concernsthe development of model-
based algorithmic approaches that support network traffic
prediction and energy-efficient routing of a wide range of
network traffic types, mainly due to the diversity of emerging
multimedia services or applications. To provide support to
the growing diversity of next generation user traffic and mul-
timedia application delivery with strict QoS requirements,
it is essential to combine all the important performance met-
rics, a condition which demands for the development of an
integrated routing solution which considers all the key QoS
metrics.

Additionally, selected energy-efficient routing solutions
were reviewed and it was observed that the majority of these
solutions have not considered the TE objective of load bal-
ancing. Also, many of these studies disregard the important
requirement to collectively consider multiple important QoS
metrics [67], [68]. However, owing to the need to distribute
a growing range of next generation user specific services or
application classes with strict QoS guarantees, more research
should be conducted to develop innovative dynamic solu-
tions. These solutions are essential in the quest for accurate
operation of such hybrid networks, in order to achieve the
desired network performance, mainly in terms of enhanced
bandwidth utilization, improved energy-savings, throughput,
minimal packet loss, improved throughput, low latency and
jitter [53].

The increasingly fine-grained network control requirement
can rapidly scale the network, moreover coupled with expo-
nential traffic growth, a condition which makes traditional
routing algorithms such as OSPF unsuitable for SDN, due
to the slow convergence and slow response to network vari-
ability. The above condition challenges the optimization of
routing while ensuring QoS guarantees.

2) ANALYSIS OF SELECTED ML AND DL STUDIES FEATURING
TRAFFIC PREDICTION, ROUTING OPTIMIZATION,
ENERGY-EFFICIENCY AND QOS PROVISIONING IN
SDN-BASED NETWORKS
a: OVERALL ANALYSIS OF ML AND DL STUDIES
The current networking trends reveals that ML and DL tech-
niques are gaining popularity in the management and control
of communication networks, owing to current advances in
two key innovative technologies, namely SDN [19], [20]
and NA [25]. With the growing interest in the use of ML
and DL techniques, a wide-range of network-based appli-
cations can now be supported. Such applications include
traffic prediction, routing optimization, energy-efficiency and
QoS-guaranteed service delivery.

As a recap, recent advances in ML have led to
growing popularity in the use of supervised ML techniques
in computer networking [24]. Although the effective use
of ML techniques such as LSTM-RNN for traffic predic-
tion can facilitate intelligent network management and con-
trol, parameter setting due to randomly changing nature of
network traffic is a challenge, owing to the use of local
optimization mechanisms [132]. This condition demands for
a strong requirement to carefully set network parameters
to ensure improved performance, based on high prediction
accuracy in a typical dynamic large-sized network scenario.
As an extension, the above condition requires balancing the
trade-off between model training time and learning accuracy,
to extract the finest design for the problem use case. The
important parameters commonly considered include the num-
ber of hidden layers and the number of neurons for each
hidden layer. As a possible solution, the recent integration of
HA such as GA and DL has attracted considerable research
interest because it enables more efficient selection of the
hyper-parameters. However, many researchers are concerned
about the inability of DL techniques to address the challenge
of network variability. Perhaps, the use of RL can deliver
a suitable solution, to improve network management and
control.

In recent years, the literature has reported an increasing
interest in the use of RL to improve network control and
management [71], [72]. Principally, the underlying objec-
tive of the design of RL concerns the need to address
issue of network variability and changes in the network
state. Lately, some proposed RL-based routing solutions
have reportedly outperformed other ML techniques such as
DNN [139]. This comes as a major motivation to the embrace
and advancement of RL for efficient network control and
management.

As discussed in Section V, RL techniques have recently
been leveraged to resolve the issue of traffic routing optimiza-
tion in SDN-enabled networks [127]. Also, the use of RL has
been reported in application areas such as energy-efficient
routing in SDN-enabled networks. Other studies have con-
sidered the use of RL in addressing routing with QoS-
guarantees [121], [130]. However, such studies are based on
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traditional table-based agents which cannot support the need
for efficient solutions in the condition of unseen network
topology state [108]. Traditional table-based agents normally
perform based on a specific network topology observed in
the course of model training. So, the agent is unable to
generalize and perform over unseen network states in unfa-
miliar network topologies [138]. This observation is backed
up by the reason that computer-based networks are primarily
represented as graphs. Clearly, the complexity in hyperpa-
rameters definition remains a major challenge to the use of
RL-based techniques, calling for practical solutions to be
devised.

To address the aforementioned challenges, DRL algorith-
mic approaches have recently been investigated. In partic-
ular, DRL approaches such as Q-learning are increasingly
gaining the attention of researchers as a probable solution to
the existing challenges [109], [115]. Principally, Q-learning
undertakes an action with the highest reward [139]–[141]
and this has made many researchers to believe that a prob-
able solution to the challenge of unseen network state is
DRL [113].

Additionally, the iterative enhancement optimization pro-
cess and heuristic through the use of DRL-agents is capable
of providing near-optimal solutions in one step. With the
recent progress in DNN [24], [114], [129], there has been
considerable progress in the performance of DRL, in the
scope of network control and management. This comes as a
major motivation to embrace of DRL.

b: OBSERVATION AND LESSONS LEARNT
The aforementioned section has evaluated related works that
employ various ML and DL techniques in SDN-enabled net-
works. Generally, it should be observed that current research
on the application of ML and DL in SDN is a wide domain
currently faced with several challenges. As previously stated,
modern networks are characterized by intense uncertainties
and dynamicity in traffic flow trends, and the operating cir-
cumstances of networking devices such as routers, network
topology and the condition of wireless network channels.
These different characteristics complicate the use of tradi-
tional ML techniques in modern network management and
control.

Lately, the use of ML and DL technologies has become a
reality in existing networks, but this development is still at
its infancy. Due to this condition, the pressing need to devote
additional research efforts toward the advancement of such
technologies, in the modern networks cannot be overempha-
sised. The observation made is that, owing to the limitations
of traditionalML andRL techniques, DRL provides a suitable
option to deliver optimal performance in the context of mod-
ern large-sized communication networks. Unlike SL which
emphasizes on traffic classification and regression activities,
DRL is concerned about the target algorithmic models which
can be trained and learned to determine the finest sequence
of actions, for maximizing the objective function (target
reward). As previously stated, a major motivation for the

use of DRL technique is its suitability in resolving complex
problems in modern dynamic and complex networking envi-
ronments [139].

DRL offers a flexible means to support rich and
wide-ranging diversity of applications which are traditionally
based on dynamic system modelling and the interaction of
multiple agents. Based on the observation made, we provide a
vision towards the development and embrace ofML and DRL
frameworks for the optimization of network performance.
The above configuration leads to enormous space transitions
and actions space in modern dynamic and complex networks.
As a recap, the relevant approaches reviewed are summarized
in Table 9-15.

Moreover, based on the above analysis, we observe that
the problem of NUM in various network scenarios for
TE and resource allocation are limited by different control
variables, which can be discrete or continuous. Initially,
the discrete variables of interest include indicators such as
routing path selection and assignment. Besides, the spe-
cific continuous indicators are energy-efficiency optimiza-
tion and load balancing with QoS guaranteed metrics, which
are required to mitigate network congestion. Based on the
work summarized in Table 9-15, the analysis reveals the
extensive use of DQL and policy gradient approaches in
addressing discrete and continuous control problem, in that
respect.

c: SDN-BASED ML AND DL ROUTING OPTIMIZATION
STUDIES AND CHALLENGES
In this part of the work, we focus on the use of SL and
DRL. A main motivation for using ML techniques is due to
their suitability to resolve complicated problems in typically
complex networking field. The use of DRL emphasizes the
training and learning of the target algorithmic models to
determine the finest sequence of actions desired for maxi-
mizing the target reward. Specifically, the work focuses on
energy-efficiency and routing optimization in SDN-enabled
networks. Based on the above analysis and observation,
we maintain the observation that the optimization of both
energy-efficiency and routing are important functions SDN-
enabled networks, this is because their metrics provide the
much desired help to evaluation network performance. Based
on the previous comparative analysis, a number of observa-
tions can be made, from which the following challenges are
defined.
Challenges: Following are the challenges identified based

on the analysis of current SDN-based ML and DL routing
optimization studies:
(i) Performing precise hyper-parameter setting for DL

networks can be difficult due to the dynamicity of
the network environment, with time-varying network
topology and traffic load.

(ii) Using supervised ML algorithmic framework when
collecting the required adequate labelled train-
ing dataset incurs high computational overheads
(complexity).
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d: SDN-BASED ML AND DL QOS GUARANTEED STUDIES
AND THE CHALLENGES
Unlike the above subsection which emphasizes on energy-
efficiency and routing optimization functionalities, here we
consider traffic prediction with all the important QoS guar-
anteedmetrics in such SDN-enabled networks. The important
QoS metrics include load balancing (to reduce traffic conges-
tion), throughput, delay, jitter and packet loss. The emphasis
in this work is on load balancing metric to reduce traffic con-
gestion and improve network performance. As revealed ear-
lier, the prediction of the QoS metrics commonly employed
by operators and ISPs to evaluate network performance is
an important consideration in similar communication net-
works. Using the summary provided in Table 13, selected
SDN-based ML and DRL QoS prediction studies have been
analyzed, upon which observations have been made and the
following challenges are identified.
Challenges: A major research challenge of ML and DRL

techniques in SDN involves the scarcity of labelled data
required to train and learn the built DNN models. The dif-
ficulty to generate adequate labelled training dataset is due
to high cost and time limitation. Normally, there is need for
large volumes of training data, the scarcity of which can
compromise the accuracy and choice of algorithmic frame-
works. Also, the need for adequate training dataset can to
a large extent determine the performance of supervised ML
algorithmic frameworks, in terms of training and learning
time taken to attain convergence.

