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ABSTRACT This paper investigates the leader-following consensus tracking problems via iterative learning
control for singular fraction-order multi-agent systems in the presence of iteration-varying switching
topologies and initial state errors. First, in order to eliminate the impulsive effect of singular systems and
handle iteration-varying topologies, the closed-loopDα-type iterative learning control protocol is proposed.
To deal with initial state errors, the initial state learning laws are introduced in light of the initial output
errors of each follower agent. The developed Dα-type learning protocols based on initial state learning laws
can guarantee each follower track perfectly the leader agent in the fixed time interval. Next, the sufficient
convergent conditions of consensus tracking errors are provided. Moreover, the Dα-type learning protocols
are extended to nonlinear singular fraction-order multi-agent systems with iteration-varying topologies and
initial state errors. Finally, two numerical examples are presented to verify the validity of the proposed Dα-
type learning scheme in this paper.

INDEX TERMS Iterative learning control, fractional-order, singular multi-agent systems, iteration-varying
graphs, initial state errors.

I. INTRODUCTION
During the past decade, consensus analysis and cooperative
control of multi-agent systems (MASs) have attracted exten-
sive attention from scholars of different fields on account of
their potential applications in several areas such as cooper-
ative transportation by mobile robots [1], flocking [2], and
formation control of vehicles [3], and so on. Consensus con-
trol has become a fundamental research topic for cooperative
control, aiming to drive all follower agents to reach an agree-
ment via the proper consensus protocol after a fixed time [4].
Actually, in some practical consensus scenes, such as satellite
formation keeping [5], synchronisation of sensor networks
[6], which needs to be achieved as perfectly as possible over
a fixed time interval [7].
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Iterative learning control (ILC) has been widely utilized to
cope with the repeated tracking control with high precision
requirement in the fixed time interval due to its simplicity
and effectiveness [8], [9]. Hence, ILC has been successfully
implemented to many kinds of multi-agent systems in recent
references, such as high-order nonlinear MASs [10], singu-
lar MASs [11], fractional-order MASs [12], and distributed
parameter MASs [13]–[15], etc.. In [16], [17], the forma-
tion control problems of nonlinear MASs under switching
interaction topologies were addressed by employing the ILC
scheme. To handle the consensus tracking without a priori
knowledge of the control direction, a new adaptive itera-
tive learning control protocol was developed for uncertain
nonlinear multi-agent systems under the fixed topology in
[18]. Recently, the authors have investigated the problem of
quantized iterative learning [19]–[21], and some practical
factors including the finite-leveled quantizer with random
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packet losses was considered for the continuous-time MASs
in [22]. Besides, in order to eliminate initial state errors and
perform accurate consensus tracking, the initial state learning
incorporated with ILC protocol was developed for MASs in
[23]. However, it is worth noting that the whole aforesaid
studies about ILC are focused on normal MASs.

Singular systems, also referred to as generalized
state-space systems, semi-state systems and differential-
algebraic systems, which can naturally represent a larger
class of systems than the normal linear system model [24].
Applications of this class of systems can be extensively found
in modeling and control of mechanical systems, intercon-
nected systems, chemical processes, and other fields [25],
[27]. Meanwhile, singular MASs, distinguishing from the
norml MASs, possesses the characteristics of regularity and
impulse behaviour [27]. And the consensus control of sin-
gular linear or nonlinear MASs has been reported in few
literature, for instance, the non-fragile consensus control
[4], the admissible consensus for homogenous descriptor
MASs [29], the guaranteed-cost consensus for singularMASs
under switching topologies [28]. It should be pointed out that
all the aforementioned published works achieve consensus
task after a finite time [28]. To accomplish the consensus
task over a fixed time interval, the unified D-type iterative
learning algorithm was firstly designed for a class of linear
singular MASs in both continuous-time and discrete-time
domain to ensure the outputs of followers converge to the
leader’s trajectory [11]. As is well known, fractional cal-
culus has a long history which can be dated back to the
17th century, many researchers from physics, engineering
and biology observe that a fruit number of systems can be
modelled by fractional-order differential equations, such as,
battery behavior, electromagnetic systems, etc. [30], [31].
Meanwhile, the consensus control of factional-order MASs
have been widely concerned from different aspects [30]–[32].
Based on the memory property of fractional-order derivative,
the Dα-type and PIβ -type iterative learning control proto-
cols were applied to handle consensus tacking for nonlinear
fractional-order MASs with fixed and iteration-varying com-
municating graphs, respectively [12], [32].

