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ABSTRACT Binary imbalance problem refers to such a classification scenario where one class contains
a large number of samples while another class contains only a few samples. When traditional classifiers
face with imbalanced datasets, they usually bias towards majority class resulting in poor classification
performance. Oversampling is an effective method to address this problem, yet how to conduct diversity
oversampling is a challenge. In this article, we proposed a diversity oversamplingmethod based on amodified
D2GAN model, and on the basis of diversity oversampling, we also proposed a binary imbalanced data
classification approach based on classifier fusion by fuzzy integral. Extensive experiments are conducted
on 8 data sets to compare the proposed methods with 7 state-of-the-art methods on 5 aspects: MMD-score,
Silhouette-score, F-measure, G-means, and AUC-area. The 7 methods include 4 SMOTE related approaches
and 3 GAN related approaches. The experimental results demonstrate that the proposed methods are more
effective and efficient than the compared approaches.

INDEX TERMS Binary class imbalance, diversity oversampling, generative adversarial network, classifier
fusion, fuzzy integral.

I. INTRODUCTION
In the real world, there are many binary imbalanced data
classification problems [1], such as software defect predic-
tion [2], machinery fault diagnosis [3], spam filtering [4],
extreme weather prediction [5], and so on. In the last
few decades, many oversampling methods are proposed by
different researchers, among which SMOTE [6] is the most
influential oversampling approach. However, SMOTE has
three drawbacks:

1) It doesn’t take into account the probability distribution
of the minority class samples;

2) The samples generated by SMOTE lack diversity;
3) If SMOTE is iterated many times, the generated

synthetic samples overlap heavily.

The associate editor coordinating the review of this manuscript and

approving it for publication was Keli Xiao .

The main contributions of this article include the following
three folds:

1) We proposed a diversity oversampling method based
on modified D2GAN model, the modification lies
in introducing a classifier to the D2GAN model for
learning the difference between positive samples and
negative samples, so as to ensure the correctness of
the class of the generated samples. Consequently, there
is no overlap between the generated samples and the
majority class samples.

2) Based on the proposed oversampling method,
we designed an ensemble classification algorithm by
fuzzy integral for binary imbalanced data classifica-
tion. Fuzzy integral can well model the interactions
among the base classifiers, the interactions may be
positive correlated, also may be negative correlated.
The proposed algorithm can boost the classification
accuracy of the positive class samples.
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3) Extensive experiments are conducted on 8 data sets to
compare the proposed methods with 7 state-of-the-art
methods on 5 aspects: MMD-score, Silhouette-score,
F-measure, G-means, and AUC-area. The experimental
results demonstrate that the proposedmethods aremore
effective and efficient than the compared approaches.

The rest of this article is organized as follows. In section II,
we review SMOTE related works. In section III, we describe
the details of the proposed methods. In section IV, Experi-
mental results and analyses are presented. At last, we con-
clude our work in the section V.

II. RELATED WORKS
Since from SMOTE was proposed by Chawla et al. in 2002,
many variants of SMOTE have been proposed in the past
18 years. Han et al. [7] found that the samples on or near
the decision boundary are more apt to be misclassified than
the ones far from the borderline, and thus more important for
classification. On the contrary, those examples far from the
borderline may contribute little to classification. Based on
this observation, they proposed Borderline-SMOTE in which
only the borderline examples of the minority class are over-
sampled. He et al. [8] proposed a novel adaptive synthetic
sampling approach named ADASYN which is based on the
idea of adaptively generating minority samples according
to their distributions: more synthetic data is generated for
minority class samples that are harder to learn. Along
this technical route, Barua et al. [9] propsoed MWMOTE
which first identifies the hard-to-learn informative minority
class samples and assigns them weights according to
their Euclidean distance from the nearest majority class
samples. It then generates the synthetic samples from
the weighted informative minority class samples using a
clustering approach. In the processing of generating synthetic
minority samples, SMTOTE ignores majority instances.
Bunkhumpornpat et al. [10] proposed Safe-Level-SMOTE
to deal with this problem, it carefully samples minority
instances along the same line with different weight degree,
called safe level. The safe level is computed using nearest
neighbour minority instances. Bunkhumpornpat et al. [11]
proposed a density-based clustering over-sampling technique
called DBSMOTE which generates synthetic instances
along a shortest path from each positive instance to
a pseudocentroid of a minority-class cluster. Similarly,
Douzas et al. [12] proposed an oversampling method
based on k-means clustering and SMOTE. Douzas and
Bacao [13] proposed a geometric SMOTE which generates
synthetic samples in a hypersphere around each selected
minority instance. Mathew et al. [14] proposed a weighted
kernel-based SMOTE (WK-SMOTE) approach which gen-
erates synthetic positive class samples in feature space,
WK-SMOTE can overcome the limitation of linear interpo-
lation of SMOTE. Based on WK-SMOTE, Raghuwanshi and
Shukla [15] proposed a SMOTE based class-specific extreme
learning machine, which exploits the benefit of both the

