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ABSTRACT Existing few-shot learning (FSL) methods make the implicit assumption that the few target
class samples are from the same domain as the source class samples. However, this assumption is often
invalid in practice – the target classes could come from a different domain. This poses an additional domain
adaptation (DA) challenge with few training samples. In this article, the problem of cross-domain few-shot
learning (CD-FSL) is approached, which requires solving FSL and DA in a unified framework. To this
end, we propose a novel discriminativeness-preserved domain adaptive prototypical network (DPDAPN)
model. It is designed to address a specific challenge in CD-FSL: the DA objective means that the source and
target data distributions need to be aligned, typically through a shared domain adaptive feature embedding
space, but the FSL objective dictates that the target domain per-class distribution must be different from
that of any source domain class, meaning aligning the distributions across domains may harm the FSL
performance. How to achieve global domain distribution alignment while maintaining source/target per-class
discriminativeness thus becomes the key. Our solution is to explicitly enhance the source/target per-class
separation before domain adaptive feature embedding learning in DPDAPN to alleviate the negative effect
of domain alignment on FSL. Extensive experiments show that our DPDAPN outperforms the state-of-the-art
FSL and DA models, as well as their naive combinations.

INDEX TERMS Discriminativeness, domain adaptation, few-shot learning, prototypical network.

I. INTRODUCTION
In the past few years, few-shot learning (FSL) [1]–[5] has
attracted growing attention. This is because to scale a visual
recognition model to thousands of (or even more) categories,
the problem of lacking labeled data must be overcome. In par-
ticular, most visual recognition models are based on deep
convolutional neural networks (CNNs). Training them typ-
ically requires hundreds of (or more) samples per class to
be collected and annotated. This is often infeasible or even
impossible for some rare categories. The goal of FSL is thus
to recognize a set of target classes by learning with sufficient
labeled samples from source classes but only with a few
labeled samples from the target classes.

FSL [6], [7] is often formulated as a transfer learning
problem [8] from the source classes to the target classes. The
efforts so far are mainly on how to build a classifier with few
samples. However, there is an additional challenge that has
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largely been neglected; that is, the target classes not only are
poorly represented by the few training samples but also can
come from a different domain from that of the source classes.
For example, the target class samples could be collected
by a different imaging device (e.g., mobile phone camera
vs. single-lens reflex camera), resulting in different photo
styles. In a more extreme case, the source classes could be
captured in photos and the target classes in sketch or cartoon
images. This means that the visual recognition model trained
from the source classes needs to be adapted to both new
classes and new domains, with few samples from the target
classes. Such a problem setting is thus termed cross-domain
few-shot learning (CD-FSL).

CD-FSL is a more challenging problem due to the added
objective of few-shot domain adaptation (DA). As far as we
know, jointly addressing both the few-shot DA and few-shot
recognition problems has never been attempted. However,
DA on its own, particularly unsupervised DA (UDA), has
been studied intensively [9]–[19]. A straightforward solution
seems to be combining FSL with an existing DA method.
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TABLE 1. Comparative accuracies (%, top-1) with 95% confidence
intervals under the CD-FSL setting (5-way 1-shot) on the three datasets.

TABLE 2. Comparative accuracies (%, top-1) with 95% confidence
intervals under the CD-FSL setting (5-way 5-shot) on the three datasets.

In particular, most existing FSL methods [20]–[23] rely on
feature reuse to the target classes in a feature embedding
space learned from the source [24]. It is thus natural to
introduce the DA learning objective by aligning the source
and target data distributions in that embedding space. Never-
theless, a naïve combination of existing DA and FSL meth-
ods fails to offer an effective solution (see Tables 1&2)
because the existing UDAmethods assume that the target and
source domains have identical label space. Given that they are
mainly designed for distribution alignment across domains
(recently focusing on per-class alignment [25]–[29]), they are
intrinsically unsuited for FSL whereby the target classes are
completely different from the source classes; either global
or per-class distribution alignment would have a detrimen-
tal effect on class separation and model discriminativeness.
How to achieve domain distribution alignment for DA while
maintaining source/target per-class discriminativeness thus
becomes the key to CD-FSL.