In the aforesaid references, the dynamic of MASs was
governed by a normal system, a singular system or a
fractional system. Recently, a novel system called singu-
lar fractional-order (SFO) system has been proposed [33],
which can be considered as generalizations of singular MASs
or fractional-order MASs and also has significant practical
background, for instance, electrical networks with superca-
pacitors [34], swamp-floating plants [35], etc.. Till now, only
a fewmeaningful results on above system have been achieved
in [35]–[39]. As for the result of SFOMASs, the consensus
problem of fractional-order singularMASs with uncertainties
under fixed topology was firstly studied by virtue of robust
admissible consensus protocols in [33]. However, there are
still a great number of challenging and unsolved issues in
the filed of SFOMASs, such as the switching topologies and
different initial state errors, and so on. To the best of our

knowledge, the consensus tracking of SFOMASs via iterative
learning control in the presence of iteration-varying switching
topologies and initial state errors has not been addressed in
the literature yet.

In view of the above discussion, the main purpose of this
paper is that the closed-loopDα-type iterative learning update
controllers with initial state learning laws are constructed
for linear and nonlinear SFOMASs to achieve perfectly con-
sensus tracking performances of the follower agents under
iteration-varying switching topologies and initial state errors
over a finite time interval. The distinctive features of this
paper can be summarized as follows:

1) The consensus tracking of singular fractional-order
MASs with iteration-varying switching topologies and initial
state errors have been investigated accurately for the first
time in this paper. Then the consensus tracking objective and
the attenuating ability of impulse effect have been gradually
achieved for SFOMASs.

2) The closed-loop Dα-type iterative learning control pro-
tocols based on initial state lerning laws via the outputs of
each follower agent is proposed, which will be more prac-
tical than the distributed state protocol due to the fact that
outputs are easier to measure. It is worth pointing out that we
do not require that the singular fractional-order systems be
impulse-free due to the effect of the developed closed-loop
Dα-type learning algorithm.

3) The sufficient convergence conditions of consensus
tracking errors of each follower agent under the proposedDα-
type ILC law are derived firstly for linear SFOMASs under
fixed communication topology, and then extend the results
to nonlinear SFOMASs under iteration-varying switching
topologies case.

The layout of the paper is arranged as follows. The nec-
essary preliminary about graph theory, fractional calculus,
and useful lemmas are presented in Section 2. In Section 3,
the developed ILC protocols are designed and main results on
sufficient consensus tracking conditions are shown, respec-
tively. Some numerical examples will be completed to verify
that the achieved results are efficient in Section 4. Finally,
some conclusions are drawn in Section 5.
Notations:Rn denotes n-dimensional Euclidean space. The

superscript ′T′ represents the matrix transposition. The Kro-
necker product is ⊗ and 1 describes the column vector with
each entry being 1. I is an identity matrix with appropriate
dimensions. For A is matrix equipped with the matrix norm
‖A‖ =

√
λmax(ATA), where λmax(·) is the maximum eigen-

value of A. For a vector function Q(t) : [0,T ] → Rn and
a real constant λ > 0, the λ-norm is defined as ‖Q‖λ =
sup

06t6T
{‖Q(t)‖e−λt }.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
1) GRAPH THEORY
Let G = (V ,E ,A ) be a weighted directed graph, where
consists of the set of vertices V = {1, 2, . . . ,N }, the set of
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edges E ⊆ V × V and the adjacency matrix A . Here V
also be the index set representing the agents in the interaction
topology. A direct edge from i to j can be depicted by an
ordered pair (i, j) ∈ E , which means that the agent i can
transmit information into the agent j. A = (aij) ∈ RN×N

denotes the weighted adjacency matrix of the graph G , which
is defined as aii = 0 and aij > 0 ⇔ (j, i) ∈ E . Accordingly,
denote L = D −A be the Laplacian matrix of the digraph

G , where D = diag{d1, d2, . . . , dN } with di =
N∑
j=1

aij for

i ∈ V . A graph is said to contain a spanning tree, that there
is a vertex called as the root such that exists a directed path
from the root to all other vertex in the graph G .

2) FRACTIONAL-ORDER INTEGRALS AND DERIVATIVES
Introducing a positive real number α, the Riemann-Liouville
fractional-order integral is defined as

Iαf (t) 1=
1

0(α)

∫ t

0
(t − τ )α−1f (τ )dτ , t > 0, α ∈ R+,

where 0(·) denotes the Gamma function.
An alternative definition for the fractional-order derivative

is introduced by Caputo as follow:

Dαf (t) 1= Im−αDmf (t) =
1

0(m− α)

∫ t

0

f (m)(τ )

(t − τ )α−m+1
dτ ,

where m− 1 < α < m,m ∈ N.