minority oversampling and the class-specific regularization.
Maldonado et al. [16] studied SMOTE oversampling strategy
for high-dimensional datasets, and proposed an alternative
distance metric for computing the neighbours for each minor-
ity sample. Tao et al. [17] proposed an over-sampling method
which uses the real-value negative selection procedure to
generate synthetic minority samples, its novelty is that it does
not require minority class instance available, and only relies
onmajority class instances. Based on density peaks clustering
with heuristic filtering, Tao et al. [18] also proposed an
adaptive weighted over-sampling method for imbalanced
data classification. The main advantages of this method are
twofold: (1) the between-class and within-class imbalance
issues can be simultaneously addressed; (2) the weights for
synthetic instance generation can be adaptively determined.
Shamsolmoali et al. [19] proposed an oversampling method
which uses capsule adversarial networks to augment minority
class samples. Three excellent survey papers on SMOTE can
be found in [20]–[22].

SMOTE can be integrated into ensemble learning for
imbalanced data classification, this strategy is very effective
for high imbalanced data classification. Chawla et al. [23]
combined SMOTE and boosting algorithm, and proposed
SMOTEBoost. Different from the weight updating strategy
in boosting, SMOTEBoost creates synthetic examples from
minority class, and indirectly change the updating weights
and compensating for skewed distributions. Wang and
Yao [24] put SMOTE and bagging together, and proposed
SMOTEBagging algorithm which can overcome over-fitting
problem. But the way it produces compositional samples
simply setting similar individuals’ nearest neighbors to a
uniform number, and without considering the samples’ real
distribution and their neighbors’ distribution. For this reason,
Zhang et al. [25] proposed an improved SMOTEBagging
algorithm. Based on SMOTE combining with adaboost
support vector machine ensemble, Sun et al. [26] proposed
two class imbalanced dynamic financial distress prediction
approaches. Zhai et al. [27] combined oversampling based
on enemy nearest neighbor hypersphere and ensemble
learning, and proposed a MapReduce based classification
algorithm for large scale imbalance data. Inspired by the
localized generalization error model, Chen et al. [28]
propsoed an oversampling method, which generates some
synthetic samples located within some local area of the
training samples, and combined the oversampling method
with ensemble learning for imbalanced data classification.
Tao et al. [29] proposed a cost-sensitive ensemble approach
for imbalanced data classification, it uses support vector
machine as as basic weak leaner, and uses AdaBoost as
ensemble mechanism. The novelty of this method lie in intro-
ducing a self-adaptive cost weights strategy. Wong et al. [30]
proposed a cost-sensitive stacked denoising autoencoder
ensemble method, and applied to address class imbalance
problems in business domain. Zhu et al. [31] proposed a
geometric structural ensemble learning framework, which
partitions and eliminates redundant majority samples by
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generating hyper-sphere through the Euclidean metric and
learns basic classifiers to enclose the minority samples.
Yang et al. [32] proposed a hybrid ensemble classifier
framework that combines density-based undersampling and
cost-effective methods using multi-objective optimization
algorithm to handle two issues: (1) undersampling methods
suffer from losing important information; (2) cost-sensitive
methods are sensitive to outliers and noise.

In recent years, generative adversarial network (GAN) [33]
is a very hot research topic in deep learning, some
researchers use the generation mechanism of GAN to
generate synthetic positive class samples for balancing
imbalanced data set. For instance, inspired by the idea of
AC-GAN (Auxiliary Classifier-GAN) [34], Ali-Gombe and
Elyan proposed an improved model MFC-GAN (Multiple
Fake Class-GAN) [35] and used the MFC-GAN to handle
imbalanced data classification problem. Zheng et al. [36]
proposed a synthetic oversampling approach for imbalanced
data sets.

In this article, we presented a binary imbalanced data
classification algorithm D2GANDO which combines diver-
sity oversampling and ensemble learning. The diversity
oversampling is conducted by a modified D2GAN [37]. The
ensemble incorporated the idea of fuzzy integral [38] which
can well model the interaction among the base classifiers,
as a result, the generalization ability of the classification algo-
rithm can be effectively enhanced. Different from existing
methods based on GAN, the novelty of D2GANDO lies in
(a) introducing a classifier to D2GAN to guarantee diversity
of the synthetic samples. (b) introducing MMD-score and
Silhouette-score to measure diversity and separability, both
of which have important influence on the performance of
imbalanced data classification.