Generally, a popular view shared by many researchers
to provide working solutions is to consider the imperative
strategy to integrate supervised, unsupervised and DRL to
teach the constructed DNN on how to learn with limited
data. On one hand, this strategy means that unsupervised and
supervised learning can be based on limited data. On the other
hand, DRL can be performed to teach the DNN on how to
pool its knowledge to improve efficiency and effectiveness to
learn new events. This strategy can minimise the amount of
training data needed.

B. FUTURE RESEARCH DIRECTION
Based on the above observation and challenges, energy-
efficient routing and load balancing with QoS guarantees
are important TE objectives, especially in the realization
of quality management and control of networks. On the
one hand, the use of energy-efficient solutions in hybrid
SDN/OSPF can potentially lead to OPEX reductions. On the
other hand, load balancing with QoS guarantees can over-
come network congestion and improve QoS and QoE in such
networks. Additionally, it is important to observe that sin-
gle or non-integrated implementation of all the QoS metrics
can still result in network performance degradation in such
hybrid SDN/OSPF. Therefore, to provide additional gain,
the work herein recommends further research to devise inno-
vative solutions that can achieve a good trade-off between
energy-efficient routing and performance optimization.

Additionally, with current advances in communication net-
works, the need to resolve the challenge of insufficient data
and embrace of traffic prediction have become important
requirements for communications service providers to deliver
the required QoT, more so in the perspective of the emerging
high volume multimedia services or applications. Essentially,
traffic prediction enables network state to be estimated, hence
resolving routing issues such as congestion well ahead before
QoS can be compromised. This condition can be resolved by
leveraging the availability of data, and the potential appli-
cation of RNN in traffic prediction analysis to derive accu-
rate energy-efficient routing decision outcomes. Today, many
researchers envision that a promising solution to the current
challenges involves combining SDN and ML-driven network
analytics, thus embracing AI approaches in the operational
management and control of networks.

Motivated by the current advances in networks, combined
embrace of ML, AI and big data analytics in the context
of SDN-enabled networks can improve the capabilities of
traditional IP-based networks. This strategy facilitates the
delivery of scalable and responsive multimedia services in
an energy-efficient way, especially in the emerging dynamic
large-sized networks. To this end, this work recommends
future studies to leverage conjoint ML and AI-assisted pre-
dictive and rate adaptive data-driven energy-efficient routing
approaches that employ RNN and linear regression technique
in hybrid SDN/OSPF networks. This will provide the option
to extend programmability to the core domain in existing
telecommunications networks, with the deployment of hybrid
SDN/OSPF networks. In light of this strategy, networks can
potentially deliver the goal of achieving dynamic and glob-
ally cost-effective energy-efficient routing of traffic flows to
balance the load and prioritising end-to-end QoS guaranteed
multimedia applications hybrid SDN/OSPF networks.

In the current state of network evolution characterized by
the ever-increasing volumes of traffic flows, QoS guaranteed
restrictions and differentiated service provisioning and the
demand for energy-efficient greener networks that feature
reductions in CAPEX and OPEX, it is important for the
Telecommunication industry to embrace a network manage-
ment and control framework that leverages ML and DRL
approaches to achieve predictive and rate adaptive traffic
prediction and energy-efficient routing to balance the load in
transitional hybrid SDN/OSPF network.
Summary: The aforementioned section has presented the

related challenges and future research direction based on
the evaluation conducted. Moving forward, it is essential to
devise practical solutions. We believe the discussions pro-
vided in this part of the work will unveil new research spaces
for advancement toward the much desired intelligent next
generation networks.

VII. PROPOSED ML AND DRL FRAMEWORK
This section considers the proposed integrated SDN-enabled
ML and DRL-based architectural framework. The vari-
ous subsections covered include overview of the proposed
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framework, description of the proposed ML and DRL
framework, system architecture, conceptual framework,
LSTM-RNN network architecture and the generic DRL
architecture.

Basically, the article considers a hybrid SDN/OSPF net-
work deployment, where the SDN controller which forms the
main node in the network performs energy-efficient routing
and performance with QoS guarantees. Moreover, it performs
traffic flow routing decisions that interlink the various net-
work sub-domains in the hybrid network.

A. OVERVIEW OF THE PROPOSED FRAMEWORK
The current surge in data volumes has led to explosive
Internet growth, advent of cloud computing and rapid
progress in wireless communications [1]. There are two
important concerns that arise in the current state of net-
work expansion. First, communications service providers
need to deploy efficient and intelligent networking solu-
tions to support the huge traffic demands and to reduce the
capacity pressure on their network infrastructure. Second,
novel energy-efficient networks should be devised to reduce
network utility costs and carbon footprint. Because com-
plete SDN deployment is currently impractical in the
short-term, hybrid SDN/OSPF becomes the preferred alter-
native for MNOs and ISPs, however, it suffers various
challenges [52]–[56], [58], [62]–[64], [66]. Although many
model-driven energy-efficient routing and load balancing
algorithms exist for use in hybrid SDN/OSPF, they are barely
generic and reactive by design and are characterized by
the manual control plane forwarding configuration mecha-
nisms. Given the above, these solutions can still leads to
performance degradation, inmodern large-sized dynamic net-
works [52], [67], [68], [104], [135], [142].

The recent technological breakthroughs in ML and DL has
significantly influenced the innovative efforts of researchers,
an aspect that is hard to ignore. This trend has led to
diverse subdivisions of networking developments. Today,
a popular network design trend among communications
network researchers and operators indicate a progressive
transition from network-driven models that consider QoS
metrics to model-free data-driven strategies [24], [104].
Besides, the recent progress in ML techniques such as
RNN and DRL has surpassed human level performance in
addressing extensive online network control and manage-
ment tasks [25]–[28]. This has motivated the need to employ
innovative model-free data-driven frameworks that con-
sider cost-effective energy-efficient routing and performance
optimization with QoS guarantees, in hybrid SDN/OSPF.
We envision that the solution to the problematic trade-off
between energy-efficient routing and network performance
will greatly depend on the most promising data-driven ML
and DRL approaches [24], [129], [104]. To illustrate the
above relationship, the next subsection considers a descrip-
tion of the proposed supervised ML and DRL for Hybrid
SDN/OSPF.

B. DESCRIPTION OF THE SUPERVISED ML AND DRL
FRAMEWORK
Existing solutions to energy-efficient routing are rule-based
HA, which are easier to interpret and implement. How-
ever, in the current state of network expansion, such solu-
tions are inadequate given the generic nature of model
design [73], [143]. Differently, this work for the first time,
to the best of our knowledge proposes a novel architec-
tural framework which leverages an integrated supervised
ML and DRL techniques in hybrid SDN/OSPF networks
to realise rate adaptive and cost-effective energy-efficient
routing and performance optimization with QoS guarantees,
to distribute a diversity of modern multimedia services or
applications [98], [99], [104], [105], [109], [113], [115],
[117], [123], [129], [134], [137], [144].

The proposed framework is composed of a hybrid
SDN-enabled supervised ML module and DRL module.
On the one hand, the hybrid SDN-enabled supervised ML
module is divided into three phases which include feature
extraction, deployment (algorithmic model training and test-
ing), and result and analysis or evaluation. By and large,
the module is based on a DNN construction which employs
LSTM-RNN algorithmic technique to perform traffic flow
prediction using time-series dataset [108]. Based on the
supervised ML module, LSTM-RNN algorithm is employed
to extract short-term network data traffic variabilities and
periodicities, resulting in the meaningful features which are
combined at the integration step to ensure traffic flow pre-
diction and energy-efficient routing with guaranteed QoS
performance. On the other hand, the DRL module per-
forms learning from the existing historical data or right from
scratch by iteratively interfacing with the defined network
setting [113]–[117], [129]. Using publicly available dataset,
the module can be evaluated in terms of accuracy and conver-
gence speed.

The DRL module is employed to ensure energy-efficiency
and network performance by interfacing with the network
setting. This explains the rationale of how the module is
able to learn from scratch or by relying on the supervised
module. This form an integrated solution which leverages
LSTM-RNN network architecture and DRL technique to
achieve traffic prediction and rate adaptive energy-efficient
routing and performance optimization with guaranteed QoS
provisioning, in hybrid SDN/OSPF.

