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ABSTRACT Despite significant infrastructure improvements, cloud computing still faces numerous chal-
lenges in terms of load balancing. Several techniques have been applied in the literature to improve load
balancing efficiency. Recent research manifested that load balancing techniques based on metaheuristics
provide better solutions for proper scheduling and allocation of resources in the cloud. However, most of
the existing approaches consider only a single or few QoS metrics and ignore many important factors.
The performance efficiency of these approaches is further enhanced by merging with machine learning
techniques. These approaches combine the relative benefits of load balancing algorithm backed up by
powerful machine learning models such as Support Vector Machines (SVM). In the cloud, data exists in
huge volume and variety that requires extensive computations for its accessibility, and hence performance
efficiency is a major concern. To address such concerns, we propose a load balancing algorithm, namely,
Data Files Type Formatting (DFTF) that utilizes a modified version of Cat Swarm Optimization (CSO)
along with SVM. First, the proposed system classifies data in the cloud from diverse sources into various
types, such as text, images, video, and audio using one to many types of SVM classifiers. Then, the data is
input to the modified load balancing algorithm CSO that efficiently distributes the load on VMs. Simulation
results compared to existing approaches showed an improved performance in terms of throughput (7%),
the response time (8.2%), migration time (13%), energy consumption (8.5%), optimization time (9.7%),
overhead time (6.2%), SLA violation (8.9%), and average execution time (9%). These results outperformed
some of the existing baselines used in this research such as CBSMKC, FSALB, PSO-BOOST, IACSO-SVM,
CSO-DA, and GA-ACO.

INDEX TERMS Classification, cloud, SVM, load balancing, metaheuristics, virtual machine.

I. INTRODUCTION
Over the years, an increase in online applications has resulted
in huge volumes of data accumulated daily. Generally,
the data is classified into different types, such as audio, video,
image, and text. Despite the significant evolution of clouding
computing to handle such diverse data, still it faces numerous
challenges in real-time processing and load balancing of
resources employed to process mega volumes of data.

In the past few years, several load balancing approaches
have been developed for cloud computing, such as [1]–[5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Adnan Shahid.

For instance, in [1], the authors have applied the Bin-packing
algorithm for multi capacity Bin-packing to achieve task
waiting time and degree of imbalance on cloud resources. In a
similar work [2], the authors used the Bin-packing algorithm
for cost-aware and fragmentation enabled consolidation of
tasks to achieve minimum energy consumption. In a work
by [3], the authors used a dynamic clustering algorithm
to achieve throughput and execution time. A study by [4]
applied a dynamic real clustering algorithm for achieving
geographical load balancing in the cloud that results in better
throughput and response time. In [5], the authors applied
adaptive load balancing to achieve optimal resource provi-
sioning resulting in better resource utilization and throughput.
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However, most of the traditional load balancing approaches
suffer from high computational cost, energy consumption,
several overheads, scalability, and deadline constraints.

In recent years, the research trend has shifted towards
metaheuristics-based approaches for load balancing, as these
techniques are better in addressing flexibility, multimodal
optimization, efficient randomization, discontinuous prob-
lems through intensification (exploitation), and diversifica-
tion (exploration) respectively. The authors in [6] presented
a metaheuristics approach for load balancing using mod-
ified PSO in which they minimized tasks overhead and
maximize resource utilization over varying VMs and tasks.
In [7], the authors combined ACO and PSO in a hybrid
metaheuristics load balancer ACOPS which uses the histor-
ical information to predict future workload of the VMs in
the cloud. This approach helps in reducing computational
time while keeping optimum load balancing among VMs
and tasks. This metaheuristic approach helps in finding a
local and global best position in the solutions with fast con-
vergence and hence performing better than many heuristic
approaches. Similarly, In [8], the authors employed SVM
in cloud load balancing metaheuristics ACO to achieve bet-
ter throughput, SLA, migration, overhead, and optimization
but lacks other critical factors such as energy consumption,
response time and execution time. Similarly, most of the
existing metaheuristic techniques are covering either one or
a few optimization parameters but ignoring other critical
factors that can play a pivotal role in achieving multi-factor
optimization [9]. Moreover, the issues faced in the cloud
due to load balancing can be further minimized with the
combination of metaheuristics and data mining techniques
to solve complex optimization problems more efficiently
[10]–[13]. Nowadays, Cloud Data Mining (CDM) is gain-
ing popularity in which machine learning models, such
as supervised machine learning are integrated with cloud
load balancing approaches that result in new efficient algo-
rithms [14], [15]. Similarly, the classification of multiple
file types in the cloud can achieve an improved load bal-
ancing with increased accuracy due to the pre-assignment
and categorization of data for virtual machines with differ-
ent resources. For instance, the audio classification exists
in various forms such as noise, speech, silence, and music,
etc, and can achieve performance efficiency using deep
learning algorithms such as Convolutional Neural Network
(CNN) [16]. Similarly, video datasets need proper catego-
rization and automatic classification for quick retrieval and
indexing. This helps in understanding the semantic gap to
minimize computational complexity. Integrated metaheuris-
tic algorithms such as ACO, ABC, PSO, etc. are used in
several ways to attain more accuracy in video classification
using classifiers such as SVM, KNN, and NN [17]–[19].
It has been observed that a huge increase in text documents is
making the extraction process quite complex. Text clustering
is used for text mining to categorize the text documents but
cannot perform text feature selection [20]. The metaheuris-
tic algorithms and classifiers such as GA, HS, PSO, NN,

and SVM are widely used for text classifications in high
dimension space providing high accuracies [21]–[24]. Image
classification involves the selection of image feature subsets
from large feature space. Selecting optimum features is a
complex process in image classification for load balancing
that is solved by several hybrid metaheuristic techniques such
as CSO, GA, ACO, PSO, with SVM, NN, K-NN [25]–[28].
Despite several advantages, the aforementioned approaches
have certain deficiencies and therefore, there is still a need
for multi-factor optimal solutions for load balancing.