III. THE PROPOSED ALGORITHM
In this section, we present the proposed binary imbalanced
data classification algorithm which includes a modified
D2GAN based oversampling method and an ensemble
approach by fuzzy integral for binary imbalanced data
classification.

A. DIVERSITY OVERSAMPLING METHOD BASED ON
MODIFIED D2GAN
GAN is a probabilistic generative model which consists of
two neural networks G and D (see Figure 1). The G is a
generator network whose input denoted by z is drawn from
a known noise prior distribution pnoise, its output is denoted
by x′ whose distribution is denoted by pgen. The D is a
discriminator network whose input include generated data x′

and real data x, the distribution of x is denoted by pdata which
is unknown. The output of discriminator D is a probability
distribution which indicates the support degree that the input
is come from pdata or come from pgen.
Since GAN is a probabilistic generative model, it is a

natural to use GAN to generate synthetic positive class
samples for balancing imbalanced data set. But GAN is

FIGURE 1. The architecture of generative adversarial network.

prone to mode collapse, whilst D2GAN is tailored for
addressing the mode collapse problem. D2GAN has two
discriminators, the one rewards high scores for samples
from data distribution whilst the another favours data from
the generator, and the generator produces data to fool both
two discriminators. Furthermore, D2GAN combines the KL
divergence and reverse KL divergence into a unified objective
function, which insures to effectively diversify the estimated
density in capturing multi-modes. As a result, the samples
generated by D2GAN have good diversity. We found that
although the samples generated by D2GAN have good
diversity, the separability between classes is poor. To this
end, we modified D2GAN model by introducing a classifier
C (see Figure 2). Its output is a three-dimensional vector,
the three components ppos, pneg, and pg are the support
degrees for positive class, negative class and generated
samples respectively. In the adversarial training process,
we want the samples generated by generator G to fool the
classifier C , that is, when the samples are fed as input to the
classifier, we want the output to be close to ppos. Classifier
C can not only learn the distribution of samples, but also can
learn a good classification boundary between positive class
and negative class.

FIGURE 2. The architecture of the modified D2GAN.
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The objective functions of the modified D2GANmodel are
given by Eq.(1), Eq.(2) and Eq.(3).

max
D1,D2

L(D1,D2) = α × Ex∼ppos [logD1(x)]

+Ez∼pz [−D1(G(z))]

+Ex∼ppos [−D2(x)]

+β × Ez∼pz [logD2(G(z))] (1)

max
C

L(C) = J1 + J2 + J3 (2)

max
G

L(G) = L(D1,D2)− J4 (3)

where Di(·)(i = 1, 2) denote the output of discriminator Di,
E is expectation operator. α and β are two parameters, and
0 ≤ α, β ≤ 1.

J1 = Ex∼pneg logC1(x)+ Ex∼pneg log(1− C2(x))

+Ex∼pneg log(1− C3(x))

J2 = Ex∼ppos logC2(x)+ Ex∼ppos log(1− C1(x))

+Ex∼ppos log(1− C3(x))

J3 = Ex∼pg logC3(x)+ Ex∼pg log(1− C1(x))

+Ex∼pg log(1− C2(x))

J4 = Ex∼pg logC2(x)

−Ex∼pg logC1(x)− Ex∼pg logC3(x)

where Ci(·)(i = 1, 2, 3) represent the posterior probability
that the output of the classifier C is negative, positive, and
generated respectively.

On the premise of obtaining the two optimal discriminators
and an optimal classifier, the optimization goal of the
generator becomes:

min
G
L(G) = α(logα − 1)+ β(logβ − 1)

+αDKL(ppos ‖ pg)

+ (β + 1)DKL(pg ‖ ppos)− H (pg, pneg) (4)

where DKL(· ‖ ·) is the KL divergence between two
distributions, H (·, ·) is the cross entropy between two
distributions.

In the following, we proof that Eq. (4) is hold. Take the
partial derivative of L(D1,D2) with respect toD1 andD2, and
set them equal to zero, we can obtain.