Unlike traditional NN approaches, which directly employ
shallow LSTM-RNN [114], [116], the proposed solu-
tion employs Deep LSTM-RNN [109], [129]. Recently,
LSTM-RNN architecture has drawn the interest of
researchers. Through leverage of the interfacing strategy,
we can resolve the issue of network traffic load variability
and status changes. The DRL module aims to alleviate the
energy-efficient routing problem by exploiting the pinning
control theory [119]. Moreover, we integrate the pinning
control theory with the DRL module to manage the hybrid
network.
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Unlike the existing ML solutions, the proposed
framework addresses several objectives using several algo-
rithmic frameworks. The objectives addressed include
energy-saving efficiency, network performance enhance-
ment, computational efficiency (which features speed and
memory space utilization) and dynamicity, particularly in
modern large-sized networks with time-varying and growing
volumes of heavy multimedia traffic. Clearly, there is hardly
any report about the application of LSTM-RNN technique
for network traffic flow prediction and the optimisation of
energy-efficient routing in hybrid SDN/OSPF. Given the
promise, more research effort is required.

Moreover, the DRL module is designed to employ deep
Q-learning and SARSA algorithms to train the optimal policy
in hybrid SDN/OSPF networks [105], [113], [106]–[117],
[126], [130], [139], [144]. Lately, DRL algorithms such as
DQL and SARSA have gained the interest of researchers as
suitable options to resolve the issue of exploding state space
action in traditional RL architectures [141]. DRL algorithmic
techniques can deliver such benefits at reduced training time
and memory requirement.

Also, different from traditional DRL architectures which
rely on the limited table-based agents to perform on a specific
observed network topology during training, the techniques
of DQL performs better over unfamiliar network topologies
to successfully ensure policy generalization [109]. The basis
of this is that computer-based networks are primarily rep-
resented as graphs. To this effect, there is need to devise
solutions to tackle the above problem.

Lastly, the general issue of the lack of adequate data can
be resolved. The aim of the proposed approach is to lever-
age and enhance shallow RNN predictive multi-step ahead
approach employed by the authors [99], for application in the
proposed integrated GA-LSTM-RNN network architecture
and DQL technique. This can potentially achieve predictive
optimization of link rates for energy-efficiency and perfor-
mance, by traffic demand forecasting, in hybrid SDN/OSPF.
Regarding the issue of parameter setting, given the dynamic-
ity of network topology and traffic load, this work intends to
employ the increasingly popular GA in LSTM-RNN [116].

C. SYSTEM ARCHITECTURE
This subsection describes the general hybrid SDN/OSPF
architectural framework. The general idea covered include
the types of hybrid network architectures considered, basic
concepts of hybrid SDN/OSPF, hybrid SDN/OSPF rout-
ing mechanism and the functional components. Provided
in Fig. 6 is a representation of the proposed framework.
Basically, the framework consists of four (4) planes to be
discussed later in this subsection.

1) HYBRID SDN/OSPF NETWORK ARCHITECTURES
As stated in Section II, based on the use of the pinning
control theory [42], the framework is intended to leverage the
functionality of SDN, by using SDN-enabled nodes to assign
data traffic to multiple next-hops. The framework features

two key hybrid network architectures required to guide net-
work deployment. First, we employ the SDN and Non-SDN
architecture to guide planned deployment of hybrid SDN
switches in legacy networks [19], [50], [141]. Moreover,
the SDN switches are deployed among legacy nodes a result
of which is hybrid SDN/OSPF network construction. Second,
we consider the upgrade/agent architectural design in which
the cooperation between the distributed and the centralized
routing control plane is achieved using shim hardware, which
are hybrid switches or software components deployed and
configured in existing legacy networks [142]. We particu-
larly consider these two architectures to overcome the lim-
itations pertaining to embracing ML and DRL in hybrid
SDN/OSPF networks. First and foremost, we consider the
monitoring overhead as a major hindrance to data collec-
tion from the limited number of sources in such hybrid
SDN-enabled network [146]. Secondly, is the automation
difficulty in ML, brought about by the heterogeneity nature
of such hybrid SDN/OSPF networks [147]. Heterogeneity
can limit the degree of SDN control over legacy devices and
this discourages the embrace of ML and DRL. Our design
considers strategic deployment of nodes to overcome such
limitations.

2) BASIC CONCEPTS OF HYBRID SDN/OSPF
Principally, this work considers a hybrid system architecture
that is based on the flow route scheme proposed in [63]. The
flow route network scheme can support the integration of
SDN-enabled devices into existing legacy IP-based networks.
Moreover, the scheme considers a data forwarding plane that
is composed of legacy IP routers and SDN-enabled switches.
Besides, the need to differentiate between legacy IP routers
and SDN-enabled switches is met through the capability of
the target device in providing SDN protocol support. Since
SDN-enabled switches are placed under the control of the
SDN controller, the computation of the forwarding flow table
of such SDN-enabled switches is performed by the controller
device. Additionally, the IP-based routers employ conven-
tional hop-by-hop routing protocols such as RIP and OSPF
to forward data packets.

As shown in Fig. 6, we consider a system architecture
consisting of a supervised ML and a DRL framework, whose
focus is the attainment of energy-efficient routing and QoS
guaranteed performance. By composition, the architecture
is divided into four planes, including the physical plane,
datalink plane, control plane and artificial intelligence (AI)
control plane. Given this composition, we aim to lever-
age SDN capabilities to provide different benefits that may
include: global visibility feature to efficiently collect data,
to support the use of ML and DRL algorithms [67]; data anal-
ysis and network optimization techniques can be exploited
to support intelligence network decision-making [67], [148];
network programmability leading to real-time optimization
of network routing solutions based on resource allocation
and data traffic configuration [149]. Precisely, the SDN con-
troller is intended to perform near-real-time updates on the
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FIGURE 6. System architecture of the proposed supervised ML and DRL framework in the scope of network traffic prediction, energy-efficient routing
and performance in hybrid SDN/OSPF networks.

energy-efficient routing optimization policy, to dynamically
perform traffic forwarding. In the rest of this subsection,
we discuss the aforementioned architectural planes.

a: PHYSICAL PLANE
By considering Fig 6 in the bottom-up direction, the first
layer is the physical plane which consists of various trans-
actions originating from terminals such as laptops or smart-
phones [148]. These devices are connected to the network
switches or service gateways through wireline or wireless
communications devices. The service gateway connects with
Internet based routers or SDN-enabled routers in the data
plane. In some classical SDN-based architecture, these phys-
ical plane devices are considered to be under the forwarding
plane. For clarity, this work separates the forwarding devices
from the data originating or sourcing devices [56].

b: DATA PLANE
The data plane is constructed upon hybrid SDN/OSPF net-
works and it is composed of forwarding devices such as
legacy IP routers and SDN enabled switches [114], [150].
On the one hand, the programmable SDN-enabled forwarding
switches can be employed to execute flexible network flow
forwarding policies. They are equally useful for the pro-
cess of network status information gathering. These switches
hold the capacity to ensure more granularity for network
administrators to deal with traffic classification and schedul-
ing. Besides, every flow entry contains a counter field to
define each flow intensity. All these details can help to
show the network traffic distribution. Such programmable
devices can be used to support online updates of rules that
guide flow forwarding in the network. On the other hand,
traditional non-programmable devices such as IP routers

VOLUME 8, 2020 166423



R. Etengu et al.: AI-Assisted Framework for Green-Routing and Load Balancing in Hybrid SDN

lack the required flexibility and must rely on SDN-enabled
devices to capture existing legacy sub-domains [50], [51].
This configuration allows the SDN controller to perform
near-real-time updates on the routing optimization policy, to
dynamically adjust the network state. This data plane is basi-
cally structured into sub-domains which are linked through
strategically located SDN-enabled switches [44], [151]. The
partitioning of OSPF network into sub-domains can pro-
mote TE through advancing control over the interconnecting
sub-domain routers. In the context of legacy IP-based routers,
the SDN switches are viewed as common IP routers.

c: CONTROL PLANE
The control plane is constructed based on standard SDN
network model and it is connected to the data plane through
the south bound interface (SBI) and the management plane
through the NBI. Basically, the control plane houses the
SDN controller device which is connected to the SDN
switches through the SBI with the help of an OpenFlow
protocol. Using the SBI, the SDN controller can capture the
network state information like flow table statistics, include
network resources availability and utilization levels, among
others [126], [150]. This information supports the execution
of control policies based on an extensive network construc-
tion. In addition, the SDN controller acquires the QoS param-
eter measurement information which is used for estimation
by current network approaches. Next, the controller gen-
erates fine-grained energy-efficient routing policies, which
can alternatively be converted into flow tables and hence
deployed on the target SDN switches. This is accomplished
through the services of the SBI. Finally, the SDN con-
troller employs the support of the NBI services to relay the
global network view which is precisely the input state to the
management plane, to ultimately access dynamic decision
policy [126].

d: MANAGEMENT PLANE
The management, which is comparable to the application
plane in traditional SDN, is concernedwith ensuring the accu-
rate network operation and performance in the long-term. The
management plane characterizes and configures the network
topology [152]. It is responsible for the collecting telemetry
information at the data plane while maintaining a historical
record of the state of the network and events. The manage-
ment plane also handles network monitoring functionality
to provide vital network analytics. To perform this task,
the management plane uses the topology data analyzer and
the topology manager as illustrated in Fig. 6. The data ana-
lyzer collects traffic flow and resource utilization data from
the forwarding plane devices. Besides, the topology man-
ager performs topology monitoring, topology routing com-
putation and topology building. During network execution,
the management plane performs the collection of aggregated
and network topology utilization data, destined for the AI
control plane. Subsequently, the management plane receives
the required feedback from the AI control plane to support

topology construction, topology-based route calculation and
topology monitoring (sensing).

e: AI CONTROL PLANE
The AI control plane is the main part of the framework,
commonly comparable to the human brain, by functionality.
Generally, we consider an AI control plane that leverages the
network links and node utilization details, using an agent-
based data collection element to generate huge quantities of
resource consumption data to realize a self-driven network.
As illustrated in Fig. 6, the AI plane interacts with the SDN-
based application plane to fetch the aggregated data generated
by the SDN controller and other applications.