To this end, we propose a discriminativeness-preserved
domain adaptive prototypical network (DPDAPN) to solve

the CD-FSL problem. Specifically, in addition to the pro-
totypical network [20] (designed for FSL), we introduce
a novel adversarial learning method for few-shot domain
adaptation. Note that domain adversarial learning has been
popular among existing UDA methods [9], [10], [12], [14]
for global (as opposed to per-class) distribution alignment.
Since per-class alignment is the ultimate goal for UDA, its
successful use in these UDA methods suggests that global
distribution alignment would indirectly lead to per-class
alignment. This is an unwanted effect for our CD-FSL
problem, as the target classes are different from those of
the source. Therefore, in addition to the domain confusion
objective commonly used by existing UDA methods for
learning a domain adaptive feature embedding space, new
losses are introduced before feature embedding to enforce
the source/target class discriminativeness. To define the new
losses, an autoencoder-based feature embedding layer is
added after the feature extractor (see Figure 1). The end result
is that we would have the better of both worlds: the global
distributions of the source and target are aligned to reduce the
domain gap for DA (i.e., domain adaptive); in the meantime,
the per-class distribution is not aligned, and the source and
target classes remain well separable (i.e. discriminativeness-
preserved), benefiting the FSL task. With two sets of losses
designed for DA and FSL, to remove the need for weight
selection for multiple losses, an adaptive reweighting module
is also introduced to further balance the two objectives.

Our main contributions are: (1) The CD-FSL problem is
formally defined and addressed. Importantly, this work is the
first to jointly address both the few-shot DA and few-shot
recognition problems in a unified framework. (2) We propose
a novel domain adversarial learning method to learn the
feature representation that is not only domain-confused for
domain adaptation but also domain-specific for class separa-
tion (different losses are also balanced by adaptive reweight-
ing). (3) Extensive experiments show that our proposed
model outperforms the state-of-the-art FSL and domain adap-
tation models (as well as their naïve combinations).

II. RELATED WORK
A. FEW-SHOT LEARNING
FSL has been dominated by meta-learning-based methods.
They can be organized into three groups: (1) The first
group adopts model-based learning strategies [30], [31] that
finetune the model trained from the source classes and
then quickly adapt it to the target classes. (2) The second
group [20]–[22], [32], [33] focuses on distance metric learn-
ing for the nearest neighbor (NN) search. The matching
network (MatchingNet) [33] builds different encoders for
the support set and the query set. The prototypical network
(ProtoNet) [20] learns a metric space in which object clas-
sification can be performed by computing the distance of
a test sample to the prototype representation of each target
class. [22] improved ProtoNet in scenarios where the unla-
beled samples are also available within each episode. The
relation network (RelationNet) [21] recognizes the samples
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of new/target classes by computing relation scores between
query images and the few samples of each new class. (3) The
third group [23], [34] utilizes novel optimization algorithms
instead of gradient descent to fit in the few-shot regime.
[34] formulated an LSTM-based metalearner model to learn
an exact optimization algorithm used to train another neural
network classifier in the few-shot regime. Reference [23]
proposed a model-agnostic metalearning (MAML) learner,
whose weights are updated using the gradient, rather than
a learned update rule. Although our DPDAPN belongs to
the second groupwith ProtoNet as a component, it is designed
to address both few-shot DA and few-shot recognition prob-
lems (included in CD-FSL) jointly in a unified framework,
which has not been studied before.

B. DOMAIN ADAPTATION
Note that the domain adaptation problem involved in our
CD-FSL setting cannot be solved by supervised domain adap-
tation (SDA) [35], [36]. Although there exists a small set of
labeled samples from the target domain used for DA under
our CD-FSL setting, the classes from the target domain have
no overlap with the classes from the source domain. Recently,
unsupervised domain adaptation (UDA) has dominated the
studies on DA. The conventional UDAmodels [37]–[45] typ-
ically leverage the subspace alignment technique.Manymod-
ern UDAmethods [9]–[19] resort to adversarial learning [46],
which minimizes the distance between the source and target
features by a discriminator. However, as mentioned, even if
global domain distribution alignment is enforced, it often
leads to per-class alignment, which reduces the discrimina-
tiveness of the learned feature representation for the FSL task.
Moreover, since existing UDA methods still assume that the
target domain contains the same classes as the source domain,
the more recent methods that focus on per-class cross-domain
alignment [25]–[29] are unsuitable for our CD-FSL prob-
lem. Thus, global domain data distribution alignment [9],
[14], [47] is adopted in our DPDAPN with a special mech-
anism introduced to prevent per-class alignment. In addi-
tion, although the target domain differs significantly from
the source domain in both heterogeneous domain adaptation
(HDA) [48]–[50] and our CD-FSL, they have a distinct dif-
ference: the source and target domains share the same set
of classes in HDA, but have two disjoint sets of classes in
CD-FSL.