D∗1(x) =
αppos(x)
pg(x)

and

D∗2(x) =
βpg(x)
ppos(x)

Take the partial derivative of L(C) with respect to C1, and
set it equal to zero, we can obtain.

pneg
C1(x)

−
ppos

1− C1(x)
−

pg
1− C1(x)

= 0

Hence,

C∗1 (x) =
pneg

pneg + ppos + pg

Similarly, we have,

C∗2 (x) =
ppos

pneg + ppos + pg

C∗3 (x) =
pg

pneg + ppos + pg

Substitute D∗1, D
∗

2, C
∗

1 (x), C
∗

2 (x) and C∗3 (x) into (3),
we have,

L(G) = αEx∼ppos
[
logα + log

ppos(x)
pg(x)

]
−α

∫
x
pg(x)

ppos(x)
pg(x)

dx

−β

∫
x
ppos(x)

pg(x)
ppos(x)

dx

+βEx∼pg
[
logβ + log

pg(x)
ppos(x)

]
−

∫
x
pg(x) log

ppos(x)
pg(x)

dx

+

∫
x
pg(x) log pneg(x)dx

= α(logα − 1)+ β(logβ − 1)

+αDKL(ppos ‖ pg)

+ (β + 1)DKL(pg ‖ ppos)− H (pg, pneg)

From Eq.(4), it is easy to find that compared with D2GAN,
the optimization target of G in modified D2GAN increases
the cross entropy loss between the generated distribution and
the negative class distribution. In the process of optimizing
G, the model introduces the information of negative class
sample distribution to prevent the overlap between classes.
Therefore, the modified D2GAN model can not only ensure
the diversity of generated samples through the double
discriminators, but also avoid the overlap between generated
samples and negative class samples by introducing a classifier
which can capture the negative class sample distribution
information. The pseudo code of the proposed oversampling
algorithm D2GANDO is given in algorithm 1.

B. BINARY IMBALANCED DATA CLASSIFICATION
APPROACH BASED ON CLASSIFIER FUSION
BY FUZZY INTEGRAL
On the basis of the above oversampling method, we proposed
a binary imbalanced data classification approach based on
classifier fusion by fuzzy integral. The proposed approach
includes the following two stages:

(1) Construct balance training sets and train base classifiers
In this stage, we first partition S− into l subsets

S−1 , S
−

2 , · · · , S
−

l , where l =
|S−|
|S+up|

. Next, construct l balance

training sets Si = S−i ∪ S+up, 1 ≤ i ≤ l. Finally,
train l classifiers C = {C1,C2, · · · ,Cl} on the l balance
training sets. The l classifiers are fused for imbalanced data
classification by fuzzy integral in the next stage.
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Algorithm 1 Oversampling Algorithm D2GANDO

Input: Imbalanced data set S = S+ ∪ S−, the size of
batch m, the iterative number n, and the number
of training t .

Output: S+up.
1 Initialize the parameter θg of generator G, the parameter

θd1 of discriminator D1, the parameter θd2 of
discriminator D2, and the parameter θc of classifier C
with small random numbers.

2 for (i = 1; i ≤ n; i = i+ 1) do
3 for (j = 1; j ≤ t; j = j+ 1) do
4 Sample m samples from noise prior distribution

pz, and input them to G, obtain m generated
samples {xg1, x

g
2, · · · , x

g
m};

5 Sample m samples {x+1 , x
+

2 , · · · , x
+
m} from S+;

6 Sample m samples {x−1 , x
−

2 , · · · , x
−
m} from S−;

7 Fix θg, θd1 , and θd2 , update θc by ascending its
stochastic gradient;

8 Sample m samples from noise prior distribution
pz, and input them to G, obtain m generated
samples {xg1, x

g
2, · · · , x

g
m};

9 Fix θg and θc, update θd1 , and θd2 by ascending
its stochastic gradient;

10 Sample m samples from noise prior distribution
pz, and input them to G, obtain m generated
samples {xg1, x

g
2, · · · , x

g
m};

11 Fix θd1 , θd2 , and θc, update θg by ascending its
stochastic gradient;

12 end
13 Sample m samples from noise prior distribution pz,

and input them to G, obtain a set of m generated
samples Sg = {x

g
1, x

g
2, · · · , x

g
m};

14 Let S+up = S+up ∪ Sg;
15 end
16 Return S+up.

(2) Fuse the trained base classifiers by fuzzy integral
As a classifier fusion method, fuzzy integral is distin-

guished from other fusion methods due to its an intriguing
property, that is it can well model the interaction among the
base classifiers, including positive interaction and negative
interaction, this is the reason why we select fuzzy integral to
fuse the trained base classifiers.