One major aspect that is central to the AI control plane
is its capability to combine behavioural algorithmic mod-
els with reasoning techniques that are concerned with
decision-making in SDN-enabled networks [151], [152]. The
AI control plane can leverage the capabilities of the control
plane and management plane to gain rich network visibil-
ity and intelligent network decision-making. It is charged
with the role of learning network behaviour and performing
automated network operations.

Primarily, the AI control plane handles the processing of
network data analytics generated by the management plane
using various data analysis and network optimization tech-
niques. It then transforms these into knowledge using ML
algorithmic techniques. Finally, such knowledge is employed
for network decision-making. The AI control plane of the
network can potentially recommend specific configurations
without the intervention of the human operator. The SDN-
enabled network controller can then regulate the traffic flows
in the data plane, based on the decisions assumed [67], [148].
Although it is a slow process to represent and learn from
this information, the automated use of such knowledge can
be done at a time-scale closer to the control plane and man-
agement plane time scale. An important component within
the AI control plane, that is worth mentioning is the machine
learning engine (ML engine).
ML Engine: This represents an adaptive software glued

on top of the AI control plane, and is dedicated to the goal
of providing dynamic requirements to support fined-grained
adaptation to the observed network environment, rather than
the execution of static hard coded network-based behaviour.
The use of ML engine can ensure the much desired response
capability to unforeseen system conditions in emerging
communication networks. By composition, the ML engine
pools together and provides access to a range of ML tech-
niques designed to perform adaptations at execution time.
In SDN-enabled networks, we can leverage the network-wide
view and current state of network performance, and then
provide this as input information to intelligent algorithmic
techniques [126].

By functionality, the ML engine is responsible for the
overall data pre-processing, offline and online training, and
modelling. The outcome of these functions is a robust pre-
diction model for traffic demand prediction. This model is
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employed to direct the control plane by providing the resul-
tant command to the centralized SDN controller in hybrid
SDN/OSPF networks. Normally, the ML engine performs
important tasks such as generation of an optimized sub-
graph using the forwarded state of the network and topology
information. The output of the ML engine includes the link
weights for all the links in the network topology. The weights
are useful in the implementation of actual energy-efficient
routing plan updates in the target network. In the case of
RL, each time the ML engine interacts with the hybrid SDN
network, an energy-efficient routing plan is generated and
hence evaluated in terms of policy performance, given the
reward. The reward can be validated by the service quality
measured using QoS metrics, which are captured from the
deployed network. Afterword, the ML engine updates the
algorithmic parameters in an effort to achieve a better reward.
After training the neural network for a defined time frame,
the ML engine acquires adequate experience, through the
interactionwith the network environment. Ultimately, theML
engine can generate near-optimal energy-efficient routing
plan for the target network deployment [126].

3) HYBRID SDN/OSPF ROUTING MECHANISM
In legacy IP-based networks, energy-efficient routing is per-
formed by the IP routers using the traffic destination address
and the most suitable route. When a data packet arrives at a
router, it is sent to one of the router ports, based on the packets
destination address and the information in the routing table.
For such legacy IP networks, each router deployed in the
network finalizes its routing table using such network routing
protocol, like RIP and OSPF. The protocol in use determines
the most suitable route using the computed cost of the route.
Moreover, routing protocols transfer advertisement packets
that contain the routing information of the sender. Every IP
router in the network finalizes its respective routing table
by employing packet advertisement from the neighbouring
routers.

Different from legacy IP networks, SDN-based routing is
accomplished by receiving a new flow arrival at the ingress
OpenFlow switch, whose first packet is extracted and then
sent to the SDN controller device. The SDN controller then
selects the best suited route based on the network topology
information, link states, as well as other necessary policies
and decision criteria. Second, the SDN device does the con-
figuration of the OpenFlow switches in the selected routes to
perform traffic forwarding accordingly.

In the perspective of hybrid SDN/OSPF, legacy IP routers
view the SDN-enabled switches as ordinary IP routers.
Thus, when computing the traffic flow forwarding paths,
legacy IP routers, the existence of SDN-enabled switches
allows external transparency to the rest of the IP
routers [37], [38]. Therefore, SDN-enabled switches in the
hybrid SDN/OSPF network provide global traffic forwarding
to both SDN-enabled switches and legacy IP switches.

Moreover, legacy IP routers implement the OSPF proto-
col, in addition to establishing adjacent relations with each

other through transmission of the Hello message, and then
exchange network topology information, such as link weights
by using the link state advertisement (LSA) message, then
update the link state database (LSD) [63], which stores the
global network topology information. Lastly, each IP router
stores the duplicate LSP, computes the shortest path trees
(SPTs) to setup a routing table and forwarding information
base (FIB), centered on LSD.

In the short-term, SDN-enabled switches direct the
network-based topology information to the centralized SDN
controller. In this state, the SDN controller has up-to-date
knowledge about the OSPF link weights and the traffic load
on each link. Observe that a given SDN-enabled switch can
have several next-hops to the destination node. Yet, an ordi-
nary IP-based router can have a single feasible path to the
destination node, when equal cost multiple path (ECMP) is
employed.

Besides, an SDN-enabled switch can have multiple paths
to the outgoing links, given the SDN-enabled switch. While
the IP router can only execute the OSPF routing protocol,
the SDN-enabled switch can operate in two different modes,
namely, OSPF mode and hybrid mode [63]. In the OSPF
operational mode, the SDN-enabled switch performs like a
OSPF switch. In the hybrid operational mode, the switch
forwards traffic flows in accordance with the guiding rules
in the flow entries setup at the SDN controller.

Additionally, the delivery of application-driven QoS guar-
anteed routing forwarding in such hybrid networks, demand
for the design of an intelligent or smart traffic forwarding
plan, to perform flexible network resource allocation and traf-
fic routing decisions under the defined structure [123], [129].
This aims to improve the network resource utilization effi-
ciency and QoS guarantees for the desired services or
applications.

4) FUNCTIONAL COMPONENTS OF THE ARCHITECTURE
Generally, based on Fig. 6, the proposed system architecture
can be described in the perspective of functionality. There are
three functional components that constitute the entire archi-
tecture: the data analyzer, the topology monitor and machine
learning engine. Provided below is a brief description of each
of these three components:

a: DATA ANALYZER
The data analyzer also called data analytics platform is
an important component that is located within the control
plane [152]. The data analyzer is concerned with the mon-
itoring the network traffic information, and the archival of
forwarded traffic information generated by active applica-
tions. Such traffic information includes origin-destination
pairs, traffic data rates, traffic demand arrival time and flow
amounts. To perform the above tasks, the data analyzer relies
on the services provided by the SDN controller splice, as dis-
cussed next.

The data analyzer contains the supervisor agent and the
client agent, which are two important agent-based units
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responsible for collecting data traffic flow information from
the forwarding plane and temporary storage in the data
buffer [152]. Then, the temporary data are filtered to elimi-
nate redundancies and stored in the TE database (TED). This
dataset is forwarded to the DRLmodule, within the AI control
plane for performance monitoring and network optimization.
Recall that the focus is optimizing energy efficiency and
performance with QoS guarantees.

b: TOPOLOGY MANAGER
The topology manager is concerned with the execution of
traffic forwarding scheme. As shown in Fig 6, the three build-
ing units of the topology manager include topology monitor,
topology routing calculator and the topology builder [152]
perform topology monitoring, topology routing computa-
tion and topology building respectively. During run time,
the management plane collects aggregated and resource uti-
lization data, which is destined for the AI control plane.
Then, the management plane receives the required feedback
from the AI control plane to support topology construction,
traffic routing computation and topologymonitoring/sensing.
Generally, the above starts with the implementation of topol-
ogy discovery procedure whose role is to discover the struc-
ture of the network that either includes SDN switches or
OSPF routers. The discovery of network topology starts
when the supervisor and the client agents are employed to
capture the network information regarding the current net-
work, specifically the link state information and path state
information [55]. Next, the QoS metric monitoring proce-
dure in the control plane comes into play to quantity and
compute specific network performance metrics. As men-
tioned earlier, such metrics may include traffic and packet
load rates for each link and link delay. Upon obtaining this
information, the SDN controller executes the path computa-
tion procedure to compute the path for energy-aware traffic
forwarding.