C. DOMAIN ADAPTATION + FEW-SHOT LEARNING
A cross-domain dataset (miniImageNet [34] → CUB [51])
is used for FSL in [52]. However, it is only for evaluat-
ing the cross-dataset generalization, rather than developing
a new cross-domain FSL method. In contrast, this work
focuses on much larger domain changes (e.g., natural images
vs. cartoon-like images). Importantly, we develop a novel
CD-FSL model to address the problem. Note that a new
setting called few-shot domain adaptation (FSDA) is pro-
posed [53]. However, the FSDA setting in [53] is very differ-
ent from ours in that both source and target domains share the

same set of classes under the FSDA setting, while the source
and target classes have no overlap under our CD-FSL setting.
[54] also proposed a DA-based FSL setting, but again it is
very different from our work; in addition to a few labeled
samples, [54] assumed access to a large number of unlabeled
samples from the target domain. In contrast, we do not make
this assumption. Therefore, the problem setting in [54] is
much easier than ours, and designed to exploit unlabeled
target domain data, the method in [54] cannot be used here.

III. METHODOLOGY
A. PROBLEM DEFINITION
Under our CD-FSL setting, we are given a large sample
set Ds from a set of source classes Cs in a source domain,
a few-shot sample set Dd from a set of target classes Cd
in a target domain, and a test set T from another set of
target classes Ct in the target domain, where Cs ∩ Cd = ∅,
Ct ∩ Cd = ∅, and Cs ∩ Ct = ∅. Our focus is then on training a
model with Ds and Dd and then evaluating its generalization
ability on T . Note that there is also a few-shot sample set Dt
(i.e., the support set) from the set of target classes Ct , which
can also be used for model training. However, we follow
the FSL methods that do not require finetuning [52] and
thus ignore Dt in the training phase. Due to the domain
differences, the data distribution Ps(x) for the set of source
classes Cs is different from that (i.e., Pt (x)) for the set of
target classes Ct ∪ Cd , where x denotes a sample. Formally,
we have Ds = {(x1, y1), . . . , (xN , yN ) | xi ∼ Ps(x), yi ∈ Cs}
and Dd = {(x1, y1), . . . , (xK , yK ) | xi ∼ Pt (x), yi ∈ Cd },
where yi denotes the class label of sample xi. The goal of our
CD-FSL is to exploit Ds and Dd to train a classifier that can
generalize well to the test set T .
The proposed DPDAPN model is illustrated in Figure 1.

Various modules in the network are designed for few-shot
learning, domain adaptation, and adaptive reweighting to
balance the twomain objectives. They are introduced in detail
in the next three subsections.

B. FEW-SHOT LEARNING MODULE
1) EPISODE TRAINING
To simulate the few-shot test process in the training phase,
a small quantity of data from both Ds and Dd are sampled
to form episodic training sets. Specifically, we first build
training episodes from the large sample set Ds. To form a
training episode es, we randomly choose Nsc classes fromDs
and then build two sets of samples from the Nsc classes: the
support set Ss consists of k × Nsc samples (k samples per
class), and the query set Qs is composed of samples from the
same Nsc classes. For an Nmeta-way k-shot problem, we train
our model with an Nsc-way k-shot training episode, where
Nsc > Nmeta, as in [20], [33]. For example, if we perform
5-way classification and 5-shot learning in the test phase,
each training episode can be generated with Nsc = 20 and
k = 5. In addition to the training episodes from Ds, we also
build training episodes from the few-shot sample set Dd .
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FIGURE 1. Overview of the proposed DPDAPN model for CD-FSL. Both source/target domain confusion and domain discrimination
are explicitly included in our DPDAPN model. For simplicity, the weights of multiple losses are not shown here (they can be
determined by adaptive reweighting).

Since the samples in Dd are scarce and cannot form a single
training episode, we perform the standard data augmentation
method (i.e., horizontal flips and 5 random crops widely
used for training existing CNN models) on Dd and obtain
an augmented sample set D̂d . To form a training episode ed ,
we then randomly choose Ndc classes from D̂d and build
two sets of samples from the Ndc classes: the support set Sd
contains k × Ndc samples with k samples per class, and the
query set Qd is sampled from the remainder of the same Ndc
classes. In this work, we simply set Ndc = Nmeta.