Let D = {(xi, yi)|xi ∈ Rd , yi ∈ Y } be a training set, 1 ≤
i ≤ n, Y = {ω1, ω2, · · · , ωk} be a set of class labels, C =
{C1,C2, · · · ,Cl} be a set of classifiers trained on D or on
subsets of D. For ∀x ∈ Rd , the output of classifier Ci is a k-
dimensional vector (pi1(x), pi2(x), . . . , pik (x)). The pij(x) ∈
[0, 1](1 ≤ i ≤ l; 1 ≤ j ≤ k) denotes the support degree given
by classifier Ci to the hypothesis that x comes from class ωj,∑k

j=1 pij(x) = 1.
Given C = {C1,C2, · · · ,Cl}, Y = {ω1, ω2, · · · , ωk},

and arbitrary testing sample x. The following matrix is called

decision matrix with respect to x.

DM (x) =



p11(x) · · · p1j(x) · · · p1k (x)
...

...
...

pi1(x) · · · pij(x) · · · pik (x)
...

...
...

pl1(x) · · · plj(x) · · · plk (x)

 (5)

In the matrix DM (x), the ith row of the matrix is the output
of classifier Li, the jth column of the matrix are the support
degrees from classifiers C1,C2, . . . ,Cl for class ωj.
Let P(C) be the power set ofC , the fuzzy measure onC is a

set function: g : P(C)→ [0, 1], which satisfies the following
two conditions:

(1) g(∅) = 1, g(C) = 1;
(2) For ∀Ci,Cj ⊆ C , if Ci ⊂ Cj, then g(Ci) ≤ g(Cj).
For ∀Ci,Cj ⊆ C and Ci ∩ Cj = ∅, g is called λ-fuzzy

measure, if it satisfies the following condition:

g(Ci ∪ Cj) = g(Ci)+ g(Cj)+ λg(Ci)g(Cj) (6)

where λ > −1 and λ 6= 0.
The value of λ can be determined by solving the following

equation.

λ+ 1 =
l∏
i=1

(1+ λgi) (7)

where gi = g({Ci}), it is usually determined by the following
formula [38]:

gi =
pi∑l
j=1 pj

δ. (8)

where δ ∈ [0, 1] and pi is testing accuracy or verification
accuracy of classifier Ci(1 ≤ i ≤ l).
Let h : C → [0, 1] be a function defined on C . The

Choquet fuzzy integral fuzzy integral of function h with
respect to g is defined by the following equation.

(C)
∫
hdµ =

l+1∑
i=2

(h(Ci−1)− h(Ci)) g(Fi−1) (9)

where h(C1) ≥ h(C2) ≥ · · · ≥ h(Cl), h(Cl+1) = 0, Fi−1 =
{C1,C2, · · · ,Ci−1}.
Given a testing instance x, when we use fuzzy integral

to fuse l base classifiers C1,C2, · · · ,Cl for classifying x,
the process includes three step: Firstly, compute decision
matrix DM (x). Secondly, sort jth(1 ≤ j ≤ k) column of
DM (x) in descending order and obtain (pi1j, pi2j, · · · , pil j).
Finally, calculate the support degree pj(x) by the following
formula.

pj(x) =
l+1∑
t=2

(
pit−1j(x)-pit j(x)

)
g(Ft-1) (10)

The pseudo code of the proposed binary imbalanced data
classification algorithm based on classifier fusion by fuzzy
integral is given in algorithm 2.
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Algorithm 2 The Binary Imbalanced Data Classification
Algorithm Based on Classifier Fusion by Fuzzy Integral

Input: Imbalanced data set S = S+ ∪ S−, testing sample
x.

Output: j∗, the class label of x.
1 Call algorithm 1, and obtain S+up;
// The first stage: Construct balance

training sets and train base
classifiers;

2 Partition S− into l subsets S−1 , S
−

2 , · · · , S
−

l , where

l = |S
−
|

|S+up|
;

3 for (i = 1; i ≤ l; i = i+ 1) do
4 Construct balance training sets Si = S−i ∪ S

+
up;

5 Train base classifier Ci on Si, and soft-maximize its
outputs, obtain a probability distribution
(pi1(x), pi2(x), · · · , pik (x));

6 end
// The second stage: fuse the trained

base classifiers by fuzzy
integral;

7 Calculate fuzzy densities gi(1 ≤ i ≤ l) by (8);
8 Calculate parameter λ by (7);
9 Calculate DM (x) by (6);
10 for (j = 1; j ≤ k; j = j+ 1) do
11 Sort jth column of DM (x) in descending order and

obtain (di1j, di2j, · · · , dil j);
12 Set g(F1) = gi1 ;
13 for (t = 2; t ≤ l; t = t + 1) do
14 Calculate g(Ft ) = git + g(Ft-1)+ λgitg(Ft-1);
15 end
16 Calculate pj(x) =

∑l+1
t=2[dit−1j(x)-dit j(x)]g(Ft-1);

17 end
18 Calculate pj∗ (x) = argmax1≤j≤k{pj(x)};
19 Return j∗.