Our proposed work focuses on the development of a
new load balancing algorithm named Data Files Type For-
matting (DFTF) that combines SVM (a machine learning
classifier) with modified Cat Swarm Optimization (CSO)
algorithm (a scheduling algorithm). The proposed DFTF
algorithm considers multi-factor QoS metrics, such as energy
consumption, response time, SLA violations, migration time,
optimization time, execution time, throughput time, and over-
head time as performance evaluation measures. In this work,
SVM is applied using one-to-many classifications for gen-
erating the data class over a set of file formats, such as
audio, video, text, and images in the cloud environment. The
classification process can easily reduce such complexities
while performing offline preprocessing and make the data
available in the processed form [8]. This refined form of data
when applied to load balancing can significantly improve
scheduling using QoS parameters [29].

Original CSO is more suitable for small population size
with aminimumnumber of iterations and hence not providing
good solutions in a situation where the processing involves
a large number of complex tasks [30], [31]. This drawback
eventually leads CSO to fall into local optimum which takes
more iterations in finding solutions space and hence make
CSO computationally complex [32]. Therefore, we have
modified the original CSO by introducing a new grouping
phase process that takes the data files into four groups:
audio, video, image, and text taking from SVM keeping in
view the properties associated with each group. In doing so,
the population of cats in the sub-groups is sorted and later
in the stage, the best fitness value of the cat in local best
solution is selected. Thereby, integrating the two approaches
SVM and CSO into a merged one addresses their individual
limitations and reinforces their combined benefits into a sin-
gle combined model. Earlier data type approaches such as
AWS and PostgreSQL focus only on data types classification
but not on file format types [33]. However, the proposed
approach is using file format types for classification in the
cloud environment and then uses the resultant data class into
load balancing algorithm modified CSO for load balancing.
This combination has outperformed some sate of the art
metaheuristic load balancing algorithms used in this study
such as CBS-MKC [34], FSALB [35], PSO-BOOST [36],
IACSO-SVM [37], CSO-DA [38] and GA-ACO [39].

The main objective of this research is to propose a
new optimized metaheuristic algorithm DFTF in a cloud
that performs classification and load balancing effectively.
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This optimization model addresses the limitations of the ear-
lier load balancing approaches by its multi-factor approach.
Further, the contributions of this paper include:

• A new algorithm DFTF is developed based on SVM
and modified CSO that provides better-optimized load
balancing in the cloud environment.

• The classification of data file formats into audio, video,
image, and text is performed in a cloud environ-
ment that shows an improved classification accuracy
in confusion matrix such as accuracy, precision, recall,
and F-measure over state-of-the-art classifiers helping
in decreasing computational complexities later in the
scheduling phase.

• The proposed DFTF model has provided improved
results for energy consumption, response time, SLA
violations, migration time, optimization time, execution
time, throughput time, and overhead time as perfor-
mance evaluation measures.

The rest of this paper is organized as follows. A literature
review is presented in Section 2, the proposedmethodology is
discussed in Section 3, the experimental setup is described in
Section 4, results and analysis are discussed in Section 5 and
conclusions are presented in Section 6.

II. LITERATURE REVIEW
The load balancing algorithms are classified as dynamic,
static, or hybrid and it depends on the machine state. They
are also known as allocation and scheduling algorithms based
on the features used during load balancing. Further, they are
categorized as Cloud Data mining load balancing, VM load
balancing, CPU based load balancing, Task-based load bal-
ancing, Server-based load balancing, Network-based load
balancing, and Standard Cloud load balancing based on their
combination. Numerous studies discussed the limitations of
the load balancing algorithms for proposing more effective
methods. The study lacks discussion of some essential QoS
metrics, such as migration duration, migration expense, ser-
vice quality breach, task failure rate, algorithmic efficiency,
percentage of load balancing measures, and level of balance.
The algorithm for load balancing must improve responsive-
ness, implementation cost, implementation time, through-
put, fault sensitivity, migration duration, makespan, resource
throughput, and usability. At the same time, energy consump-
tion, carbon pollution, relocation costs, energy efficiency,
and SLA needs more consideration [40]–[42]. It has been
observed that in reducing the efficiency of the load balancing,
algorithm complexity is not given much consideration. The
studies also concluded that several issues remain a huge
challenge in the load balancing that can be traversed in the
future by implementing an adequate, effective, and robust
load balancing algorithm. The decline of these dimensions’
leads to poor QoS at Cloud Service Centers and a decreased
economy for CSP. However, keeping QoS and economics into
consideration, delivering optimized multi-factor QoS based
solutions is becoming a major challenge for CSPs. Some of

these challenges are being discussed which mainly rotates
around our developed QoS metrics in the below sections.

Cloud computing is making significant contributions in
extracting useful information when combined with data min-
ing techniques. This combination called cloud data min-
ing (CDN) has made easy information retrieval from huge
volume and variety of data with the help of load bal-
ancing approaches. Similarly, several real-time cloud data
mining frameworks, algorithms, and services are avail-
able that provide information through a number of appli-
cations [43]. These real-time cloud data mining and load
balancing applications are VM tasks classification for load
balancing, feature extraction, anomaly, and intrusion detec-
tion, open shop scheduling, attribute importance, spatial
classifications, data analysis and satellite imagery [44],
spectral and statistical data analysis [45], gene expres-
sion data mining and bioinformatics [46], geo-spatial anal-
ysis and geo-informatics, large-scale mining in big data
and web mining [47], machine-learning applications [48],
high-dimensional data mining [49], highly diversified and
dense data mining in rule mining [46], the security of data
in the cloud, clustering, datacenters resources optimization
in the cloud, noise removal, reactive power problem, face
recognition, biomedical image processing, teaching based
learning, manufacturing design, water resource problem and
routing optimization.

This research is mainly focused on classification, specifi-
cally the combination of classifier with a load balancer in the
cloud. So, most of the presented information rotates around
classification and load balancing. In classification, data is
assigned to appropriate classes using supervised machine
learning techniques. The classification consists of many tech-
niques such as SVM, decision tree, Bayesian classifier, NN,
belief networks, and Rule-based classifiers. Cloud data min-
ing classification techniques including K-NN, Point data,
NB, GA, and their hybrids such as NB with SVM, GA with
SVM, ACO with SVM, ACO with NN, GA with K-NN, etc.
These combinations help in getting the highest accuracies in
classification and further reducing computation complexities
in load balancing over the number of applications.