B. PROBLEM FORMULATION
Consider the singular fractional-order multi-agent sys-
tems (SFOMASs) consisting ofN agents. At the kth iteration,
the dynamics of the ith agent is described by:{

EDα
t zk,i(t) = Azk,i(t)+ Buk,i(t),

yk,i(t) = Czk,i(t),
(1)

where k denotes the iteration index; i ∈ V represents the ith
follower agent; t ∈ [0,T ] is the time variable; Dα

t (·) denotes
the Caputo fractional derivative; zk,i(t) ∈ Rn, uk,i(t) ∈
Rm and yk,i(t) ∈ Rm represent the state, control input and
output, respectively; E ∈ Rn×n is a singular matrix and
0 < rank(E) = r < n; A ∈ Rn×n, B ∈ Rn×m and
C ∈ Rm×n are the constant matrices. Throughout this study,
the SFOMASs (1) is assumed to satisfy the regularity condi-
tion, i.e. det(sαE−A) is not identically zero. Regarding above
N agents, the interaction topology among them is described
by the directed digraph G = (V ,E ,A ).
The desired trajectory for consensus tracking yd (t) is

defined on a finite-time interval [0,T ], which is generated
by the following dynamics:{

EDα
t zd (t) = Azd (t)+ Bud (t),

yd (t) = Czd (t),
(2)

where zd (t) and ud (t) are the desired state and control input,
respectively. In particular, we assume that only a subset of
followers know the desired trajectory, which can be regarded

as a virtual leader and indexed by vertex 0. Together with G ,
the extended topology including both leader and all followers
can be depicted by G̃ = (V ∪ {0} , Ẽ , ˜A ), where Ẽ is the
corresponding edge set and ˜A is the adjacency matrix of G̃ .

Before addressing the consensus tracking problem of SFO-
MASs, the basic Assumptions are given firstly.
Assumption 1: The graph G̃ contains a spanning tree with

the leader as its root.
The control objective of this paper is to design an appropriate
iterative algorithm to generate a control input sequence uk,i(t)
such that each follower agent can track the leader’s trajectory
perfectly for all t ∈ [0,T ] as k →∞, i.e.

lim
k→∞

∥∥yd (t)− yk,i(t)∥∥ = 0, i ∈ V . (3)

III. MAIN RESULTS
This section contains two subsections. The Dα-type ILC
updating law and its convergence properties are adequately
revealed for linear SFOMASs with initial state errors and
the fixed graph in Section III-A. Then, the iteration-varying
topology condition is considered. In Section III-B, the the-
oretical results of consensus tracking are extended to the
nonlinear SFOMASs.

A. CONVERGENCE ANALYSIS OF LINEAR SFOMAS
Based on the fixed topology, denote the available information
γk,i(t) at the (k + 1)th iteration for the agent i as

γk,i(t) =
N∑
j=1

aij(yk,i(t)− yk,j(t))+ si(yd (t)− yk,i(t)), (4)

where si is the weight between agent i and the leader. If agent
i can access the desired trajectory, then si = 1; otherwise,
si = 0. Let ek,i(t) = yd (t)− yk,i(t) be the tracking error, then
Eq.(4) can be rewritten as

γk,i(t) =
N∑
j=1

aij(ek,j(t)− ek,i(t))+ siek,i(t). (5)

In order to handle the consensus tracking problem of SFO-
MASs (1), the closed-loop Dα-type iterative learning control
algorithms for i ∈ V are constructed as follow:

uk+1,i(t) = uk,i(t)+91Dα
t γk+1,i(t), (6)

and the initial state learning mechanism is designed by

zk+1,i(0)=zk,i(0)+92γk,i(0), (7)

where91 ∈ Rm×m and92 ∈ Rm×m denote two learning gain
matrices to be designed.
Remark 1: It has been known from Zhang [24,26,39]

that impulse terms exist in the response of the singular
fractional-order system. The impulse terms may result in
control saturation or even deteriorate the system performance,
and thereby it is expected to eliminate. Furthermore, with
the developed closed-loop Dα-type ILC law, the singular
fractional-order system can be transformed into a normal

168814 VOLUME 8, 2020



J. Wang et al.: Consensus Tracking via Iterative Learning Control for Singular Fractional-Order Multi-Agent Systems

system, where the impulsive effects can be removed. For
more details, please refer to [26,39].