IV. EXPERIMENTAL RESULTS AND ANALYSES
A. DATA SETS AND EXPERIMENTAL ENVIRONMENTS
In order to demonstrate the superiority of the proposed
algorithm also denoted by D2GANDO for simplicity,
we conducted extensive experiments on 8 data sets to
compare D2GANDO with 7 state-of-the-art methods,
including 4 SMOTE related approaches, and 3 GAN
related approaches. The 4 SMOTE related approaches
are SMOTE [6], B-SMOTE [7], ADASYN [8], and
K-SMOTE [12], the 3 GAN related approaches are
GAN [33], AC-GAN [34], and MFC-GAN [35]. The 8 data
sets include 1 artificial data set, 4 KEEL data sets [39],
3 liver data sets [40]. The basic information of the 8 data
sets is given in table 1. All experiments were carried out
on the same hardware platform with Intel(R) Core(TM)
i7-6600k CPU @ 3.10GHz, 16.0G memory, 64 bit MAC
operation system. The programming environment consists
of PyCharm Community Edition 2017.1.1, scikit-learn,

smote-variants and keras. Our code is publicly available at
https://github.com/xichie/oversample.

TABLE 1. The basic information of the 8 data sets.

In table 1, IR =
|S−|
|S+| . Gaussian is an artificial data

set which is a two-dimensional data set with two classes
followed two Gaussian distributions, the mean vectors and
covariance matrices of the two Gaussian distributions are
given in table 2. The artificial data set Gaussian is used
for illustrating the feasibility of the proposed approach and
visualizing the generated synthetic samples.

TABLE 2. The mean vectors and covariance matrices of two Gaussian
distributions.

B. PERFORMANCE EVALUATION MEASURES
The used performance evaluation measures include
MMD-score [41], Silhouette-score [42], F-measure [43],
G-mean [43], and AUC-area [43]. The MMD is a statistics
for measuring the mean squared difference of two sets of
samples. Given two sets of samples X = {xi}, 1 ≤ i ≤ n
and Y = {yi}, 1 ≤ i ≤ m, the MMD of X and Y is defined
by Eq.(11).

MMD =

∥∥∥∥1n
n∑
i=1

φ(xi)−
1
m

m∑
j=1

φ(yi)
∥∥∥∥2

=
1
n2

n∑
i=1

n∑
i′=1

φ(xi)Tφ(xi′ )

−
2
nm

n∑
i=1

m∑
j=1

φ(xi)Tφ(yj)

+
1
m2

m∑
j=1

m∑
j′=1

φ(yj)Tφ(yj′ ) (11)
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TABLE 3. Model parameter settings used for 8 data sets.

In Eq.(11), φ(·) is a kernel mapping, using kernel trick,
Eq.(11) can be written as Eq.(12).

MMD =
1
n2

n∑
i=1

n∑
i′=1

k(xi, xi′ )

−
2
nm

n∑
i=1

m∑
j=1

k(xi, yj)

+
1
m2

m∑
j=1

m∑
j′=1

k(yj, yj′ ) (12)

The Silhouette coefficient (Silhouette-score) is an evalua-
tion index of clustering algorithms. Given a sample x which
belongs to cluster A, the Silhouette coefficient of x is defined
by Eq.(13).

s(x) =
b(x)− a(x)

max{a(x), b(x)}
(13)

where a(x) is the average dissimilarity of sample x to all other
samples of A, b(x) = minimumC6=Ad(x,C), while d(x,C)
is the average dissimilarity of sample x to all samples of
cluster C. With respect to a cluster (or a set) A, the Silhouette
coefficient of A is s(A) = 1

|A|

∑
x∈A s(x). From Eq.(13), it is

easy to find that the value of s(x) is between [−1,1], and the
closer the value of s(x) to 1, the better the separability is.