In [50], the authors proposed a hybrid metaheuristic
algorithm called WOA-AEFS. They solved the resource
scheduling problem in cloud computing. This study has two
scheduling approaches that consider makespan and cost.
The algorithm outperformed other metaheuristic algorithms
such as original BAT and PSO but did not consider factors
such as execution time and performance efficiency. Extended
BAT Algorithm (EBA) is suggested by [51] that modifies
three benchmark functions such as Ackley, Hyperellipsoid,
and Rosenbrock resulting in better performance of search-
ing optimum solutions, fitness function, and convergence
rate. The algorithm outperformed other metaheuristics, such
as MMBO, and MBO-FS in the same cloud but compu-
tational complexity is a major concern. A study by [52]
suggested Gravitational Search Algorithm (GSA) for load
balancing in the cloud where it proved strong convergence
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over a set of iterations. The drawback of this algorithm
is computation-intensive that effects its scalability. A study
by [53] proposed hybrid IRRO-CSO which is inspired by
the perception of information flow in raven social behavior
among members in searching food while CSO is based on
chicken behavior during a search of food. The algorithm
has been validated against CEC 2017 benchmark functions
resulting in showing better performance over BAT, PSO,
and CSO. However, the performance needs to be checked
on real-time large datasets that improve the execution
time.

In [82], modified Heterogeneous Earliest Finish Time
(MHEFT) is proposed for dynamic load balancing in the
cloud resulting. The algorithm works well under a smaller
number of tasks and did not consider other QoS metrics
for performance evaluations. CEGA is a genetic inspired
balancing algorithm designed to meet deadline constraints
while reducing the execution time of the tasks [83]. Results
of the CEGA have shown better performance on the same
workflows but the algorithm suffers exponential time com-
plexity. A variation of CSO called Improved Cat Swarm
Optimization (ICSO) is proposed by [79]. Here, the first
modification is improving the tracing mode with changing
position and velocity equations. Similarly, the other modifi-
cation is to make changes in such a way that local optima are
prevented. However, the algorithm is only tested on bench-
mark functions with fewer tasks whereas, the number of
QoS metrics is not considered. In a study by [84], authors
developed a hybrid metaheuristic algorithm HBMMO for
workflow scheduling in cloud computing for improving
throughput in the cloud. The algorithm takes amulti-objective
approach such as quantization of execution cost, throughput,
and makespan. Despite many factors discussed in the study;
energy consumption is not considered. In [85], Weighted
Wavelet SVM (WW-SVM) is suggested for estimating load
sequences in a data center using a cloud computing environ-
ment. For parameter selection and optimization, PSO is used
to make a final prediction. The proposed algorithm outper-
forms other baselines in terms of execution time, throughput,
and error prediction. The algorithm considers only predic-
tion and accuracy while simple multi objectives are not
discussed.

An improved SLA violation for load balancing in the
cloud with the objective of minimum resource wastages is
discussed by [86]. The algorithm used optimum resources
in which there is less failure rate of fulfilling tasks and
maintaining low energy usage and least SLA violations up
to 17%. The algorithm did not consider execution time
and numerous scientific evaluations. Sharma et al. proposed
SLA agile-based VM to reduce response time [87]. This
research used ghost VM to reduce the VM creation time
by approximately 12%. Static workloads are used, and per-
formance metrics are not discussed. In [88], comprehensive
comparisons of SLA violations in a cloud environment are
performed for five metaheuristics algorithms in which QoS
constraints and penalty costs are considered. Experiments on

benchmark functions have shown the better performance
of each metaheuristic in best, worst, average, and SD
scenarios. However, multi-objective QoS metrics are not
considered.

A dynamic VM migration algorithm MMA is suggested
by [89] suitable for High-Performance Computing (HPC).
MMA algorithm minimizes the load on overloaded machines
and reduced communication costs. However, saturation can
cause performance degradation and computational complex-
ity. A study by [90] discussed a VM migration strategy
that provides better scalability over other strategies. In this
approach, a composite scoring function is used and find the
host that has workload handling capability. At this stage,
migration takes place and load is transferred to it. However,
the high computation cost, overhead, and multi-objective
approach are lacking. An improvement in reduced overhead
using a metaheuristic automatic power-aware algorithm in
VANETs is presented by [91]. This research uses PSO that
achieves energy-efficient communication. However, perfor-
mance degradation of 8% is observed and computation cost
is high. Biological Inspired Self Organized Autonomous
Routing Protocol (BIOSARP) is proposed by [92] for the
earliest searching of a neighbor using an optimal decision
by ACO. This helps in reducing overload to a significant
extent but the algorithm has a relatively higher overhead
cost.

A study by [93] discussed load balancing in multi-core
clusters using frequent data mining in the cloud. In their,
work SDFEM is proposed that provides high mining perfor-
mance in the large complex data analytic real-time applica-
tions. They used a hybrid approach of OpenMP and MPI
and tested their implementation on 12 core shared memory
nodes. The results have shown a remarkable increase in
performance that is much faster and reliable. However, this
combination has some complexities especially computational
and memory complexities. In [49], the authors suggested
a pattern mining load balancing technique for high dimen-
sion data PaMPa-HD based on Map-reduce. The algorithm
performed well in terms of robustness and execution time
due to its inherent properties of better mining patterns and
the least amount of transactions. However, there are a large
number of items per transaction. The authors in [94] pre-
sented metaheuristic EELBF Firefly load balancing algo-
rithms in the cloud in which throughput and response time
are focused. This algorithm besides finding relational min-
ing models provides better energy consumption by balanc-
ing workload in multiple VMs (considering less loaded and
high loaded VMs). The algorithm has been implemented in
CloudSim 4.0 and compared with ACO, HBB, and WRRLB,
and overall better performance is observed. A study by [95]
presented an energy-efficient load balancing algorithm that
uses the combination of BWM and TOPSIS methodology
for a multi-objective mining approach. The selection of most
appropriate cloud scheduling solutions is performed in two
steps inwhich initially a decision criterion is defined followed
by BWM for weights assigning and then TOPSIS is applied
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TABLE 1. Cloud data mining using load balancing algorithms.

to measure the performance of each alternative. Experi-
ments have shown that the proposed algorithm has attained

better results in terms of makespan, energy consumption, and
VM utilization over other baselines. However, this study did

173212 VOLUME 8, 2020



M. Junaid et al.: Modeling an Optimized Approach for Load Balancing in Cloud

not consider large scale datacenters which provide scalability
and reliability of the proposed solution over a larger number
of tasks. In [96], the authors discussed the PSO based load
balancing algorithm used for resource allocations in cloud
computing. The algorithm finds task initiation overload on
VMs by optimized migration transfers to other VMs. As a
result, the algorithm achieved reduced execution time and
transfer time. However, this algorithm is only considering a
few tasks based on a single factor thereby not addressing scal-
ability issues. A study by [97] presented a new adaptive inte-
grated approach based on best-worst decision making and the
ranking method called VIKOR which is used to define tasks’
priorities. This algorithm uses a compromised approach in
which group benefits are maximized over individual losses.
The algorithm provides better reliability by keeping all
VMs in the process during runtime. Further, the algorithm
achieves better throughput, reduced makespan, improved
waiting time, more virtual machine (VM) utilization, and
less VM usage cost when compared with other baselines.
However, a maximum of 1000 tasks is considered for various
QoS performance metrics which means that scalability may
be the issue when tasks are significantly increased along
with VMs.