2) PROTOTYPICAL NETWORK
The prototypical network [20] is selected as the main FSL
component in our model because it is simple yet remains very
competitive [52]. It learns a prototype of each class in the
support set Ss and classifies each sample in the query set Qs
based on the distances between each sample and different pro-
totypes (i.e., the nearest neighbor classifier is used). Specif-
ically, the M -dimensional prototypes are computed through
an embedding function ψ(x). Moreover, with ψ , the samples
are projected into anM -dimensional feature space where the
samples from the same class are close to each other and the
samples from different classes are far away.

Formally, the prototype psc of class c in the support set Ss is
defined as the mean vector of the embedded support samples
belonging to this class:

psc =
1
|Sc|

∑
(xi,yi)∈Sc

ψ(xi), (1)

where Sc = {(xi, yi) : (xi, yi) ∈ Ss, yi = c} denotes the set of
support samples from class c.

The prototypical network then produces the class distribu-
tion of a query sample x based on the softmax output w.r.t. the
distance between the sample embedding ψ(x) and the class
prototype psc as follows:

p(y = c|x) =
exp(−dist(ψ(x), psc))∑
c′ exp(−dist(ψ(x), p

s
c′ ))
, (2)

where dist(·, ·) denotes the Euclidean distance in the RM

space. With the above class distribution, the loss func-
tion over each episode es is defined based on the negative
log-probability of query sample x w.r.t. its true class label c:

Lcls(es;ψ) = E(x,y)∈Qs [− log p(y = c|x)]. (3)

Similarly, the loss function over each episode ed can be
formulated based on the negative log-probability of query
sample x w.r.t. its true class label c:

Lcls(ed ;ψ) = E(x,y)∈Qd [− log p(y = c|x)]. (4)

C. DOMAIN ADVERSARIAL ADAPTATION MODULE
As mentioned before, the main objective of the domain adap-
tive module is to learn a feature embedding space where
the global distribution of the source and target domains are
aligned, while the domain-specific discriminative informa-
tion is retained. To this end, we choose to enforce domain
discriminativeness and domain alignment learning objectives
before and after an embedding module. The task of balancing
these two objectives is then handled by an adaptive loss
reweighting module, which is described in Sec. III-D.

1) FEATURE EMBEDDING
As shown in Figure 1, the input to the feature embed-
ding module is the output of a feature extraction CNN
(i.e., ResNet18 in this work), which represents each sample
(image) x as a 512-dimensional feature vector ϕ(x). In this
work, the feature embedding module is simply an autoen-
coder. Specifically, its encoder has two fully connected (FC)
layers: {FC layer (512, 256)}, {FC layer (256, 128)}, and its
decoder also has two FC layers: {FC layer (128, 256)}, {FC
layer (256, 512)}. The autoencoder takes ϕ(x) as input and
outputs an embedding vector ψ(x). The final output of the
feature embedding module is ψ(x) (i.e., ψ includes both the
feature extractor and autoencoder).
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2) DOMAIN ADAPTIVE LOSS
After the autoencoder module, domain alignment is needed
by introducing domain adaptive losses. In this work, moti-
vated by the superior performance of domain adaptation
with margin disparity discrepancy (MDD) [55], we define
an MDD-based domain adversarial loss function across the
source domain and the target domain.

Formally, during each training iteration, we are given a
pair of training episodes: es = {Ss,Qs} from the source
domain and ed = {Sd ,Qd } from the target domain. Let
g : RM

→ RNsc denote the scoring function constructed from
Ss within the source episode es. In this work, g is determined
by the prototypical network (see Eq. (2)): g(ψ(x); c) =
−dist(ψ(x), psc), where g(ψ(x); c) is the c-th element of
g(ψ(x)). In addition to the scoring function g, we also intro-
duce an auxiliary scoring function g′ : RM

→ RNsc sharing
the same hypothesis space with g. Since g is used to score
each sample in Qs on the Nsc source classes, g′ is designed as
a metric-learning network that computes the similarity scores
of query-prototype pairs. We set g′ to be a multilayer percep-
tron (MLP)module (see its detailed architecture in Sec. IV-A)
stacked after the absolute difference between a query sample
and a source class prototype (i.e., the mean representation
of support samples from this source class). Our domain
adversarial learning objective for learning domain-confused
feature representation is formulated as follows:

min
ψ, g

max
g′

Lcls(es;ψ)+ λdcD(es, ed ;ψ), (5)

where λdc is the trade-off coefficient between the few-shot
classification loss Lcls(es;ψ) and the DA loss D(es, ed ;ψ).
In this work, the DA loss is defined by the recent margin
disparity discrepancy (MDD) [55]. We then have:

Lcls(es;ψ) = E(xs,ys)∈QsL(ys, g(ψ(xs))), (6)

D(es, ed ;ψ) = disped (g, g
′)− γ dispes (g, g

′)

= E(xt ,yt )∈QdL
′(g(ψ(xt )), g′(ψ(xt )))

− γE(xs,ys)∈QsL(g(ψ(xs)), g
′(ψ(xs))), (7)

where γ is a positive hyperparameter, and dispes (g, g
′) and

disped (g, g
′) are the two margin disparities of the source and

target episodes, respectively. We train g′ to maximize the
distribution discrepancy between the two episodes and train
ψ , g to minimize the maximum MDD, according to Eq. (5).
In this minimax manner, the domain gap between the two
episodes caused by their disjoint sets of classes is reduced.

With the softmax function σj(v) ,
exp(vj)∑Nsc

j′=1
exp(vj′ )

(v ∈ RNsc ,

j = 1, · · · ,Nsc), the loss L(·, ·) used in Eqs. (6)–(7) is defined
as the cross-entropy loss:

L(ys, g(ψ(xs))) = − log[σys (g(ψ(xs)))], (8)

L(g(ψ(xs)), g′(ψ(xs)))

=−

Nsc∑
j=1

σj(g(ψ(xs))) log[σj(g′(ψ(xs)))]. (9)

Similarly, the loss L ′(·, ·) used in Eq. (7) is defined as a
modified cross-entropy loss:

L ′(g(ψ(xt )), g′(ψ(xt )))

=

Nsc∑
j=1

σj(g(ψ(xt ))) log[1− σj(g′(ψ(xt )))], (10)

which was introduced in [46] to ease the burden of vanishing
or exploding gradients for adversarial learning.

Note that in Eq. (10), although xt from Qd does not
belong to any class in the source episode es, the similar-
ity scores after softmax σj(g(ψ(xt ))) and σj(g′(ψ(xt ))) (j =
1, · · · ,Nsc) can be considered to come from distributions in
an Nsc-dimensional space. This is also the reason why we use
the binary cross-entropy loss in both Eq. (9) and Eq. (10).
Moreover, since g is determined by the meta-learning-based
FSL method and it may contain no learnable parameters
(e.g., prototypical networks [20] used the negative Euclidean
distance as the score), we cut off the gradients over g in Eq. (7)
and directly trainψ to minimize this discrepancy loss through
a gradient reversal layer (GRL) [10].

3) DOMAIN DISCRIMINATIVE LOSS
Note that the domain adaptive/confusion loss in Eq. (5) is
useful for bridging the domain gap between the source and
target, but it also has the unwanted side-effect of overalign-
ment at the per-class level, which will harm the FSL per-
formance. To alleviate this problem, we introduce a domain
discrimination loss so that the per-class distributions within
each domain are different from each other. Note that there is
already a domain discriminator for domain alignment after
embedding via gradient reversal (see Figure 1), so it makes
little sense to add another on the same embedding space.
Instead, our domain discriminative loss is added to the output
(i.e., ϕ(x) ∈ RM ) of the feature extraction CNN. The main
idea is to define the domain discriminative loss with the
negative margin disparity discrepancy (MDD) [55]. By min-
imizing this loss, our model can enhance the source/target
per-class separation before domain adaptive feature embed-
ding learning and alleviate the negative effect of domain
alignment on FSL.

Specifically, during each training iteration, we still have
a pair of training episodes: es = {Ss,Qs} from the source
domain and ed = {Sd ,Qd } from the target domain. Let
f : RM

→ RNsc denote the scoring function constructed
from Ss within the source episode es. In this work, f is
determined by the prototypical network (similar to Eq. (2)):
f (ϕ(x); c) = −dist(ϕ(x), psc), where f (ϕ(x); c) is the c-th ele-
ment of f (ϕ(x)). In addition to the scoring function f , we also
introduce an auxiliary scoring function f ′ : RM

→ RNsc ,
which shares the same hypothesis space with f . Since f is
used to score each sample inQs on theNsc source classes, f ′ is
designed as a metric-learning network that computes the sim-
ilarity scores of query-prototype pairs. We set f ′ to be a multi-
layer perceptron (MLP) module (see its detailed architecture
in Sec. IV-A) stacked after the absolute difference between