For simplicity, define the following column stack vectors:

γk (t) =
[
γ T
k,1(t), γ

T
k,2(t), . . . , γ

T
k,N (t)

]T
,

zk (t) =
[
zTk,1(t), z

T
k,2(t), . . . , z

T
k,N (t)

]T
,

uk (t) =
[
uTk,1(t), u

T
k,2(t), . . . , u

T
k,N (t)

]T
,

ek (t) =
[
eTk,1(t), e

T
k,2(t), . . . , e

T
k,N (t)

]T
.

Then, Eqs.(5)-(7) via using Kronecker product, one obtains

γk (t) = [(L +S )⊗ Im] ek (t), (8)

uk+1(t) = uk (t)+ [(L +S )⊗91]Dα
t ek+1(t), (9)

zk+1(0) = zk (0)+ [(L +S )⊗92] ek (0), (10)

where L is the Laplacian matrix of G in kth iteration, S =
diag{s1, s2, · · · sN } is associated with G̃ .
Introducing δzk,i(t) = zd (t)−zk,i(t) and δuk,i(t) = ud (t)−

uk,i(t), and it can be obtained form Eq.(1) and Eq.(2) that

EDα
t δzk,i(t) = Aδzk,i(t)+ Bδuk,i(t). (11)

Define the following vectors:

δzk (t) =
[
δzTk,1(t), δz

T
k,2(t), . . . , δz

T
k,N (t)

]T
,

δuk (t) =
[
δuTk,1(t), δu

T
k,2(t), . . . , δu

T
k,N (t)

]T
.

Then, Eq.(11) can be rewritten in the compact form

(IN ⊗ E)Dα
t δzk (t)= (IN ⊗ A)δzk (t)+(IN ⊗ B)δuk (t). (12)

To investigate the variation of δuk (t) between two consec-
utive iterations from the Eq.(9), one gets

δuk (t)

= δuk−1(t)− [(L +S )⊗91]Dα
t ek (t)

= δuk−1(t)− [(L +S )⊗91] (IN ⊗ C)Dα
t δzk (t)

= δuk−1(t)− [(L +S )⊗91C]Dα
t δzk (t). (13)

At the same time, it can be obtained from Eq.(10) that

δzk+1(0) = δzk (0)− [(L +S )⊗92] ek (0). (14)

Substituting Eq.(13) into Eq.(12) results in

(IN ⊗ E)Dα
t δzk (t)

= (IN ⊗ A)δzk (t)+ (IN ⊗ B)(δuk−1(t)

−((L +S )⊗91C)Dα
t δzk (t))

= (IN ⊗ A)δzk (t)+ (IN ⊗ B)δuk−1(t)

− [(L +S )⊗ B91C]Dα
t δzk (t),

which implies

[(IN ⊗ E)+ ((L +S )⊗ B91C)]Dα
t δzk (t)

= (IN ⊗ A)δzk (t)+ (IN ⊗ B)δuk−1(t).

There exists a learning gain matrix 91 such that
[(IN ⊗ E)+ ((L +S )⊗ B91C)] is non-singular, one has

Dα
t δzk (t) = Ãδzk (t)+ B̃δuk−1(t), (15)

with Ã = [(IN ⊗ E)+ ((L +S )⊗ B91C)]−1(IN⊗A), B̃ =
[(IN ⊗ E)+ ((L +S )⊗ B91C)]−1(IN ⊗ B).
Now, the following useful Lemmas are given, which will

be utilized in the proof of main theorems.
Lemma 1: (see [31]) If the function f (x, t) is continuous,

then the initial value problem

C
t0D

α
t x(t) = f (xt , t), 0 < α < 1,

x(t0) = ϕ.

is equivalent to the following nonlinear Volterra integral
equation

x(t) = x(t0)+
1

0(α)

∫ t

t0
(t − τ )α−1f (xτ , τ )dτ .

and its solutions are continuous.
Lemma 2: (see [40]) Suppose that two non-negative real

series {ak}∞k=0 and {bk}
∞

k=0, where ak and bk are bounded for
any given integer k > 0, and satisfying

0 6 ak+1 6 rak + bk ,

with 0 6 r < 1, lim
k→∞

bk = 0, then one has

lim
k→∞

ak = 0.

Lemma 3: Consider the linear SFOMASs (1) under the
fixed graph and Assumption 1 holds, the following estimation
is obtained

‖1δzk‖λ 6 2a2‖ek‖λ + 2a1 ‖ek (0)‖ e−λT ,

where 1δzk (t) is defined as δzk+1(t)− δzk (t), and

a1 = ‖B̃ [(L +S )⊗91]− (L +S )⊗92‖,

and a2=‖B̃‖ ‖(L +S )⊗91‖ .