It is observed from the number of studies presented here
that no comprehensive multi-factor approach is adopted that
optimizes the QoS metrics without effecting the quality
solution.

III. PROPOSED METHODOLOGY
We combined our approach using SVM and CSO to make
a hybrid model called DFTF with the objective of improving
the load balancing and performance in the cloud environment.
The architecture of the proposed DFTF approach is shown
in Figure 1. This architecture is divided into two main mod-
ules: ‘Data Classification based on SVM’ and ‘Load Balanc-
ing using CSO’. The input to the data classification module is
the collection of diverse data in the form of video, text, audio,
and images, which are stored in the cloud environment. The
classification module takes the input data randomly and then
performs the classification on these data using polynomial
SVM. The output of this algorithm is in the form of the
partitioned data class. The second module performs load
balancing using Cat Swarm Optimization (CSO). The per-
formance analysis of the proposed model is then performed
to achieve an efficient load balancing by considering the
parameters such as execution time, number of migrations,
optimization time, throughput time, and overhead time. The
various tools used in this research are CloudSim 4.0 and Java
environment.

Algorithm 1 describes the process of the proposed model
called DFTF. In this algorithm, Lines 1 to 11 performed data
categorization that first classifies the type of data and then
classifies the type of VMs using SVM and assigned it to
the particular class. Lines 12 to 32 performed load balancing
using CSO and then output the schedule data.

A. DATA CLASSIFICATION BASED ON SUPPORT
VECTOR MACHINE
We collected the data from different cloud sources and then
preprocessed the data to transform it as per ourmodel require-
ments. The data format of the collected data from the cloud is
comprised of video, audio, text, and images. These data sets
are diverse and are of different sizes. In the proposed model,
at first, the SVM classifier determines the type of data (audio,
video, text, image) based on features and then classify the data
by assigning it to a particular class.

We have divided the VMs into four types of sets, such
as AudioVM, VideoVM, TextVM, and ImageVM based
on input data. Each set of VM has different process-
ing and storage resources in a cloud environment. More
precisely, each machine (VM) is assigned a task based
on task requirements. For example, video tasks require
1000 floating-point operations and 16GB memory, audio
tasks require 800 floating-point operations and 12GB mem-
ory, image tasks require 800 floating-point operations, and
8GB memory, textual tasks require 400 floating-point opera-
tions and 4GB memory. After that, the SVM classifier iden-
tifies the set of VM types such as VideoVM, AudioVM,
TextVM, ImageVM, based on the requirements, size, and
features of the tasks. Here the respective VM is assigned
concerning each task. Hence, SVM intends to classify data
and match it to the most suitable class type and VM type.

For video data classification, we extracted feature vec-
tors of sequences of 40 frames extracted from four different
video classes, where we have a 40 × 4096 matrix, where
each row refers to features of one frame (one frame per
row), so we classified videos between these four different
classes. We preprocess a new video to limit its number of
frames and then extract features from this video to classify
it. Assume that we have four video classes (ci, i = 1, .., 4).
Each video has 40 (n= 1, .., 40) frames and from each frame
we extracted 4096 features ([1×4096]). Since each frame has
enough information to predict the video class (ci) so we used
40 frames from each video as training/test samples, which
creates an input matrix of [160 × 4096] dimensions, with
160 samples and each sample have 4096 features. Addition-
ally, we have created an output vector [160× 1] that contains
the label of each class ci = i, where i = 1 . . . , 4.
For audio data classification, four feature sets of audios are

evaluated for identifying five kinds of audio classes: classi-
cal music, popular music, crowd noise, speech, and simple
noise. The feature sets include low-level signal properties,
mel-frequency spectral coefficients [98], and two new sets
based on perceptual models of hearing. For image classifica-
tion, we have considered 256× 256 pixels (total 65,536 pix-
els). We used each pixel as a feature in the SVM classifier.

For text classification, there are text documents of about
6GB which are extracted in the form of unstructured
text. We performed stemming and stop word removal and
extracted the words in the form of features. We then
used these features for text data classification using SVM.
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FIGURE 1. Proposed architecture of DFTF.

SVM works on the principle of linear classification with
a special type of rule that generates classes with effec-
tive performance and is based on the quality of classifi-
cation. Kernel trick can be used in the construction of a
special kind of non-linear method using SVM. There are
two types of classic kernel functions that are used in SVMs,
one of them is the radial basis function kernel and the
other is a polynomial kernel. where, ui is used for support
vector, ∝i is represented as Lagrange multiplier and uj is
known as the label of membership class (+1, −1) where
n = 1, 2, 3 . . .. N.