To achieve network topology discovery, the topology man-
ager relies on the controller, which initially monitors the net-
work topology. Besides managing the capture of information
regarding network organization and status of the network
elements, the topology manager also handles the storage
of cost-driven information on network links and forwarding
switches. In case an element flops or goes out of service, the
topology manager performs an update on the global topol-
ogy information stored in a database [56]. The database in
this case keeps track of connection maps of the underlying
SDN switches and legacy IP routers as well as information
concerning the path established between each ingress-egress
pairs. The path state information is an abstraction of the phys-
ical network. It is upon this that the controller manages the
abstract network maintained in the TED database. This work
considers a novel topology discoverymechanism inwhich the
centralized SDN controller has visibility of network switches
using the Open Flow protocol, in addition to feasible view of
legacy OSPF routers [148].

c: THE ML ENGINE
The ML engine represents an adaptive software glued on
top of the AI plane for dynamic fined-grained adaptation
to the observed network environment state. The ML engine
is employed in the novel joint supervised ML and unsu-
pervised DRL system. The focus is to perform learning of
adaptive behaviours and package them into a reusable suit
of ML algorithmic-driven adaptations. Besides, it is intended
to support various use case scenarios that require training of
the algorithmic models, without degrading end-to-end perfor-
mance workload. Also, it required to generate an optimized
subgraph by using the traffic load by performing learning
operation on the available historical data. Then, the net-
work state and topology information is forwarded to the ML
engine. Given the dynamic capability of the module, limited
traffic demands can result in a subgraph with a small traffic
load of active network links as opposed to a subgraph with
huge traffic load. The following section gives a description
of the conceptual framework of the proposed ML and DRL
system.

D. CONCEPTUAL FRAMEWORK OF THE SYSTE
This subsection gives an overview and a description of the
methodology pertaining to the use of the proposed supervised
ML & DRL framework.

1) OVERVIEW
The supervisedML&DRL architectural framework employs
three different algorithms, which are categorized into super-
vised ML module or RL module. On the one hand, the data
pre-processing algorithm and the refine algorithms are part of
supervised ML module. The data pre-processing algorithms
include principal component analysis (PCS) [153], [154] and
correlation matrix (CM). Moreover, unlike problem-specific
HA, the refine algorithms (meta-heuristics) aremeant to solve
general-purpose difficult optimization problems which are
hard for deterministic techniques to solve in a reasonable
time. These algorithms include GA and HA. On the other
hand, the Q-routing algorithm belongs to and is employed by
the DRL module.

Provided in Fig. 7 is an illustration of the framework.
As revealed in the figure, the proposed framework is struc-
tured into three (3) phases and these include data collec-
tion, pre-processing and deployment. Moreover, by using
the framework, the SDN controller is employed to perform
traffic monitoring. After performing traffic analysis using the
observed data, feature vectors are extracted and stored in the
database. Then, the historical data contained in the database
is employed to initialise and train the traffic predictor. Subse-
quently, the traffic predictor performs the estimation of future
steps of traffic, based on the new sample. Also, the predictor
result is employed in the optimization step to compute the
optimal path required to route traffic flows.

Prior to execution of the framework, the choice of whether
to begin with the supervised ML module or unsupervised
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FIGURE 7. Conceptual diagram of the proposed supervised ML and DRL framework for network traffic prediction,
energy-efficient routing and performance enhancement in hybrid SDN/OSPF networks.

DRL module must made. Essentially, choice of the initial
algorithm for execution depends on the availability of histori-
cal data. Assuming historical data is available, the ML engine
directs control to supervised ML algorithmic, making it the
target execution module

2) METHODOLOGY
As illustrated in Fig. 7, the methodology is made up of a
number of phases required to develop the proposed ML &
DRL framework, and hence build traffic flow predictor model
and energy-efficient model. The objective is to achieve traffic
prediction, energy-efficient routing optimization, with QoS-
based performance guarantees. Subsequently, based on the
availability of historical data, we give a detained discussion of
the methodology from the two perspectives: Supervised ML
module and Unsupervised DRL module.

a: SUPERVISED ML MODULE
This part of the methodology is divided into three phases that
include data collection, data pre-processing and deployment,
a description of which is given in the rest of the part.
Phase 1 (Data Collection): Data collection element rep-

resents a procedure whose main focus is performing traf-
fic sampling and flow analysis roles. Basically, the traffic
sampling unit of the data collection element employs the

traffic flow. The sampling and flow analysis is performed
by tools such as IPFIX (RFC 7011), NetFlow (RFC 3954)
andNETCONFIG (RFC 6241) in SDN-enabled environment.
SDN controller services to perform network monitoring and
collection of current traffic samples (statistics) from each The
captured samples include traffic rates from the target network
topology. These samples are collected over a defined time
frame of one minute, one hour, one day, one week, among
others time scales. The data is collected in the short-term and
long-term nature.

The definition of traffic flows depends on the kind network
under consideration. For instance, in an IP network we can
define a set of all data packets with the same protocol type
to be characterised by: source IP address, destination IP
address, source port, destination port, packet direction (uplink
or downlink data rates), bytes in payload, inter-arrival time
and window size. All these belong to the same traffic flow.
Moreover, the collected network flow samples feature both
the uplink and downlink network data rate scenarios. The
monitoring should be directed to large traffic flows, because
given the huge volumes of traffic flows, it is appropriate to
ensure better optimization of energy use in communication
networks. So, to meet this condition, monitoring effort should
be selectively directed to large traffic flows as opposed to
mice flows. Ultimately, the output of the data collection phase
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are the traffic samples or rates which is store in a database.
Such sampled output provides the required input for the data
pre-processing phase.
Phase 2 (Data Pre-Processing): Data prep-processing is

responsible for mining of daily periodical variabilities from
the observed data traffic samples. The goal is to sieve out
short-term network traffic variabilities which is difficult to
predict. This sort of data pre-processing action is aimed at
improving the degree of accuracy of the long-term variations.

Practically, the data pre-processing element represents ML
algorithmic techniques concerned with the transformation of
the collected data samples into the desired format. These
algorithms are dedicated to performing two key processes
that include feature representation and feature dimension
reduction. These steps can be performed through deployment
of approaches such as PCA or CM. The selected approaches
must be used with care to generate related features required to
support model construction requirement. Based on the use of
these techniques, the generated feature subsets are then used
to construct the traffic prediction model and energy-efficient
model. This work considers the use of CM approach for data
pre-processing.

Additionally, as revealed in the figure, the pre-processing
element is divided into two algorithmic techniques: flow anal-
ysis and feature selection. Moreover, the execution of data
pre-processing element begins when the supervisedMLmod-
ule employs the preferred approach to perform the desired
tasks. This work considers the use of RNN regression method
for model construction. The purposed is to construct an
effective traffic prediction and rate adaptive energy-efficient
routing model characterised by high accuracy, generality and
scalability.

Lastly, the accuracy of the energy-efficient routing model
is evaluated to determine the effectiveness. In this part of the
work, we describe the pre-processing process that is struc-
tured into the following sub-parts:

i) Flow Analysis: Flow analysis is a process which
employs the pre-processing algorithm on the collected data
samples to derive traffic patterns or trends, based on the use of
time-series analysis. When performing flow analysis, a num-
ber of key considerations should be taken into account. First,
the performance of the desired supervised ML algorithmic
network model depends on the selection of relevant features.
Second, complex traffic features require additional memory,
computational power and a lengthy time to do training. Third,
theML algorithm can over-fit the training dataset and can suf-
fer poor generalization for unseen data. Finally, the successful
execution of flow analysis process outputs time-series traffic
patterns, useful as input in the feature extraction stage.

ii) Feature Extraction: Feature extraction is a process
concerned with the extraction of important features required
to construct a proper ML network model. Such model con-
struction demands for the inclusion of the desired parame-
ters. It refers to a procedure performed by an algorithmic to
extract a sub-set of important features in the existing time-
series dataset. The extracted features must be relevant to the

identification of interesting patterns. The output of feature
extraction is the various generated candidate feature sub-sets.

iii) Feature Dimension Reduction: Feature dimension
reduction is a procedure performed by an algorithmic tech-
nique to eliminate duplicated entries in the collected data
samples. Performing feature dimension reduction process is
essential because the existence of duplicated data samples can
significantly compromise the performance and accuracy of
the supervised ML network model.

iv) Feature Selection: The next procedure after feature
dimension reduction id feature selection. Feature selection
represents a ML procedure performed by the selection algo-
rithmic techniques, to extract a sub-set of important features
in the traffic time-series dataset. The determination of feature
sub-sets can be performed by such algorithms as CA (cor-
relation based filter technique) or PCA (wrapper technique).
Moreover, the features extracted must be relevant to the iden-
tification of interesting patterns.

v) Data Transformation: After performing data extrac-
tion and selection, data transformation follows. Data trans-
formation involves the conversion of the feature sub-sets into
the right format, in readiness for model training and testing.
A commonly used data file conversion format with a wide
range of modelling libraries is the comma separated (.CSV)
file format. Besides, data transformation includes conver-
sion from symbolic to numeric and parsing of data. More-
over, it features the separation of training and test datasets,
in preparation for the ML network model training and testing
runs, all of which are performed at the deployment phase.
Phase 3 (Deployment): The deployment phase is the final

phase of the proposed methodology. Primarily, the deploy-
ment phase is divided into performance evaluation, and result
and analysis.

i) Performance Evaluation: This is a process of the super-
vised ML & DRL algorithmic framework concerned with
the definition of the configuration settings and construction
of traffic prediction model and the energy-efficient routing
model. In this work, we divide performance evaluation into
two: Traffic PredictionModelling and Energy-Efficient Rout-
ing Modelling.
Step 1 (Prediction Modelling): This work employs multi-

step-ahead prediction algorithmic model suggested in [104],
to predict future traffic demands, to be employed to perform
routing re-configuration. A major idea underlying this pre-
diction algorithm is the multi-scale dynamic behaviour of
data traffic flows. Different from other time-series prediction
algorithmic models, the design of multi-step ahead prediction
algorithmic model is based on traffic characteristics. The pre-
diction algorithm uses traffic flow information from diverse
time-scales in order to limit the propagation of errors.