VOLUME 8, 2020 168409



G. Liu, Z. Lu: Discriminativeness-Preserved Domain Adaptation for FSL

a query sample and a source class prototype (i.e., the mean
representation of its support samples). Our domain discrimi-
native learning objective for learning domain-specific feature
representation is given by:

min
ϕ, f , f ′

Lcls(es;ϕ)− λdsD(es, ed ;ϕ), (11)

where λds is the trade-off coefficient between the few-shot
classification loss Lcls(es;ϕ) and the domain discriminative
loss −D(es, ed ;ϕ). Note that Lcls(es;ϕ) and D(es, ed ;ϕ) can
be similarly computed according to Eq. (6) and Eq. (7),
respectively. The only difference is that the embedding func-
tion ψ in Eq. (6) and Eq. (7) is replaced by ϕ.

D. ADAPTIVE REWEIGHTING MODULE
Our DPDAPNmodel is trained with multiple objectives men-
tioned above (i.e., Eqs. (4) (5) (11)), which can be viewed
as multitask learning. Among the losses, the FSL loss in
Eq. (4) and the domain discriminative loss in (11) are pulling
in different directions than the domain adaptive loss in (5).
This makes it more crucial to balance among them, especially
since in different episodes, different recognition tasks are
sampled, which pose different levels of demand for these
competing learning objectives. A naïve weighted sum of
losses thus does not suffice. A more sophisticated adaptive
loss reweighting mechanism is required.

As reported in [56], there exists task-dependent uncertainty
in multitask learning, which stays constant for all input data
and varies between different tasks. Therefore, we adopt an
adaptive multitask loss function based on maximizing the
Gaussian likelihoodwith task-dependent uncertainty to deter-
mine the weights of the objectives automatically. Let the
output of a neural network model with weights W on input
x be denoted as fW(x) (with fWc (x) being the c-th element
of fW(x)) and the discrete output of the model be denoted
as y.We utilize the classification likelihood to squash a scaled
version of the model’s output with a softmax function as
follows:

p(y|fW(x)) = softmax(fW(x)). (12)

Specifically, with a positive scalar σ , the log likelihood for
this output is:

log p(y = c|fW(x), σ )=
1
σ 2 f

W
c (x)−log

∑
c′

exp(
1
σ 2 f

W
c′ (x)).

(13)

In this work, our DPDAPN has four discrete outputs
y1, y2, y3, y4, modeled with multiple softmax likelihoods.
The joint loss L(W, σ1, σ2, σ3, σ4) is:

L(W, σ1, σ2, σ3, σ4)

= softmax(y1=c; fW(x), σ1) · softmax(y2=c; fW(x), σ2)

· softmax(y3=c; fW(x), σ3) · softmax(y4=c; fW(x), σ4)

=
1

σ 2
1

L1(W)+
1

σ 2
2

L2(W)+
1

σ 2
3

L3(W)+
1

σ 2
4

L4(W)

+ log

∑
c′ exp(

1
σ 21
fWc′ (x))

(
∑

c′ exp(f
W
c′ (x)))

1
σ21

+ log

∑
c′ exp(

1
σ 22
fWc′ (x))

(
∑

c′ exp(f
W
c′ (x)))

1
σ22

+ log

∑
c′ exp(

1
σ 23
fWc′ (x))

(
∑

c′ exp(f
W
c′ (x)))

1
σ23

+ log

∑
c′ exp(

1
σ 24
fWc′ (x))

(
∑

c′ exp(f
W
c′ (x)))

1
σ24

≈
1

σ 2
1

L1(W)+
1

σ 2
2

L2(W)+
1

σ 2
3

L3(W)+
1

σ 2
4

L4(W)

+ log σ1 + log σ2 + log σ3 + log σ4.

The adaptive weights among L1, L2, L3 and L4 are directly
defined as: wj = log σ 2

j (j = 1, 2, 3, 4). Moreover, by com-
bining Eqs. (4) (5) (11) for model training, we have: L1 =
Lcls(es;ψ) + Lcls(es;ϕ), L2 = Lcls(ed ;ψ) + Lcls(ed ;ϕ),
L3 = D(es, ed ;ψ), and L4 = −D(es, ed ;ϕ). The overall loss
of our DPDAPN model is thus formulated as follows:
L = w1/2+ exp(−w1)L1 + w2/2+ exp(−w2)L2
+w3/2+ exp(−w3)L3 + w4/2+ exp(−w4)L4. (14)