Proof: With Lemma 1, integrating both sides of Eq.(15)
from 0 to t and combining with Eq.(14) yields,

δzk (t) = δzk (0)+
1

0(α)

∫ t

0

Ãδzk (τ )+ B̃δuk−1(τ )

(t − τ)1−α
dτ.

Accordingly, one has

1δzk (t) = δzk+1(0)− δzk (0)

+
Ã
0(α)

∫ t

0

δzk+1(τ )− δzk (τ )

(t − τ)1−α
dτ

+
B̃
0(α)

∫ t

0

δuk (τ )− δuk−1(τ )

(t − τ)1−α
dτ . (16)

Substituting Eq.(13) and Eq.(14) into Eq.(16) results in

1δzk (t)

= − [(L +S )⊗92] ek (0)

+
Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ
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−
B̃ [(L +S )⊗91]

0(α)

∫ t

0

Dα
t ek (t)

(t − τ)1−α
dτ

= − [(L +S )⊗92] ek (0)

−B̃ [(L +S )⊗91] (ek (t)− ek (0))

+
Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ

=

[
B̃((L +S )⊗91)− (L +S )⊗92

]
ek (0)

−B̃ [(L +S )⊗91] ek (t)+
Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ.

(17)

Introducing a1 = ‖B̃ [(L +S )⊗91] − (L + S ) ⊗
92‖, a2=‖B̃‖ ‖(L +S )⊗91‖ and a3 = ‖Ã‖, and taking
norm operations on both sides of Eq.(17), one has

‖1δzk (t)‖ 6 a1 ‖ek (0)‖ + a2 ‖ek (t)‖

+
a3
0(α)

∫ t

0

‖1δzk (τ )‖

(t − τ)1−α
dτ. (18)

Furthermore, multiplying e−λt on both sides of Ineq.(18),
one can obtain

‖1δzk (t)‖ e−λt

6 a1 ‖ek (0)‖ e−λt + a2 ‖ek (t)‖ e−λt

+
a3
0(α)

e−λt
∫ t

0

eλτ e−λτ ‖1δzk (τ )‖

(t − τ)1−α
dτ

6 a1 ‖ek (0)‖ e−λt + a2‖ek‖λ

+
a3
0(α)

e−λt
∫ t

0

eλτ

(t − τ)1−α
dτ‖1δzk‖λ. (19)

According to Hölder inequality, select an appropriate p ∈
(1, 1

1−α ) such that∫ t

0
(t − τ )α−1eλτdτ 6 p

√
1

1− p(1− α)
t
1
p−(1−α)

1
q
√
qλ
eλt ,

(20)

where 1
p +

1
q = 1 and p, q > 0.

Combining Ineq.(19) and Ineq.(20), one gives

‖1δzk (t)‖ e−λt

6 a1 ‖ek (0)‖ e−λt + a2‖ek‖λ

+
a3
0(α)

p

√
1

1− p(1− α)
t
1
p−(1−α)

1
q
√
qλ
‖1δzk‖λ.

(21)

Next, taking supremum for Ineq.(21) w.r.t. t , one has

‖1δzk‖λ
6 a1 ‖ek (0)‖ e−λT + a2‖ek‖λ

+
a3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ
‖1δzk‖λ.

(22)

Obviously, for selecting λ sufficient large enough, i.e.,

λ > 21 :=
1
q

(
1

0(α)
p

√
1

1− p(1− α)
t
1
p−(1−α)2a3

)q
. (23)

Then, one has

‖1δzk‖λ 6 2a2‖ek‖λ + 2a1 ‖ek (0)‖ e−λT . (24)

�
Based on the Assumptions and Lemmas given above,

the main results of this paper are presented as follow.
Theorem 1: For the linear SFOMASs (1) under the itera-

tive learning algorithm Eq.(7), if the learn gain92 for initial
state learning process satisfies

‖ImN − (L +S )⊗ C92‖ < 1,

then one obtains

lim
k→∞
‖ek (0)‖ = 0.

Proof: According to the definition of ek (t), one gives

ek+1(0) = ek (0)+ yk (0)− yk+1(0)

= ek (0)+ (IN ⊗ C)(zk (0)− zk+1(0))

= ek (0)− [(L +S )⊗ C92] ek (0)

= [ImN − (L +S )⊗ C92] ek (0). (25)

Tanking norm on both sides of Eq.(25), one yields

‖ek+1(0)‖ 6 ‖ImN − (L + S)⊗ C92‖ ‖ek (0)‖ .