Basically, the algorithm performs two specific steps: first,
it predicts traffic flows based on diverse time scales; sec-
ond, these various traffic flow prediction output are com-
bined to ultimately predict future traffic demands. Therefore,
to construct a suitable traffic prediction model, the prediction
algorithm employs the subset of feature vectors from the
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previous phase on a deep neural network (DNN) regression-
based method.
Hyperparameter Tuning: To performRNNmodel training

and testing, and construct a neural network model for traffic
prediction, it is important to first perform hyperparameter
tuning. However, configuration of hyperparameters repre-
sents one of the most daunting tasks. Hyperparameters refer
to the variables that determine the structure (for instance,
the number of hidden units) and the variables that will be used
to determine the method of training (for instance, the learn-
ing rate and number of iterations) the RNN-LSTM network
architecture. Observe that the hyperparameters ought to be
set before training (before link such RNN-LSTM network
architecture is complicated.

Precisely, the RNN-LSTM network model is employed
in combination with the representative hyperparameters and
the TensorFlow library to construct the prediction model.
In terms of application, the proposed ML framework is not
restricted to a specific prediction algorithmic technique. So,
it can be employed in combination with other prediction algo-
rithms such as ARIMA, FARIMA, BPNN. To develop the
prediction model, we perform two principle processes, that
include hyperparameter tuning and RNNModel Training and
Testing. Provided in Fig. 8 is an illustration of the sequential
training, testing and validation process of the DRL module.
RNN-LSTM Network Traffic Prediction Model

Training: This is concerned with extra training and tuning
of the RNN-LSTM network traffic prediction model in an
iterative run to fine-tune the hyperparameters. We consider
the concept of hyperparameter optimisation (HPO). The
HPO concept represents a mechanism employed to routinely
explore the search space of prospective hyperparameters,
build a sequence of RNN-LSTM network models, and hence
perform RNN-LSTM network model comparison based on
the appropriate metrics optimization (HPO), which is a
concept required for fine-tuning. The application of HPO
demands the specification of a wide-range of values, meant
to explore the respective hyperparameters. Typically, this is
made up of training specifications in the scale of tenth to
hundreds.
RNN-LSTM Network Traffic Prediction Model Testing

& Validation: During model testing, validation check is an
important task, mainly concerned with justification of the
performance or accuracy of the trained RNN-LSTM network
traffic prediction model, as compared against the validation
data set. Testing means the application of the trained predic-
tion model to predict the unknown future traffic demands.
We use cross-validation technique to select the right param-
eter k in an n-fold cross validation [137]. To perform model
testing, the RNN-LSTM network traffic prediction model is
checked based on a subset of features. Moreover, we employ
RNN regression-based method to develop an RNN-LSTM
network traffic prediction model. To increase the model accu-
racy, refining algorithm is applied. Assuming the generated
RNN-LSTM network traffic prediction model is acceptable
in terms of accuracy, an advanced step is taken to build the

inference RNN-LSTM network traffic prediction model. The
built RNN-LSTM network traffic prediction model is used
to predict the new traffic flow values. Assuming the results
are insufficient, the process is repeated, let alone perform
parameter fine-tuning.
RNN-LSTM Inference Model Creation: This part

involves the creation of the inference RNN-LSTM network
model. Using the framework, the trained RNN-LSTM net-
work model and the link weights are properly bundled and
achieved in a file, with minimal metadata. The RNN-LSTM
inference model can now be applied to achieve the prediction
of new future traffic demands.
Step 2 (Energy-Efficient Routing Modelling): Primarily,

energy-efficient routing modelling is concerned with the
computation of traffic routing configurations, aimed at min-
imising energy utilization in the present time-slot, while
requiring the least number of routing configurations to stay
optimal. Recall that network re-optimization occurs at the
end of the time slot. At a given time-slot, the optimization
model considers the prediction horizon (range) of the time-
slots. Therefore, to address the goal of minimising energy
utilization with the least amount of routing configurations,
the prediction algorithm is applied to generate energy rate
predictions and energy consumption values. To achieve the
above requirement, this work employs an energy-efficient
route re-optimization algorithm.
Energy-Efficient Route Re-Optimization Algorithm:

Energy-efficient route re-optimization algorithmic model is
one employed on the data rates to predict energy rate val-
ues and reduce future network reconfigurations, according
to the predicted flow bandwidth. To construct the energy-
efficient routing optimizationmodel, we use the previous data
rate predictions. Moreover, the refine algorithm is routinely
employed to explore the search space of prospective energy-
efficient routing parameters. These parameters are required
to build a sequence of energy-efficient routing models and
compare them based on the appropriate route re-optimization
metrics. Afterward, the predicted parameters are employed
by the optimization algorithm to achieve the desired ends.

But, since the complexity of the route re-optimization
model grows owing to the increasing number of pre-
recalculated paths, number of traffic flows and the length
of prediction horizon or time-steps, it is NP-hard problem.
Currently, many approaches are used to solve such NP-hard
problems, including greedy algorithms and GA. This work
considers the use of GA to solve the NP-hard problem [106].

ii) Result and Analysis: This is the final phase mainly
concerned with the use of the inference RNN-LSTM
model to compute energy rate predictions and the network
routing re-configuration, to ultimately generate optimised
energy-efficient routes. The methodology description above
was dedicated to the supervised ML module. Principally,
the supervised ML module is dependent on the availability
of historical data. Recall that in the absences of historical
data, execution control is transferred by the ML engine to the
unsupervised DRL algorithmic module.
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FIGURE 8. Sequential training, testing and validation process of the supervised ML module.

In the context of RL, the Markov Decision Process (MDP)
is a useful mathematical framework for tackling related prob-
lems. The MDP is an abstract framing of the problem of
learning via interaction to achieve a certain control and opti-
mization goal.

b: UNSUPERVISED DRL MODULE
This part of the methodology considers the unsupervised
DRL module, which is an algorithmic framework whose
objective is to achieve the TE goal of energy-efficient rout-
ing optimization with QoS-based performance guarantees.
In the perspective of RL, choice of a suitable mathematical
framework to address the above objective is critical. In this
work we consider the use of Markov Decision Framework
(MDP). MDP is a generalised architectural framework used
to model decision-making problems in scenarios where the
outcome is partly random and influenced by applying a given
decision. Precisely, MDP represents and abstract represen-
tation of learning problems through interaction to achieve a
target control and optimization goal. This work addresses the
objective by representing the TE problem as a multi-agent
MDP (MA-MDP) [155]–[157].

Moreover, the proposed DRL module provides a smart
network traffic control architecture composed of an offline
DNN construction (configuration) phase and a self-taught
on-line updating (training) phase. The on-line update phase
is based on deep Q-learning. By implementation, the online
DRL algorithmic framework can be deployed in any exist-
ing network routing protocol to enhance or develop a novel
routing solution. Clearly, it presents a baseline algorithmic
protocol independent solution.

Additionally, the module is based on a set of agents (router
nodes) that communicate in the environment with the goal
of learning the reward maximization behavior. The module
examines E2E energy-saving in network routing coupled
with performance guarantees based on future reconfiguration
re-routing to support traffic demands. The module assumes
a real-life network environment with known state transition
probability and reward distribution. This is the exact context
in which the agent-based DRL module is suggested. Princi-
pally, the framework is developed on the basis of the gen-
eralized policy iteration strategy, which leverages the novel
and increasingly popular policy gradient enabled learning,
coupled with function approximation, in a multi-agent-based
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FIGURE 9. The execution process of the unsupervised DRL module.

scenario [70]. To achieve the above, the algorithmic module
learns the next-hop to which each router’s packet is for-
warded. This task is continued all through the target des-
tinations, while taking into account the optimal E2E TE
performance.

Further, we consider joint energy-efficiency and perfor-
mance optimization with QoS metrics that include delay
and throughput. In the current setting, the ML engine and
the network environment construct a MDP environment to
ensure continuous interaction, to generate control strategies.
Moreover, by extending the MDP, the DRL module is formu-
lated based on the defined set of communicating agent-based
routers whose behaviour is characterized by various param-
eters that include state, observation, action, state transition
probability function and rewards.

As stated in Section II, we aim to alleviate the energy-
efficient routing problem by integrating the pinning con-
trol theory with DRL module to manage the hybrid
network [119]. This requires the selection of a subset of the
routing nodes which become the controllable agent nodes.
Then, we permit the DRL module to manipulate the link
weights of the controllable agent nodes, ultimately to ensure
improved global network performance.Moreover, we employ
DNN to process the input data in the DRL module.