IV. EXPERIMENTS
A. DATASETS AND SETTINGS
1) DATASETS
Three datasets are used for performance evaluation: (1)mini-
ImageNet [34]: This dataset is a subset of ILSVRC-12 [57].
It consists of 100 classes, and all images are of the size
84 × 84. We follow the widely used class split as in [34]
and adapt it to our CD-FSL setting: 64 classes for Cs (with
600 images per class), 16 classes for Cd (with only k images
per class), and 20 classes for Ct (with only k labeled images
per class to form the support set, and the other to form the
test set). In this work, we set k = 1 or 5. Furthermore,
we utilize the style transfer algorithm [58] to transfer the
samples from Cd and Ct into a new domain. Specifically,
the samples of the source domain are natural pictures, while
the samples of the new/target domain are pencil paintings.
(2) tieredImageNet [22]: This dataset is also a subset of
ILSVRC-12, but it is larger than miniImageNet. We use 351
classes for Cs (with an average of 1, 278 images per class),
97 classes for Cd (with only k images per class), and 160
classes for Ct . All images are also of the size 84 × 84. The
same style transfer is performed on the Cd and Ct splits of
tieredImageNet to form a new domain. (3) DomainNet [59]:
To generate a new realistic dataset for CD-FSL, we exploit an
existing multisource domain adaptation dataset, which is the
largest domain adaptation dataset. There are 275 classes for
Cs (with an average of 516 images per class), 55 classes for Cd
(with only k images per class), and 70 classes for Ct . In this
work, we take the real photo domain in DomainNet as the
source domain and the sketch domain as the target domain.
Each image is scaled to the size 84 × 84. For each dataset,
examples from the target domain are shown in Figure 2.

2) EVALUATIONS
We make evaluation over the test set under the 5-way
1/5-shot settings, as in previous works. The top-1 accuracy
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FIGURE 2. Examples from the target domain for the three datasets.
In each dataset, the source domain contains real/natural images.

is computed for each test episode, and the average top-1
accuracy is reported over 2,000 test episodes (with 95%
confidence intervals).

3) BASELINES
Four groups of baselines are selected: (1) FSL Base-
lines: Representative FSL baselines includeRelationNet [21],
MatchingNet [33], PPA [60], SGM [61], ProtoNet [20],
MetaOptNet [62] and Baseline++ [52]. We report the test
results under 5-way 1/5-shot. (2) UDA Baselines: Represen-
tative UDAbaselines based on global domain-level alignment
rather than local class-level alignment are chosen. These
include CDAN [12], ADDA [9], AFN [15], M-ADDA [47],
CyCADA [14], and MDD [55]. For testing under 5-way
1/5-shot, we first train the CNN backbone with these UDA
methods and then extract the features of the test/target sam-
ples so that a naïve nearest neighbor classifier can be used
to recognize the test/target classes. (3) FSDA Baseline:
FSDA [53] is applied to our CD-FSL setting. For testing
under 5-way 1/5-shot, we first train the CNN backbone with
FSDA and then extract the features of the test/target sam-
ples so that a naïve nearest-neighbor classifier can be used
to recognize the test/target classes. (4) UDA+FSL Base-
lines: Representative baselines for directly combining UDA
and FSL include CDAN+ProtoNet, CDAN+MetaOptNet,
MDD+ProtoNet, and MDD+MetaOptNet, which are all
trained end-to-end. We select the UDA+FSL baselines based
on two criteria: 1) UDA baselines are representative/state-of-
the-art (e.g., CDAN [12] is representative and MDD [55] is
state-of-the-art); 2) FSL baselines are representative/state-of-
the-art (e.g., ProtoNet [20] is representative and MetaOptNet
[62] is state-of-the-art).

4) IMPLEMENTATION DETAILS
Our DPDAPN model is implemented in PyTorch. The
ResNet18 model [63] is used as the backbone (which is also
used for all compared methods). We pretrain the backbone
from scratch using the training set and then finetune it to
solve the CD-FSL problem. The auxiliary scoring function
g′ used in Eq. (5) (or f ′ used in Eq. (11)) is formed by
4 fully connected (FC) layers: {FC layer (512, 1024), batch
normalization, ReLU, dropout(0.5)}, {FC layer (1024, 1024),
ReLU, dropout(0.5)}, {FC layer (1024, 64), ReLU}, {FC
layer (64, 1)}. In this work, the end-to-end training process

is implemented by using backpropagation and stochastic gra-
dient descent. The learning rate is initially set to η0 = 0.001
and then is adjusted (as in [12]) by ηp = η0(1+αp)−β , where
α = 10, β = 0.75, and p is the training progress ranging from
0 to 1. Amomentum of 0.9 and aweight decay of 0.01 are also
selected for training. The code and datasets will be released
soon.