Equation (1) shows the polynomial function,

POLY (u, v) =
((
ukv+ 1

))s
, (1)

where ‘s’ is the polynomial degree.
The polynomial kernel function is used with SVMs and

other kernel models representing the similarity between
features over the polynomials of the original variables.
A polynomial kernel is defined as:

K (x, xi) = 1+
∑

(xxxi)d . (2)

Here, d=1, this confirms to the linear kernel.
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Algorithm 1 DFTF
Input: video, text, audio, image, N, number of virtual
machines (VM), number of cats, max_iterations, SMP
(seeking memory pool)= 5 to 10, MR is the Mixture ratio,
Sz: Size of the population, maximum_iter
Output: Data class, Scheduled data
1:for data classification do
2: for each P (u, v) do
3: Evaluate = SVM
4: for each Classification accuracy 6= 100 do
5: Evaluate data accuracy
6: if max_ iterations 6= N then
7: perform data categorization and VM

categorization
8: end if
9: end for
10: end for
11: end for
12: for load balancing do
13. Create N cats and divide them into four groups G, that

is G={audio, video, text, image}.
14. Randomly initialize velocities to each cat belongs to

group G.
15. Evaluate initial fitness function Fi
16. Csz = Create Cpop (sz, Fi) //Create cat population

// Distribute the cats in seeking or tracing mode
17. while k ≤ maximum_iter do
18. for each i = 1 to Sz do
19. if C[i] = Seekm then
20. Sol = Apply Seekm (Cj)
21. else
22. Sol = Apply Tracem (Cj)
23: end if
24. Fbest = Sol best
25. if C(F,k) detected then
26. Csz = create Cpop [sz, F]
27. else
28. Csz = reset Cpop [Csz]
29: end if
30. end for
31. end while
32. return F (schedule data) //return best solution
33. Exit.

The output of the classification phase is in the form of clas-
sified tasks, thus reducing the computational cost such as to
avoid preprocessing of features learning, features extraction,
data conversion, data transformation, and data classification
at the scheduling phase.

B. LOAD BALANCING USING CAT SWARM OPTIMIZATION
We developed the network of VMs in the form of an undi-
rected weighted graph as shown in Figure 2. The VMs’
network can be represented as an undirected graph G= (V, E)

FIGURE 2. The network of Virtual Machines (VMs).

where V represents the virtual machine (VM) or node and E
represents the undirected edge having a probability a weight
that shows the overload and underload intensity between
two nodes. After the data classification, load balancing is
performed using CSO. In the load balancing phase, these data
are called tasks. Let us assume that:

VideoVM = {VM1,VM2, . . . . . . ,VMn} ,

AudioVM = {VM1,VM2, . . . . . . ,VMn,

TextVM = {VM1,VM2, . . . . . . ,VMn} ,

ImageVM = {VM1,VM2, . . . . . . ,VMn}

be the set of virtual machines for video, audio, text, image,
respectively. Each set of machines is responsible to execute
one task. Each task is executed for a period of maximum
iterations and is evaluated using computational cost in the
form of time. The mapping of tasks on virtual machines is
computed using the SVM, where each machine is assigned a
task based on requirements, size, and features of the tasks.

Once the number of tasks and VMs are selected,
the scheduling process will be initiated. Initially, N instances
are created and split into G groups. CSO takes into con-
sideration the behavior of the cats into two modes that
are seeking mode and tracing mode. Swarm algorithms are
widely accepted as they adapted the best-obtained solutions
for searching the most similar neighbors (nodes). So, in this
method, the cat behavior is considered for searching a solu-
tion space. Every cat has its position having d-dimensions
with different velocities used for each dimension. Every cat is
evaluated using fitness function, if the fitness is not equal then
compute the probability using equation (3), and by default,
the probability value is set to 1. We used the Boolean flag
variable to identify whether the cat is in seeking mode or
tracing mode. The tracing mode is considered in terms of
its fitness function where the position of the cat is changed
according to the fitness function. The fitness function of CSO
can be obtained with the help of equation (3).

Pi =
FS i − FSmax
FSmax − FSmin

, where 0 < i < j, (3)
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where Pi shows the probability, value associated with the
position of ith Cat. FS i is the fitness of ith cat, FSmax rep-
resents the maximum fitness value and FSmin represents the
minimum fitness value achieved so far.

The tracing mode of the CSO method is described in terms
of the movement of cats that is based on the outstanding
hunting skills of cats. In tracing mode, the movement of cats
is according to their velocities in each dimension and then
updating their positions accordingly. The updated positions of
cats and velocities are calculated using equations (4) and (5).
These equations are:

Vi,d (t)=Vi,d+rici
(
Xbest,d−Xi,d

)
, d=1, 2, . . .M , (4)

Xi,d(t)=Xi,d + Vi,d , (5)

Here, various terms are used for the position of the Cats like
Xbest,d is the best position of a cat in d-dimensional space,
Xi,d is the position of Cati,Vi,d is the velocity of Ci. ri is a

random value between [0, 1],Ci is the acceleration coefficient
that extends the Cats velocity to move into solution space,
which is set to 2.0, and t is the iteration number.Mixture Ratio
(MR) is used to combine the two modes in the algorithm that
is seeking mode and tracing mode and to determine the ratio
of Cats in the modes. We have set the control variable MR
to 1%-3% that determines the position a Cat which is either
seeking or tracing mode. It means that at any instance, 10%
to 30% of the Cats are in tracing mode, and the rest of the
Cats are in seeking mode. Here local search refers to tracing
mode and global search refers to seeking mode. Cats spend
most of the time in resting mode (seeking mode), so, the MR
value should be a tiny value to show their behavior in the real
world. There is a need to put the control check on the velocity
of Cat for every dimension value so that velocities must be in
the range and have not crossed maximum. This control check
is added through inertia weight (w) for which the optimum
value must be between [0.4-0.9]. In our case, 0.7 is giving
the best results. For the first iteration, it needs to be started
at 0.9 and gradually decreased to 0.4. The optimum solution
will be available somewhere between the values. The seeking
mode of the CSO technique is composed of the following
parameters: Seeking Memory Pool (SMP), Seeking Range
of selected Dimension (SRD), Counts of Dimension Change
(CDC), and Self-Position Consideration (SPC).

We have computed the evaluation of the DFTF model
based on time complexity. As our model follows a combined
approach that is the combination of SVM and CSO, so we
have used different parameters that are specified in evolution-
ary algorithms as well as classification algorithms. For CSO,
these parameters are given in Table 2. For CloudSim, we used
the parameter settings as reported in Table 3 These parameter
settings are chosen based on the convergence of the DFTF
algorithm after conducting several experiments.

From Algorithm 1, the computational time for Lines 1 to 8
is O(N 3(n)) and Lines 9 to 13 take constant time O (1).
Lines 14 and 15 take O(N 2). From experiments, it is
observed that the seeking mode takes less time as compared

TABLE 2. Parameter settings used for DFTF.

TABLE 3. Parameter settings used for DFTF in CloudSim.

to tracing mode, therefore, computational complexity from
Lines 16 to 26, is O(N (ks)) and Line 27 takes time,
O(l). Thus, the overall time complexity of the proposed
DFTF is O(N3

+ N3(n + ks + l) that simplifies to
O
(
N3
+ N3.n+ N3.ks+ N3.l

)
after further simplification

gives O(N3 (1+ 1.n+1.ks+ 1.l) ) and finally its O(N3).