Provided in Fig. 9 is an illustration of the sequential train-
ing, testing and validation process of the DRL module. Addi-
tionally, provided in Table 16 is a summary of the required
state spaces (elements) of the DRL processes performed by
each agent in the environment.

As an extension, theDRLmodule considers an agent-based
process consisting of four interleaving phases which include:
primary (policy estimation) phase; (policy) execution phase,
online (policy) update phase and training phase. To solve
the problem, a modular DRL Q-learning framework is
proposed.

As previously stated, the running of the DRL module is
triggered when a change occurs in the network environment,
due to the arrival of a new flow or occurrence of the network
state update. Next, the ML engine performs the interleaving
process, among the various processes. Basically, the ML
engine manages the interface between the agent controller
and the environment, using a series of decision making
epochs. Provided below is a description of the four phases
considered in the running of the DRL module.

1. Primary Phase: In a precondition to performing the
execution phase of the supervised DRL module, several
important tasks must be undertaken by the respective routers,
including definition of the routing strategy.

This work employs the Deep Deterministic Policy Gra-
dient (DDPG) automatic routing algorithmic approach
to perform intelligent control and hence address the
energy-efficient routing optimization TE problem [158]. The
DDPG approach is made up of two components which
include the deterministic policy network (actor) and the
Q-network (critic). Whereas the actor component tries to
improve the policy, the critic counterpart performs the evalu-
ation of the quality of the existing policy by using parameters.
Precisely, theDDPG agent performs the implementation of an
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iterative policy mechanism which interleaves between policy
update (actor) and policy estimation (critic).

2. Execution Phase: The execution phase is composed of
two different periods and these include the cold booting and
smart execution.

(a) Cold Booting Period: Cold booting period represents
the off-line starting period that precedes the training phase.
The goal of cold booting is to derive the correlation amongst
respective state-action pairs in the system and the corre-
sponding value functions. This action is performed to enable
the system populate the weights and select the minimum
policy, taken as the first energy-efficient routing pool. Later,
the training phase is performed to construct the DRL-NN
by learning sufficient states-action signal pairs and the value
functions in the updating phase. The action signal represents
the energy-efficient routing judgement of the updating phase.
Policy Mapping: In the DRL module, the policy unit is
employed to define a mapping that chooses an action based
on the state of the network environment. Like previously
stated, a policy represents a mapping from each state-action
pair, specifying the action the agent will select when the
environment assumes a given state. In other words, it repre-
sents an approximation function with tunable parameters, for
instance a DRL-NN network. Recall that the ultimate goal is
to determine the optimal policy, which maximizes the reward
for each state, based on discount rates.

(b) Smart Execution Period: When the agent controller
(the supervisor agent) generates sufficient training data,
and on completion of the training phase, the system per-
forms a transition to the smart execution period. During
this period, the real-time updating phase is performed on a
routine basis. Also, the valid E2E energy-efficient path pool
is intelligently selected and applied based on the outcome of
the energy-efficient routing judgement within the updating
phase.

3. On-line Update Phase: The online updating phase per-
forms the collection of traffic patterns needed for training.
It also performs the routing judgement task to smartly select
the valid path pool. This pool is used to determine the most
appropriate routing path to overcome congestion and balance
the load. The update phase is divided into two: data collec-
tion; and path selection and routing judgement.

(a) Data Collection: This is concerned with the collection
of the routing information and traffic flow patterns or statis-
tics, with subsequent updates at the agent controller. These
tasks are performed based on the defined update interval or
period.

As soon as the destination router detects data packet arrival,
it records QoS parameters such as the transmission delay of
each packet. For the duration of the update phase, the agent
controller captures the routing strategy combination of the
individual routers, as previously stated. Beside, individual
routers compute parameters such as packet loss and average
packet delay, within the duration of the previous and current
update phases, and these are delivered to the agent controller.
Then, a threshold is computed during the updating interval to

determine the event of congestion and hence balance the load.
The threshold value is computed using the maximum and
minimum values of the total intervals. Additionally, the traf-
fic patterns that include packet extraction rate and the size
of waiting packets in the queue at each routers buffer are
recorded. Together, the state of network congestion and traffic
patterns are pooled to produce labeled training data sets.
On performing several update operation phases, a sufficiently
large volume of training data set is attained to train the
DRL-NN network architecture. This marks the initiation of
the training phase.

(b) Path Routing and Judgement: In order to make
a decision on the occurrence of routing, we consider the
agent controller that implements a specific routing strategy,
with matching DRL-NN applied to determine if the cur-
rent network traffic patterns can lead to congestion event or
otherwise. In case the outcome reveals the occurrence of
congestion, such a path is marked as invalid, in which case
the routers can select the next combination and repeat the
judgement, until a valid combination of path is selected.

4. On-line Training Phase: The online training phase is
concerned with construction and enhancement of the deep
neural network. Moreover, the online phase handles the adap-
tive generation of the optimal policy action and updates of
the policy value estimations. Specifically, the training phase
performs the training and learning of the state of network
congestion of a very combination strategy. When the training
data is generated at the on-line update phase, the DRL LSTM
model is constructed, based on the total path combination
strategy.

As previously stated, assuming the network route is already
created, the training process commences with the aim of
improving the DRL LSTM network architecture. Precisely,
the weight matrices of the trained DNN which are used in the
on-line update phase to make a decision. Based on the on-line
training algorithm, the DNN is trained in a periodic manner
using defined time interval. One observation is, by setting a
large number of updating period, we can generate sufficient
labelled training data. Thus, over time the neural network can
be enhanced to route with a higher level of accuracy.

E. LSTM-RNN NETWORK ARCHITECTURE
The previous section considered the proposed methodol-
ogy, based on supervised DRL module and unsupervised
DRL module. This section delves deeper into deep learning
LSTM-RNN network architecture.

As previously stated, the supervised ML module is
designed to employ the innovative deep learning LSTM-RNN
network architecture in such hybrid SDN/OSPF network.
Recall that a major problem in existing hybrid SDN/OSPF
networks concerns the optimization of network traffic pre-
diction and energy-efficient routing with QoS-guaranteed
performance. To deal with the problem, a number of chal-
lenges have been identified and these need to be tackled
head-on This work has previously discussed various chal-
lenges which we restate in this part: first, the use of traditional
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TABLE 16. Elements of the DRL agent-based processes.

heuristic-based routing algorithms in hybrid SDN/OSPF lead
to slow network convergence and slow response which chal-
lenge energy-efficient routing optimization with QoS guar-
antee; second, the scarcity of adequate labelled data required
to train and learn the built NN models in SDN-based ML
and DL system; third, the difficulty in perform precise
hyper-parameter tuning for DL networks, due to the dynam-
icity of the network environment, mainly characterized by
time-varying network topology and traffic load. Therefore,
to optimize the trade-off between energy-efficient routing and
network performance with QoS guarantees in such hybrid
networks, we propose and focus on a supervised ML archi-
tectural framework that is based on LSTM-RNN network
architecture.

1) LSTM-RNN NETWORK ARCHITECTURE BY STRUCTURE
Like traditional RNN, the architecture of the DL LSTM-RNN
network architecture is made up of one input layer, a single
hidden layer (which is divided into many sub-layers) and
a single output layer [75], an illustration of which is given
in Fig. 10.

During feature extraction phase, the input layer is
employed for data input in form of times series, which feeds
into the deep network architecture. Moreover, the LSTM
layers perform the learning of long-term dependences amidst
the time-steps of the data series. As shown in the figure,
the network basically starts with a sequence of input layer,
then it progresses to LSTM layer, to eventually end at the
fully connected layer. At this level, an important requirement
which must be emphasised involves the extraction of peri-
odicities and short term disparity during specific time-steps.
Addressing such a requirement is key to building a deeper
network estimation model [159]. To properly extract such
important dependencies and short term disparity features, two
novel LSTM memory units are employed.

After extraction, the features are fed to feature stage
amalgamation to ensure short-term traffic flow prediction.
As revealed in Fig. 10, the desired variable represents the

captured network traffic in the previous time period, and this
is represented as Xt+2, Xt+1, Xt, Xt−1, Xt−2. Observe that
many LSTM-RNN cells are stacked in the form of many-
to-many model. This basically means that merely one single
cell in the final time-step and more so in the uppermost value
output, is destined for the regression phase.

2) LSTM MEMORY CELL
Specifically, the core concept of LSTM network architecture
is the memory cell which is within the hidden layers [159],
this being because it is designed with the aim to overcome
gradient vanish and explosion problem. Recall that this prob-
lem is a major challenge in traditional RNN [75], [160]
Basically, the LSTM memory cell is made up of four (4) key
parts which include input gate, a self-recurrent connectivity
neuron, forget gate and the output gate. Observe that a major
implementation consideration in LSTM networks is the need
for adequate labelled data, both input and corresponding
output to ensure better learning outcome. Thus, to fulfil the
need to achieve a better learning outcome, more training
data should be provided. If there is limited training data, the
LSTM network can obtain a high training accuracy, however
it can perform poorly when test runs are done on unseen data.
Precisely, this condition is referred to as overfitting.