B. MAIN RESULTS
The comparative results under our CD-FSL setting on the
three datasets are shown in Tables 1 and 2. We make the
following observations: (1) On all datasets, our DPDAPN
significantly outperforms the state-of-the-art FSL and UDA
methods because of its ability to address both problems.
(2) Our DPDAPNmodel also clearly performs better than the
four UDA+FSL baselines, showing that the naïve combina-
tion of UDA and FSL is not as effective as our specifically
designed DPDAPN model for CD-FSL. (3) When combined
with a naïve nearest-neighbor classifier (for FSL), the per-
formance of the existing UDA methods is as good as that of
any existing FSL methods. This result suggests that solving
the domain adaptation problem is the key to our CD-FSL
setting. (4) Our DPDAPN model significantly outperforms
FSDA [53] in most cases, demonstrating the importance of
jointly addressing both the few-shot DA and few-shot recog-
nition problems in a unified framework. (5) Given the same
5-way 5-shot (or 5-way 1-shot) evaluation setting, the test
results on the first two datasets are clearly worse than those
on DomainNet. This finding indicates that the domain gap
(induced by style transfer) and the category gap (induced by
FSL) of the first two datasets are even larger than those of
the widely used realistic dataset – DomainNet. This result
justifies the inclusion of these two synthesized datasets for
performance evaluation under the CD-FSL setting.

C. FURTHER EVALUATIONS
1) ABLATION STUDY ON OUR FULL MODEL
To demonstrate the contribution of each module of our full
DPDAPN model, we compare it with its three simplified
versions: (1) FSL – only the few-shot learning (FSL) mod-
ule (described in Section III-B) is used, (2) DAA – the
domain adversarial adaptation (DAA) module (described in
Section III-C) is combined with a naïve nearest neighbor clas-
sifier, and (3) FSL+DAA – the FSL and DAA modules are
combined for CD-FSL without using adaptive reweighting.
Since our full model combines the two main modules using
adaptive reweighting (ARW), it can be denoted as Full or
FSL+DAA+ARW. The ablation study is performed under
the 5-way 5-shot CD-FSL setting. The obtained ablative
results are presented in Figure 3. It can be seen that: (1) The
performance continuously increases when more modules are
used to solve the CD-FSL problem, demonstrating the con-
tribution of each module. (2) The improvements achieved by
DAA over the classical FSL suggest that the domain adap-
tation module is important for the CD-FSL setting and can
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FIGURE 3. Ablation study results for our full model under the CD-FSL
setting (5-way 5-shot) on the three datasets. The error bars show the 95%
confidence intervals.

perform well even with the naïve nearest neighbor classifier.
(3) The ARW module clearly yields performance improve-
ments, validating its effectiveness in determining the weights
of multiple losses.

FIGURE 4. Ablation study results for our DAA module under the CD-FSL
setting (5-way 5-shot) on the three datasets. The error bars show the 95%
confidence intervals.

2) ABLATION STUDY ON OUR DAA MODULE
We further conduct an ablation study to show the contribution
of each component of our DAA module. Three methods are
compared: (1) FSL – FSL using only the two losses L1 and
L2 from Eq. (14); (2) FSL+DC – CD-FSL using the three
losses L1, L2, and L3 from Eq. (14); and (3) FSL+DC+DS –
CA-FSL using the four losses L1, L2, L3, and L4 from
Eq. (14). For a fair comparison, adaptive reweighting is
used for all three methods. The ablative results on the three
datasets are shown in Figure 4. We make two observations:
(1) The significant improvements achieved by FSL+DC
over FSL show that domain confusion after the embed-
ding module is extremely important for our CD-FSL setting.
(2) FSL+DC+DS consistently outperforms FSL+DC, vali-
dating the effectiveness of domain discrimination before the
embedding module.

V. CONCLUSION
In this work, we investigated the challenging CD-FSL set-
ting. To simultaneously learn a classifier for new classes
with a few shots and bridge the domain gap, we proposed
a novel DPDAPN model by integrating prototypical metric
learning and domain adaptation within a unified framework.
The domain discriminative and domain confusion learning

objectiveswere introduced before and after a domain adaptive
embedding module and were further balanced with an adap-
tive reweighting module. Extensive experiments showed that
our DPDAPNmodel outperforms the state-of-the-art FSL and
domain adaptation models.
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