C. NETWORK ARCHITECTURE AND PARAMETER SETTINGS
In the modified D2GAN, the generator, the two discrimina-
tors and the classifier are all single hidden layer feedforward
neural networks, and the two discriminators and the classifier
have same architecture, i.e. they have same the number of
hidden nodes denoted by ]HNodes, and the number of hidden
nodes of generator is denoted by ]HNodesG. The dimension
of noise z is uniformly set to 100. All parameters including
the number of iteration (n), the number of training (k),
the weighted parameter λ, and the number of oversampling
samples (denoted by ]Oversampling) at each time are given
in table 3. In the second stage, we use support vector machine
(SVM) [44], decision tree [45], and extreme learningmachine
(ELM) [46] as base classifiers for fusion to demonstrate that
the superiority of the proposed method is less relevant to base
classifier selection. For SVM, we set C = 1.0 and the kernel
function is Gaussian, whose coefficient γ is the reciprocal

of the dimension of the feature. For decision tree, we use
the Gini index as a heuristic, and there is no limit to the
depth of the decision tree. For ELM, the activation function
is sigmoid, but for different data sets, the number of hidden
layer nodes denoted also by ]HNodes is different, which are
given in Table 4.

D. COMPARISONS WITH 3 GAN RELATED METHODS
We use 5-fold cross validation to experimentally compare
the proposed method D2GANDO with the 7 state-of-
the-art approaches on 5 aspects: MMD-score, Silhouette-
score, F-measure, G-means, and AUC-area, and visualize
the generated synthetic samples on the artificial data set
to demonstrate effectiveness and superiority of the pro-
posed approach D2GANDO. The experimental results of
MMD-score and Silhouette-score on the 8 data sets are given
in Table 5 and Table 6, respectively.

From the experimental results listed in Table 5,
the MMD-scores of the proposed method D2GANDO on
the 7 data sets are greater than the ones of the 6 related
approaches. In the data set Blocks0, the MMD-scores is
greater than the one of D2GANDO.Overall, the positive class
samples generated by D2GANDO have better diversities, this
observation can be further confirmed by the visualization
of the generated synthetic positive class samples on the
artificial data set (see figure 3), the visualization was
conducted by matplotlib package of Python. In the figure 3,
the yellow ‘‘−’’ represents the negative class sample, the blue
‘‘+’’ represents the positive class sample, while red ‘‘+’’
represents the generated positive class sample. It can be
seen from the figure 3 that the samples generated by the
proposed method D2GANDO has better diversity than the
7 state-of-the-art approaches, including K-SMOTE which
is an exception that K-SMOTE can not generate synthetic
positive class samples on the artificial data set. This is
due to its oversampling mechanism, K-SMOTE first use
K-means to cluster the artificial data set, and then for each
cluster, K-SMOTE calculates it’s IR, and select the clusters
whose IR is less than a threshold for oversampling with
SMOTE. In our experiments, the threshold is set to 2.0.
Since the IR of each cluster is greater than 2.0, no over-
sampling is performed. Although MFC-GAN has good
diversity, it has bad separability, i.e. the generated synthetic
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TABLE 4. Hidden node settings of ELM networks used for 8 data sets.

TABLE 5. Experimental comparison of MMD-score on the 8 data sets.

TABLE 6. Experimental comparison of Silhouette-score on the 8 data sets.

positive class samples overlap with the original negative
samples.

It is well known that the better the diversity of generated
synthetic positive class samples, the better the quality of
the generated synthetic positive class samples. The good
quality of the generated synthetic positive class samples can
effectively expand the training field of positive class samples,
and then effectively improve the performance of the proposed
classification algorithm, this point can be confirmed by the
experimental results on three classification performance met-
rics: F-measure, G-means, and AUC-area. The experimental
results of F-measure, G-means, and AUC-area by support
vector machine are given in Table 7-9. The experimental
results of F-measure, G-means, and AUC-area by decision
tree are given in Table 10-12. The experimental results of
F-measure, G-means, and AUC-area by extreme learning
machine are given in Table 13-15.

From the experimental results listed in Table 6,
the Silhouette-scores of the proposed method D2GANDO
on the 8 data sets are also greater than the ones of the
7 state-of-the-art approaches, which demonstrates that the
oversampled positive class samples by D2GANDO have also
better separability than the 7 state-of-the-art approaches, this
conclusion can also be further confirmed by the visualization

of the generated synthetic positive class samples on the
artificial data set (see figure 3).

From the experimental results of F-measure, G-means
and AUC-area by support vector machine given in table 7,
8 and 9, it can be found that (a) D2GANDO obtained
5 maximum values of F-measure, the other 3 maxima
were obtained by SMOTE, K-SMOTE and MFC-GAN,
respectively; (b) D2GANDO obtained 7 maximum values of
G-means, another maximum was obtained by MFC-GAN;
(c) D2GANDO obtained 6 maximum values of AUC-area,
the other 2 maximum was obtained by SMOTE and MFC-
GAN. From the experimental results of F-measure, G-means
and AUC-area by decision tree and extreme learning machine
given in Table 10-15, similar or even better results can be
found. Overall, the performance of the proposed method
D2GANDO outperforms the 7 approaches in terms of 5
aspects. We think that the reasons include the following three
points:

(1) In contrast to D2GAN which insures to effectively
diversify the estimated density in capturing multi-modes,
D2GANDO adopts the MMD to ensure good diversity of the
generated synthetic positive class samples, the good diversity
can effectively expand the training field of the positive class
samples.
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FIGURE 3. The visualization of the generated synthetic positive class samples of the artificial data set.