TABLE 4. Description about datasets.

IV. EXPERIMENTAL SETUP
In this section, various files in the form of datasets are pre-
sented including audio, video, text, and images which are
taken from UCI repository [99] and other sources. There is
a total of 60,000 datasets which are further divided equally as
given in Table 4.
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TABLE 5. Statistics about training and test sets.

Further, various dataset files are placed into training and
testingmode with a ratio of 70:30, where 70% of data files are
training datasets and 30% are testing datasets as mentioned
in Table 5.

CloudSim 4.0 [100] as compared to other simulators is
widely used in conducting and implementing cloud-related
research work. The simulator is providing on-demand
resources in virtualization form and has several advantages
such as flexibility, performance, and ease of use. A data center
is configured with the region, architecture, operating system,
VM, memory, storage data transfer cost, and the number of
physical hardware units. In our case, we have set 500 and
1000VMs, respectively, during experiments alongwith 4096,
8192 MB of RAM and 2 TB of memory. All simulations
are performed on Desktop PC comprising of MS Windows
10 Operating System, Intel Quad-Core i7 with 2.6 GHz pro-
cessor, 12 GB RAM, and 1 TB of HDD.

The algorithms used in this research include CBS-MKC,
FSALB, PSO-BOOST, IACSO-SVM, CSO-DA, GA-ACO,
and proposed DFTF. There are eight metrics on which DFTF
is compared, such as energy consumption, response time,
SLA violations, number of migrations, execution time, over-
head time, throughput time, and optimization time. There is
a total of 60,000 tasks on which evaluations are performed.
All algorithms are implemented in CloudSim 4.0 taken from
their respective research papers with the same configura-
tion and environmental setting to make the results reliable.
Further, the results are statistically verified through analysis
of student t-test to check their reliability that eliminates the
fact that the values are not by chance.

V. RESULTS AND ANALYSIS
In this section, the proposed algorithm has been divided into
two major parts. In the first part, the classification of the file’s
datasets is done using the SVM classifier in the cloud. In the
second part, the output of the SVM is fed into ICSO for load
balancing in the cloud environment. To obtain better, fast,
and accurate results, we have used the One-vs-All classifi-
cation approach that initially classifies the files datasets by
comparing it with all classes [101]. Overall, the output of
the SVM falls into one of the four major data classes such
as audio, video, image, and text. The baselines used in this

research include CBS-MKC, FSALB, PSO-BOOST, IACSO-
SVM, CSO-DA, and GA-ACO.

CBS-MKC used credit-based scheduling with an empha-
sis on task categorization but lacks a multi-factor appr-
oach. FSALB largely focused on reducing communication
delays experienced by the machine learning users and hence
improved response time but lacks a multi-factor approach,
PSO-BOOST considered deadline constraint within a limited
number of tasks, VMs and has shown improvements on few
parameters. IACSO-SVM worked on the classification accu-
racy of the limited number of tasks and datasets. CSO-DA
emphasized response time, number of migrations, and exe-
cution time on fewer tasks and VMs. GA-ACO improved
completion time, response time, and throughput under limited
resources. However, the proposed algorithm DFTF not only
addresses these limitations but also adopted a multi-factor
approach to solving.

Similarly, there are deep learning approaches which are
producing better results than traditional algorithms, but they
take more time in training with a large number of datasets.
Therefore, as per the requirement of our proposed work,
we have selected One-vs-Many SVM that has outperformed
other classifiers in the first stage in terms of accuracy.

A. ACCURACY OF DFTF
Validation methods such as accuracy, precision, recall, and
F-measure are used to check the accuracy of the DFTF.
The classifiers such as ACO-SVM [102], Bayes Net [103],
J48 [103], andMulticlass [104] are used for comparative anal-
ysis as shown in Table 5. The results of DTFT are presented
as comparative analysis over other algorithms in which DFTF
has shown better performance in all validation methods.

The results of classification algorithms are validated
using classification validation accuracy measures concerning
Accuracy, Precision, Recall, and F-Measure [105] reported
in Table 6. The results of these classifiers are ranged between
[0-1] with 1 being accurate classification. The more the
value closer to 1, the higher the accuracy of the classifier is
achieved. From Figure 3, DFTF has attained better accuracy
than other classifiers.

TABLE 6. Comparative analysis of DFTF with classification techniques.

B. EVALUATION OF DFTF ON ENERGY CONSUMPTION
Energy Consumption is calculated using the following
proposed equation:

EC =
∑N

k=1

∑n

N=1

(
TE (VMN )
E(Tk )

)
, (6)
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FIGURE 3. Comparison of DTFT with other classifiers.

where, TE (VMN ): Total Energy consumed by VMN , where,
N = 1, .., n
E (Tk) : Energy consumed for a particular task Tk

FIGURE 4. Performance of DFTF and Baselines on Energy Consumption
on VMs (5-2000).

Energy consumption is depicted in Figure 4 in which
comparative analysis is performed for all baselines. From the
very start, a significant difference is seen which continues till
2000 VMs. Since the number of tasks and other configura-
tion parameters is set equal so that reliable results may be
obtained. After a gradual increase in the number of tasks from
1000 to 2000, few of the baselines such as CBS-MKC and
CSO-DA start to consume slightly more energy which is fur-
ther followed by a few other baselines. Likewise, the increase
in VMs from 5 to 10, 50, 100, 500, 1000, and 2000 also results
in an increase in energy consumption which keeps on getting
increased with every additional VMs. In 2000 VMs, most of
the baselines suffer from huge energy consumption leaving
only DFTF with comparatively least consumption of energy.

The progress of DFTF in this scenario remains quite
smooth even with the addition of more VMs which shows
that DFTF is consistent. In other words, CBS-MKC has
consumed 21% energy followed by CSO-DA with 16%,

FSALB with 16%, IACO-SVM with 15%, GA-ACO with
12%, PSO-Boost with 11% and DFTF only consumed 9%
energy. Preprocessing using a classification in cloud reduced
the computational complexity resulted in the least energy
consumption and further faster convergence of CSO achieved
the best solution in the minimum number of iterations which
also preserved the energy.