Thus, with the convergence condition of Theorem 1, one
obtains

lim
k→∞
‖ek (0)‖ = 0.

The proof of Theorem 1 is completed. �
Theorem 2: Considering linear SFOMASs (1) with the

iterative learning algorithm Eq.(9) and the learning gain 92
meets the requirement in Theorem 1, and Assumption 1 is
satisfied. Then, if there exists the gain matrix 91 satisfying

‖ImN − B̃ [(L +S )⊗ C91]‖ < 0.5,

with B̃ = [(IN ⊗ E)+ ((L +S )⊗ B91C)]−1(IN ⊗ B),
the control goal can achieve, i.e.,

lim
k→∞
‖ek (t)‖ = 0.

Proof: Note that the tracking error of the ith agent is

ek+1,i(t)

= ek,i(t)− (yk+1,i(t)− yk,i(t))

= ek,i(t)+ (yd (t)− yk+1,i(t))− (yd (t)− yk,i(t))

= ek,i(t)+ (Czd (t)− Czk+1,i(t))− (Czd (t)− Czk,i(t))

= ek,i(t)+ Cδzk+1,i(t)− Cδzk,i(t). (26)

Then, it can be rewritten as

ek+1(t) = ek (t)+ (IN ⊗ C)(δzk+1(t)− δzk (t)). (27)
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Substituting Eq.(17) into Eq.(27), then one has

ek+1(t)

= ek (t)− (IN ⊗ C)B̃ [(L +S )⊗91] ek (t)

+(IN ⊗ C)
[
B̃((L +S )⊗91)−(L +S )⊗92

]
ek (0)

+
(IN ⊗ C)Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ )

=

[
B̃((L +S )⊗ C91)− (L +S )⊗ C92

]
ek (0)

+

[
ImN − B̃((L +S )⊗ C91)

]
ek (t)

+
(IN ⊗ C)Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ. (28)

Introducing the following notations

b1 = ‖B̃ [(L +S )⊗ C91]− (L +S )⊗ C92‖,

b2 = ‖ImN − B̃ [(L +S )⊗ C91]‖,

b3 = ‖IN ⊗ C‖‖Ã‖,

and taking norm on Eq.(28) derives

‖ek+1(t)‖ 6 b1 ‖ek (0)‖ + b2 ‖ek (t)‖

+
b3
0(α)

∫ t

0

‖1δzk (τ )‖

(t − τ)1−α
dτ. (29)

Then, multiplying e−λt on both sides of Ineq.(29) yields,

‖ek+1(t)‖ e−λt

6 b1 ‖ek (0)‖ e−λt + b2 ‖ek (t)‖ e−λt

+
b3
0(α)

e−λt
∫ t

0

eλτ e−λτ ‖1δzk (τ )‖

(t − τ)1−α
dτ

6 b1 ‖ek (0)‖ e−λt + b2‖ek‖λ

+
b3
0(α)

e−λt
∫ t

0

eλτ

(t − τ)1−α
dτ‖1δzk‖λ

6 b1 ‖ek (0)‖ e−λt + b2‖ek‖λ

+
b3
0(α)

p

√
1

1− p(1− α)
t
1
p−(1−α)

1
q
√
qλ
‖1δzk‖λ,

which implies that

‖ek+1‖λ
6 b1 ‖ek (0)‖ e−λT + b2‖ek‖λ

+
b3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ
‖1δzk‖λ. (30)

By using Lemma 3, it indicates that

‖ek+1‖λ
6 b1 ‖ek (0)‖ e−λT + b2‖ek‖λ

+
b3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ

2a1 ‖ek (0)‖ e−λT

+
b3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ

2a2‖ek‖λ

= (b1 +
2a1b3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ

)

× ‖ek (0)‖ e−λT

+(b2 +
2a2b3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ

)‖ek‖λ.

(31)

Finally, selecting some sufficient large λ such that both
Ineq.(23) and the following one meets,

λ > 22 :=
1
q

(
1

0(α)
p

√
1

1−p(1−α)
t
1
p−(1−α)

2a2b3
b2

)q
. (32)

Therefore,

‖ek+1‖λ 6 2b2‖ek‖λ + (b1 +
a1b2
a2

) ‖ek (0)‖ e−λT . (33)

Since the initial state learning mechanism Eq.(14),

lim
k→∞
‖ek (0)‖=0. (34)

According to Lemma 2, if b2 < 0.5, one has

lim
k→∞
‖ek‖λ=0. (35)