TABLE 7. Experimental comparison of F-measure by support vector machine on the 8 data sets.

(2) Introducing a classifier to D2GAN can not only
learn the distribution of samples, but also can learn a good
classification boundary between positive class and negative
class. In addition, the Silhouette-score can well measure
separability between the generated synthetic positive class
samples and negative, the combination of MMD-score and
Silhouette-score can further effectively improve the quality
of the generated synthetic positive class samples, and then
finally effectively improve the performance of the proposed
method D2GANDO.

(3) Because the base classifiers are trained on balanced
training sets which all contain the same set of oversampling
positive class samples, there exist intrinsic interactions
among different base classifiers, the interactions may be
positive correlated, in this case, the base classifiers enhance
each other. The interactions also may be negative correlated,
in this situation, the base classifiers suppress each other.
Fuzzy integral canwellmodel the interactions among the base
classifiers, which enhance the generalization performance of
the ensemble classifier.
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TABLE 8. Experimental comparison of G-mean by support vector machine on the 8 data sets.

TABLE 9. Experimental comparison of AUC-area by support vector machine on the 8 data sets.

TABLE 10. Experimental comparison of F-measure by decision tree on the 8 data sets.

TABLE 11. Experimental comparison of G-mean by decision tree on the 8 data sets.

To further confirm the superiorities of the proposed
algorithm to the 7 state-of-the-art methods, we statistically
analyzed the experimental results of F-measures by three

base classifiers with paired T-test in confidence level
0.05 [47]. For the limitation of pages, we do not provide
the statistical analysis on G-mean and AUC-area by three
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TABLE 12. Experimental comparison of AUC-area by decision tree on the 8 data sets.

TABLE 13. Experimental comparison of F-measure by extreme learning machine on the 8 data sets.

TABLE 14. Experimental comparison of G-mean by extreme learning machine on the 8 data sets.

TABLE 15. Experimental comparison of AUC-area by extreme learning machine on the 8 data sets.

base classifiers. Specifically, for each data set and for each
method, we run the 5-fold cross-validation 5 times and obtain
eight 25-dimensional statistics denoted by X1,X2, X3, X4,

X5, X6, X7 and X8 corresponding to SMOTE, B-SMOTE,
ADASYN, K-SMOTE, GAN, AC-GAN, MFC-GAN and
D2GANDO respectively. Next the paired T-test is applied
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TABLE 16. Statistical analysis on F-measure by support vector machine.

TABLE 17. Statistical analysis on F-measure by decision tree.

TABLE 18. Statistical analysis on F-measure by extreme learning machine.

to the experimental results by calling the Python library
function ttest_rel(·, ·). The results of the statistical analysis
on F-measures by three base classifiers are listed in table 16,
17 and 18 respectively. From the p-values listed in the
three tables, we can undoubtedly confirm that D2GANDO
statistically outperforms the 7 state-of-the-art methods.

V. CONCLUSION
Based on a modified D2GAN model and classifier fusion
mechanism, an approach for classifying binary imbalanced
data was proposed in this article. The proposed method
contains a diversity oversampling method and an ensemble
classification approach for classification of binary imbal-
anced data. The oversampling method is based on the
modified D2GAN model by introducing a classifier into
the D2GAN model. The ensemble classification approach is

based on fuzzy integral, because that the base classifiers are
trained on balanced training sets containing same positive
class set, there are intrinsic interactions among the base
classifiers, fuzzy integral can well the interactions which
can effectively enhance the classification performance. The
proposed method has four advantages: (1) it can generate
synthetic positive class samples with good diversity and
good separability. (2) the modified D2GAN model can
effectively avoid mode collapse. (3) it has good classification
generalization ability due to diverse oversampling and
controllable separability. (4) it is effective not only for data
sets with medium imbalanced ratio, but also for data sets
with very high imbalanced ratio. The promising future works
of this study include (1) The extension of D2GANDO to
multi-class imbalacned data classification; (2) The scalability
of D2GANDO in imbalanced big data scenario.
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