C. EVALUATION OF DFTF ON RESPONSE TIME
Response time is computed using the following proposed
equation [

RT =
N∑
t=1

CTt − (TsTt − TeTt )

]
, (7)

where, t:Task
RT : Response time
CTt : Computational time for task t
TsTt : Task start time of t th task
TeTt : Task end time of t th task

FIGURE 5. Performance of DFTF and Baselines on Response Time on VMs
(5-2000).

Figure 5 represents a response time against a varying num-
ber of tasks andVMs for all algorithms. Comparative analysis
of algorithms has not revealed much difference in response
time initially as these algorithms are producing output in an
almost equal time. Further, with the increase in VMs and
tasks, a surge is seen especially for the two baselines such
as CBS-MKC and PSO-Boost taking more response time
after 1000 VMs. The other baselines such as IACO-SVM,
GA-ACO, CSO-DA, and FSALB are also showing more
response time whereas the response time of DFTF remains
stable throughout.

This shows that DFTF is scalable in a dynamic envi-
ronment where the number of tasks and VMs are get-
ting increased. In other words, CBS-MKC has delivered
its response in 18% of total response time followed by
PSO-Boost with 16%, IACO-SVM with 16%, CSODA with
15%, FSALB with 14% and GA-ACO with 13%. However,
DFTF has only taken 8% response time and has outper-
formed all baselines. The total response time is the sum of
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all response times taken by all baselines. This is because
of CSO’s stronger convergence to a solution and achieving
global minima in fewer iterations.

D. EVALUATION OF DFTF ON NUMBER OF
SLA VIOLATIONS
SLA violation is calculated using the proposed equation (8):[

SV =
∑N

i=1

Ttotal
Tvmi

]
. (8)

where,
Ttotal : Total CPU time
Tvmi : Time is taken by ithVM.

FIGURE 6. Performance of DFTF and Baselines on SLA Violations on
VMs (5-2000).

In this case, SLA violation occurs if VM takes more time
than allotted CPU time. SLA violations against varying num-
ber of tasks and VMs for all baselines are shown in Figure 6.
It is observed that till 100 VMs, no major change in SLA
violations is seen in the graph which becomes more obvious
after 500 and aboveVMs. The algorithms such as PSO-Boost,
CBS-MKC, and FSALB have violated more SLAs as soon as
tasks and VMs are increased. DFTF, in this case, has done
least violations that are only 8% as compared to PSO-Boost
with 19% violations followed by CBS-MKC with 17%,
FSALB with 16%, CSO-DA with 16%, IACO-SVM with
11% and GA-ACOwith 11% SLA violations. The least num-
ber of SLA violations confirmed that DFTF has performed
fewer migrations and avoiding complexity.

E. EVALUATION OF DFTF ON MIGRATION TIME
Migration time is calculated using the following function:

Mt =
∑n

k=1
TSk (VMi,VMi+1). (9)

where,
TSk (VMi,VMi+1) = TSk (VMi → VMi+1), scheduling time

is taken for allocating k th data from ith VM to (i+ 1)th VM is
based on availability.

FIGURE 7. Performance of DFTF and Baselines on Migration time on
VMs (5-2000).

Figure 7 shows the migration time taken by all baselines
with varying tasks and VMs. More migrations take more
time as compared to fewer migrations. Optimization algo-
rithms make the least number of migrations because a single
migration involves several processes, their communication,
interrupts, addresses, and other factors. VM migration policy
is administered by the administrator in which a rule is defined
about when to trigger the VM migration from one host to
another host. Generally, a threshold is defined which enables
VM migrations while considering the computing capabilities
of the host machines to minimize the number of SLA viola-
tions and migrations.

Both heuristic and metaheuristic algorithms as a hybrid
approach work well for finding the solution in VMmigration.
For initial VM placements, the heuristic algorithm is suitable
whereas, for optimization duringmigration, the metaheuristic
algorithm performswell. This helps in reducing cost and solu-
tion space. Figure 7 initially shows IACO-SVM and CBS-
MKC started by taking more migration time due to many
migrations which gets better after 50 VMs till 1000 VMs and
further increased afterward. This shows the unstable behavior
of these algorithms with varying VMs and tasks. In other
words, CBS-MKC has taken 23% migration time followed
by IACO-SVM with 22%, FSLAB with 12%, PSO-Boost
with 12%, CSO-DA with 12%, GA-ACO with 11% and
DFTF with only 8% migration time due to least number of
migrations and further supported by the least SLA violations.

F. EVALUATION OF DFTF ON OPTIMIZATION TIME
Optimization time is calculated using the following proposed
equation:

OT =
∑Imax

i=0
Ti. (10)

where,
Ti : Time taken for ith iteration∑Imax

i=0 Ti : Total Time for complete iteration.
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FIGURE 8. Performance of DFTF and Baselines on Optimization Time on
VMs (5-2000).

The optimization time also known as convergence time
of all baselines is plotted in Figure 8. Only two algorithms
FSALB and CBS-MKC are showing an exponential increase
in optimization time resulting in comparatively higher
unstable behavior. The algorithms such as IACSO-SVM,
GA-ACO, and CSO-DA deviate a little bit in optimizing
the tasks because these algorithms get trapped into local
optimum, whereas as PSO-Boost and DFTF optimize quite
fast and produce better results in the presence of other base-
lines. Overall, FSALB has taken much time in getting opti-
mized which is 22% followed by CBBS-MKC with 17%,
IACSO-SVM with 14%, CSO-DA with 12%, GA-ACO
with 12%, PSO-Boost 12% and only 11% optimization time
taken by DFTF. Cats move on a global scale to find the global
best position that prevents them to fall into global optima so,
they tend to optimize the solution quite fast.

G. EVALUATION OF DFTF ON EXECUTION TIME
Execution time is calculated using the following proposed
equation:

Et =
∑N

k=1
Tt (Tk ). (11)

where,
Tt (Tk ) : Total time for executing k th task
The execution time of all baselines is shown in Figure 9.

Here, DFTF initially performed extremely well and took the
least time and then started to rise when VMs gets 50 in
size because DFTF initially converges slowly. However, not
huge improvement is observed in DFTF but overall, compar-
atively better performance can be seen. The algorithms like
CBS-MKC and GA-ACO from the very start deviate a lot and
therefore take more execution time in almost all runs. FSALB
remains quite better with every increase in VMs whereas,
PSO-Boost and DFTF execute quite fast and produced better
results in the presence of other baselines. Overall, CBS-MKC
has taken much execution time that is 19% followed by

FIGURE 9. Performance of DFTF and Baselines on Execution Time on VMs
(5-2000).