F. GENERIC DRL ARCHITECTURAL FRAMEWORK
The previous section considered the deep learning
LSTM-RNN network architecture. This section is devoted to
a detailed description of the proposed generic DRL architec-
tural framework. We give an array of potential deep learning
algorithms and how these are supported in the generic frame-
work. Precisely, we spell out potential application scenarios,
in the generic framework.

1) OVERVIEW
To provide a suitable solution, we consider a generic DRL
architectural framework, precisely designed with the goal to
teach the constructed DNN on how to learn with limited data.
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FIGURE 10. LSTM-RNN architecture with feature extraction to the left and regression prediction to the right.

Also, we consider training and learning the NN on how to
pool its knowledge to improve efficiency and effectiveness,
in the learning of new events. Such a strategic effort can
ultimatelyminimize the amount of training data needed. Basi-
cally, the new generic framework shares similar fundamental
concepts with RL frameworks. But, before delving into the
details of the new framework, it is rational to restate the
current network condition, specifically the current problem
in such communication networks.

Recently, ML techniques such as RL have increasingly
gained popularity in light of network control and oper-
ations management. Although, certain networking studies
have employed RL techniques to address various networking
problems a number of major challenges need to be resolved:
first is the inability of RL-agent based techniques to sup-
port the generalization over unseen network states, to deliver
working solutions [109], [115]; second, existing traditional
ML heuristic algorithmic approaches can hardly achieve con-
vergence due to the time consuming off-line multi-step iter-
ative synthesis (optimization process). These issues demand
for research efforts to engineer novel solutions, to respond
to the diverse requirements in modern large-sized dynamic
networks.

To address the stated problems, this work considered a
new generic DRL architectural framework. The considered
generic framework is made up of an SDN-based agent-
environment communication procedure. Given such a con-
figuration and based on the terminology in use, we term
the learner and decision taker as the agent. In the proposed
framework, the agent and environment interface based on a
succession of decision-making epochs (periods). Like pre-
viously stated, the generic framework is composed of an
off-line DNN buildup phase and a self-taught on-line Deep

Q-learning phase. On the one hand, the off-line DNN buildup
phase of the framework performs the role of generating the
correlations between the respective state-action pairs of the
network system and its value function. On the other hand,
the deep Q-learning phase is responsible for generation of the
optimal action and update of the value estimates.

As provided in Fig. 11, we consider a generic representa-
tion of a self-taught modular DRL architectural framework,
which is a non-linear architecture designed to respond to
current complex control problems in the emerging large-sized
dynamic SDN-based networks. Such large-sized networks
complexities pose implementation challenges, such as com-
putational complexity and determination of the gains and
parameter tuning.

2) DESIGN OBJECTIVE
The design objective of the generic framework is to compute
the of optimum policy behavior, that performs the mapping
of the state space to the multiple actions, to ultimately maxi-
mize the target reward value.

3) THE GENERIC FRAMEWORK AND ALGORITHMIC
SUPPORT
The generic framework is composed of a universal
agent-based interaction environment, which is an expansive
buildup system that pools together and supports the imple-
mentation of a diversity of various algorithms [161]–[163].
The universal agent-based interaction environment is devised
to support the use of various DL algorithmic techniques
such as deep Q-learning and double Q-learning. Precisely,
based on these techniques the universal agent-based envi-
ronment can support the application of different agents such
as Q-learning, SARSA, deep Q-Network, deep deterministic
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FIGURE 11. Generic DRL architectural framework.

policy gradient (DDPG), twin-delayed deep deterministic
policy gradient, actor-critic and proximal policy optimiza-
tion. To achieve the objective of the generic framework, we
consider an SDN-enabled agent unit, which is employed
to perform and complete the desired task in an uncertain
environment.

4) THE SDN-ENABLED AGENT UNIT
As illustrated in Fig. 11, the generic framework is composed
of SDN-enabled agent-based learning unit. The agent is a
major component that is structured into two subunits, namely
a policy and a DRL algorithm. The agent and the environment
interface based on a series of decision-making epochs (peri-
ods). The ultimate aim of the agent is to determine the optimal
policy that maximizes the reward for each state, based on
discount rates. Moreover, SDN-enabled network is embraced
to provide the global network status. Basically, global net-
work visibility status is critical in the realization of intelligent
decision making requirement of the unit. Besides, it allows
the generation of the network strategy and the respective rules
from the control plane, this being based on the target strategy.

5) EXECUTION
To implement the generic framework and achieve the desired
goal, this work considers the that the agent unit and the
environment interface based on a series of decision-making
epochs (periods). Given a specific decision-making epoch,
the agent-based unit receives the state (observation) signal S.
This signal emanates from and is a representation of a cer-
tain state of the environment. Partially, based on this sig-
nal, the agent selects an action A. Then, it receives the
state (observation) signal and a numerical reward signal
coming from the network environment. Moreover, it for-
wards the actions signal to the network environment Given
this, the agent discovers itself in a different state of the

environment. Then, the reward signal measures how an action
signal has been successful against the target activity goal.

6) POLICY SUBUNIT
The policy subunit of the agent defines a mapping that
chooses an action based on the state from the network envi-
ronment. Normally, a policy is denoted by π , for the agent.
A policy represents a mapping from each state-action pair
which specifies the action A= π (S) which the agent will
select when the environment gets to a given state S. Overall,
a policy represents an approximation function with tunable
parameters, for instance a DNN network. Recall that the
ultimate aim of the SDN-enabled agent is to determine the
optimal policy, which maximizes the reward for each state,
based on discount rates.

7) DRL ALGORITHM SUBUNIT
The DRL algorithmic subunit of the agent is charged with
the determination of the optimal policy to maximize the
cumulative reward, obtained in the course of the target activ-
ity goal [139]. As shown in Fig. 11, such a requirement
is achieved through regular updates on the policy metrics
using the actions At, state St and the rewards Rt. By using
this procedure, the generic architectural framework can now
address the concern of exceedingly enormous state space,
including infinite continuous state space, by principally using
of both off-line trained and on-line updated DNN. Moreover,
it is rational to keep such an action space at a reasonable size,
given the action space enumeration constraint to ensure action
selection.

G. IMPLEMENTATION OF THE HYBRID ML AND DRL
ARCHITECTURAL FRAMEWORK
In section (E), we discussed the proposed generic DRL archi-
tectural framework. Provided in this section is a description
of the implementation process of the conjoint supervised ML
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FIGURE 12. Implementation of the hybrid ML and DRL architectural framework.

and DRL architectural framework in the generic DRL frame-
work. Provided in Fig. 12 is an illustration of the execution
algorithmic procedure of the proposed conjoint supervised
ML and DRL architectural framework, in hybrid SDN/OSPF
networks. Generally, the hybrid ML and DRL architectural
framework is comprised of two algorithmic modules, pre-
cisely the supervised ML and non-supervised RL modules.
The supervised algorithmic module is composed of the PCA
and the refine algorithmic techniques. Besides, the unsuper-
vised DRL algorithmic module is composed of Q-routing
algorithm technique. Among these, the refine and Q-routing
algorithms belong to a class of HAs. Prior to execution,
one consideration which determines the choice of the initial
algorithm to begin with is the availability of data. With the
availability of historical data, the supervised ML algorithmic
module becomes the startup module.

As shown in the figure, the process begins with the super-
vised ML module which employs the PCA techniques to
perform feature representation and feature dimension reduc-
tion, and model training and testing. Then, the refined GA is
applied to predict the optimal routing parameters. Afterward,
the predicted parameters are employed by the optimization
algorithm to achieve the desired outcomes. Assuming that a
change occurs in the network environment, mainly brought
about by the arrival of a new flow or update in the network
state, rather than performing prediction and execution of the

optimization algorithm again, the unsupervised DRL module
behaves relatively and responds easily to such variability
in the environment. In a condition where no historical data
exists, the DRL module can employ Q-routing heuristics to
learn energy-efficient paths for data traffic flows.

VIII. CONCLUSION
The intersection between AI-based ML and DL, and SDN
is increasingly gaining popularity and is envisioned to
play a pivotal role in the advancement of current and
next generation communication networks and services. This
paper has on the one hand provided an updated review of
selected load balancing and energy-efficient routing solu-
tion in hybrid SDN/OSPF networks. On the other hand,
the paper gives a review of the most recent ML and DL algo-
rithmic frameworks, mainly employed in traffic prediction
and energy-efficient routing in SDN-enabled networks. First,
the paper gives a brief discussion of SDN architecture. Sec-
ond, the paper considers background to hybrid SDN/OSPF
networking. Third, we discuss key selected works in hybrid
SDN/OSPF domain. Fourth, a discussion of selected ML and
DL studies provided. Fifth, the paper discusses the benefits
and the challenges that demand for innovative working solu-
tions. Sixth, based on the outcomes of recent studies, rec-
ommendations are made to guide future research for obtain
better outcomes. Lastly, the paper proposes an algorithmic
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framework that leverages conjoint supervised ML and DRL
techniques to ensure traffic prediction, and cost-effective, rate
adaptive energy-efficient routing and performance guarantees
in such hybrid networks. We believe that this work will play
an important role in guiding the communications research
community and other practitioners with interest to apply
AI-basedML andDL in addressing the complexities that exist
in current and next generation SDN-enabled networks.
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