The proof of Theorem 2 is completed. �
Actually, the fixed topology is difficult and restrictive to

achieve for multi-agent systems. The fixed graph extended to
the iteration-varying graph, which means that the controller
is more robust to topology variations. The iteration-varying
graphs are defined as follows:

Hk = Lk +Sk , (36)

where Lk is the Laplacian matrix of G in kth iteration, Sk =

diag
{
sk,1, sk,2, · · · sk,N

}
. If agent i can access the desired

trajectory, then sk,i = 1; otherwise, sk,i = 0, i = 1, 2, . . . ,N
is associated with G̃ . Now Eqs.(8)-(10) are written in an
iteration-varying form as follows:

γk (t) = (Hk ⊗ Im)ek (t), (37)
uk+1(t) = uk (t)+ (Hk ⊗91)Dα

t ek+1(t), (38)
zk+1(0) = zk (0)+ (Hk ⊗92)ek (0). (39)

Corollary 1: For the system (1) with the iterative learning
algorithm Eq.(9) and the initial state learning mechanism
Eq.(10), Assumption 1 is satisfied. Then the consensus track-
ing objective (3) holds if there exists the gain matrix satisfying

‖ImN − B̃(Hk ⊗ C91)‖ < 0.5, (40)

with B̃ = [(IN ⊗ E)+ (Hk ⊗ B91C)]−1(IN ⊗ B).
Proof: The proof is similar to Theorem 2. Firstly, one

can obtain the following agents’ state trajectories via Eqs.(38)
and (39):

1δzk (t)

=

[
B̃(Hk ⊗91)− (Hk ⊗92)

]
ek (0)

−B̃(Hk ⊗91)ek (t)+
Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ. (41)
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From Eq.(41), one obtains

‖1δzk‖λ 6 2ã2‖ek‖λ + 2ã1 ‖ek (0)‖ e−λT , (42)

with ã1 = ‖B̃(Hk ⊗91)− (Hk ⊗92)‖ and ã2 =

‖B̃‖‖Hk ⊗91‖.
Substituting Eq.(41) into Eq.(27), one has

ek+1(t) =
[
B̃(Hk ⊗ C91)− (Hk ⊗ C92)

]
ek (0)

+

[
ImN − B̃(Hk ⊗ C91)

]
ek (t)

+
(IN ⊗ C)Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ. (43)

Taking λ norm on both sides on Eq.(43) yields,

‖ek+1‖λ 6 2b̃2‖ek‖λ + (b̃1 +
ã1b̃2
ã2

) ‖ek (0)‖ e−λT . (44)

where b̃1 = ‖B̃(Hk ⊗ C91)− (Hk ⊗ C92)‖ and b̃2 =
‖ImN − B̃(Hk ⊗ C91)‖.
Finally, according to Lemma 2 and Eq.(40), we deduce

lim
k→∞
‖ek‖λ=0.

The proof is completed. �

B. EXTENSION TO NONLINEAR SFOMAS
As an extension of the previous subsection, the Dα-
type updating law for nonlinear SFOMASs with the
fixed/iteration-varying graph and initial state error is formu-
lated in this section.

The dynamics of the ith agent at kth iteration as follow{
EDα

t zk,i(t) = Azk,i(t)+ f (zk,i(t), t)+ Buk,i(t),
yk,i(t) = Czk,i(t),

(45)

where f (zk,i(t), t) ∈ Rn represents a continuous nonlinear
function about zk,i(t), the following assumption is satisfied:
Assumption 2: f (z, t) satisfies Lipschitz conditions, which

means that for any u, v ∈ Rn, there exists a constant lf > 0
such that

‖f (u, t)− f (v, t)‖ < lf ‖u− v‖ .
The desired consensus tracking trajectory is generated by the
following dynamics:{

EDα
t zd (t) = Azd (t)+ f (zd (t), t)+ Bud (t),

yd (t) = Czd (t).
(46)

Introducing f (δzk,i(t), t) = f (zd (t), t) − f (zk,i(t), t) and
defining the following vectors:

f (δzk (t), t)

=

[
f T(δzk,1(t), t), f T(δzk,2(t), t), . . . , f T(δzk,N (t), t)

]T
.