GA-ACO with 17%, FSALB with 16%, CSO-DA with 14%,
IACSO-SVM with 13%, PSO-Boost with 12% and only 9%
execution time taken by DFTF.

It shows that the classification method using SVM plays
an effective role in shortening the task execution time of the
DFTF and further establishes the stronger scheduling ability
of the algorithm.

H. EVALUATION OF DFTF ON THROUGHPUT TIME
Throughput time is calculated using the following proposed
equation:

TTP =
∑N

k=1
.
Tk
Tpk

. (12)

where,
Tk : k th task
Tpk : Time period for completing k th task
The throughput time of all baselines is shown in Figure 10.

Two algorithms CBS-MKC and IACSO-SVM have initially
taken more time in providing throughput which gets further
increased to 100 VMs because these algorithms could not
quickly optimize. CSO-DA started better but surged after
the addition of 500 VMs because more tasks are adding
complexity in it.

However, FSALB, GA-ACO, and DFTF have shown good
throughput performance. Overall, IACSO-SVM has taken
much throughput time that is 19% followed by CSO-DAwith
18%, CBS-MKC with 16%, PSO-Boost with 13%, FSALB
and GA-ACO with 12% each, and only 10% throughput time
taken by DFTF. Stronger robustness by DFTF has resulted in
generating solutions in minimum throughput time.

I. EVALUATION OF DFTF ON OVERHEAD TIME
Overhead time is calculated using the following proposed
equation:

OHT =
∑N

i=1
(Tott (Ti)− Et (Ti)). (13)
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FIGURE 10. Performance of DFTF and Baselines on Throughput Time on
VMs (5-2000).

FIGURE 11. Performance of DFTF and Baselines on Overhead Time on
VMs (5-2000).

where,
Tott (Ti) : Total time required for executing ith task
Et (Ti) : Execution time of ith task
The overhead time of all baselines is shown in Figure 11.

Two algorithms CSO-DA and PSO-BOOST started with
huge overhead time which gets stable at 50 VMs but again
instability is observed after 500 VMs which gets increased
after every run. This is mainly because of their computa-
tional complexity. Overall, on average, CSO-DA has taken
more overhead time that is 18% followed by CBS-MKC
and PSO-BOOST with 17% each, IACSO-SVM with 15%,
PSO-Boost with 13%, FSALB and GA-ACO with 13% each,
and only 7% throughput time taken by DFTF.

The minimal computational complexity, fewer iterations in
finding global optima, low communication cost, low over-
head, and better convergence has made DFTF a better choice
over other baselines.

J. STATISTICAL ANALYSIS
We have checked the resulting values of all parameters and
found their distribution is normal. In that case, there is a need
for a parametric test that involves 2 variables because we
have taken one baseline at a time and compare it with DFTF.
In statistics, the suitable test for 2 variables with normal
distribution is student t-test. Similarly, we can see in Table 7
the values such as mean, standard deviation (SD), p-value,
and t-value. Meanwhile, the significance level is set to
p< 0.05 [106]. At this stage, we need to define the hypothesis
in the following manner:

H0: DFTF and other baselines have no difference.
H1: A significant difference exists between DFTF and

other baselines.
We can see that p-values in all cases are less than the

significance level that is <0.05 which means that the signif-
icant difference exists among the values of DFTF and other
baselines. So, we are right to reject the null hypothesis and
accept the alternate hypothesis. Similarly, we can say that a
significant difference exists in terms of energy consumption,
response time, SLA violations, migration time, optimization
time, execution time, throughput time, and overhead time.

K. RANKING BASELINES
Table 8 shows eight Quality of Service (QoS) metrics used in
this study against seven baselines.

FIGURE 12. Comparative analysis of all baselines on various parameters.

It can be observed that certain baselines perform better
in one scenario and average or worst in another scenario
but proposed DFTF performed better among them followed
by PSO-BOOST, GA-ACO, FSALB, IACO-SVM, CSO-DA,
and CBS-MKC, respectively. Figure 12 shows the averaged
performance of all baselines in terms of energy efficiency,
response time, SLA violations, migration time, and optimiza-
tion time over varying tasks and VMs. It is shown that overall
DFTF has outperformed in all five-performance metrics in
the presence of other baselines.
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TABLE 7. Statistical comparison of DFTF with other baselines.
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TABLE 8. Ranking of all baselines.

VI. CONCLUSION
The impact of file type format classification has made signif-
icant contributions to cloud computing. We have proposed a
DFTF approach that achieves better results in load balancing.
In the conducted study, DFTF is developed in two steps.
In the first step, file type classification is done in various
formats such as video, audio, text, and images in a cloud
environment resulting in an appropriate data class. In our
case, we have used four data classes in which appropriate
file format falls. A total of 60,000 datasets/data files are
collected from different sources and placed in the cloud for
classification. Classification is performed using SVM one to
many classification approaches providing the best accuracy
among other classifiers such as Multiclass, J48, Bayes Net,
and ACO-SVM. In the second step, the resultant data class is
fed into a CSO which performs load balancing in an efficient
manner. In CSO, we have introduced the grouping phase
which divides the data files into four groups’ audio, video,
image, and text. The offline preprocessing in the cloud for
classification helps in reducing the computational complexity
and increases the efficiency in load balancing. Furthermore,
the validation of DFTF is established through QoS evalua-
tion metrics in terms of energy consumption, response time,
SLA violations, migration time, execution time, throughput
time, overhead time, and optimization time. DFTF due to
its hybrid nature has taken the relative advantages of SVM
and ICSO which helps in achieving better performance in
the presence of baselines such as CBS-MKC, FSALB, PSO-
BOOST, IACSO-SVM, CSO-DA, and GA-ACO.

The proposed approach is a multi-factor approach that
ultimately saves time, cost, and valuable resources. It also
improves the scalability, and robustness in the cloud environ-
ment. In the future, we will perform load balancing in the
cloud by considering other sensitive parameters like deadline
constraints, priority-based scheduling, and task immigrations
using deep learning approaches.
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