It follows from Eq.(45) and Eq.(46) that

EDα
t δzk,i(t) = Aδzk,i(t)+ f (δzk,i(t), t)+ Bδuk,i(t), (47)

which implies

[(IN ⊗ E)+ ((L +S )⊗ B91C)]Dα
t δzk (t)

= (IN ⊗ A)δzk (t)+ f (δzk (t), t)

+ (IN ⊗ B)δuk−1(t). (48)

There exists a learning gain matrix 91 such that
[(IN ⊗ E)+ ((L +S )⊗ B91C)]is non-singular, one has

Dα
t δzk (t) = Ãδzk (t)+ F̃ f (δzk (t), t)+ B̃δuk−1(t), (49)

with F̃ = [(IN ⊗ E)+ ((L +S )⊗ B91C)]−1,

Ã = [(IN ⊗ E)+ ((L +S )⊗ B91C)]−1(IN ⊗ A),
B̃ = [(IN ⊗ E)+ ((L +S )⊗ B91C)]−1(IN ⊗ B).

Lemma 4: Consider the nonlinear SFOMASs (46) under
the fixed graph and Assumptions 1 and 2 are satisfied, then
the following estimation meets

‖1δzk‖λ 6 2a1 ‖ek (0)‖ e−λT + 2a2‖ek‖λ,

with a1 = ‖B̃ [(L +S )⊗91]− (L +S )⊗92‖ and
a2=‖B̃‖ ‖(L +S )⊗91‖.

Proof: This proof is similar to Lemma 3.With Lemma 1,
integrating both sides of Eq.(49) from 0 to t and combining
with Eq.(13), one can obtain the following results

δzk (t)
= δzk (0)

+
1

0(α)

∫ t

0

Ãδzk (τ )+ F̃ f (δzk (τ ), τ )+ B̃δuk−1(τ )

(t − τ)1−α
dτ.

(50)

Then, one has

1δzk (t)
= δzk+1(t)− δzk (t)

= δzk+1(0)− δzk (0)+
Ã
0(α)

∫ t

0

δzk+1(τ )− δzk (τ )

(t − τ)1−α
dτ

+
F̃
0(α)

∫ t

0

f (δzk+1(τ ), τ )− f (δzk (τ ), τ )

(t − τ)1−α
dτ

+
B̃
0(α)

∫ t

0

δuk (τ )− δuk−1(τ )

(t − τ)1−α
dτ . (51)

Substituting Eq.(18) and Eq.(19) into Eq.(51) results in

1δzk (t) =
[
B̃((L +S )⊗91)− (L +S )⊗92

]
ek (0)

− B̃ [(L +S )⊗91] ek (t)

+
Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ

+
F̃
0(α)

∫ t

0

1f (δzk (τ ), τ )

(t − τ)1−α
dτ . (52)

For simplicity, denote ā3 = ‖Ã‖ + lf ‖F̃‖. And taking
norm and multiplying the factor e−λt on both sides of above
expression, one has

‖1δzk (t)‖ e−λt 6 a1 ‖ek (0)‖ e−λt + a2‖ek‖λ

+
ā3
0(α)

e−λt
∫ t

0

eλτ

(t − τ)1−α
dτ‖1δzk‖λ.

(53)
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Combiningwith Ineq.(20) and take supremum on Ineq.(53)
on [0,T ], it indicates that

‖1δzk‖λ
6 a1 ‖ek (0)‖ e−λT + a2‖ek‖λ

+
ã3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ
‖1δzk‖λ. (54)

Obviously, choosing some λ large enough, i.e.,

λ > 21 :=
1
q

(
1

0(α)
p

√
1

1− p(1− α)
t
1
p−(1−α)2a3

)q
. (55)

Furthermore, one has

‖1δzk‖λ 6 2a2‖ek‖λ + 2a1 ‖ek (0)‖ e−λT . (56)

�
For the nonlinear SFOMASs, the following convergence

result is given:
Theorem 3: For the nonlinear SFOMASs (45) with theDα-

type iterative learning algorithm Eq.(9) and the initial state
learning mechanism applied with learning gain92 in Eq.(10)
meets Theorem 1, and Assumptions 1-2 are satisfied. If there
exists the gain matrix 91 satisfying

‖ImN − B̃ [(L +S )⊗ C91]‖ < 0.5,

where B̃ = [(IN ⊗ E)+ ((L +S )⊗ B91C)]−1(IN ⊗ B),
the consensus tracking error ek (t) converges to zero as itera-
tion number k →∞ for all t ∈ [0,T ].

Proof: Substituting Eq.(52) into Eq.(27) results in

ek+1(t)

=

[
B̃((L +S )⊗ C91)− ((L +S )⊗ C92)

]
ek (0)

+

[
ImN − B̃((L +S )⊗ C91)

]
ek (t)

+
(IN ⊗ C)Ã
0(α)

∫ t

0

1δzk (τ )

(t − τ)1−α
dτ

+
(IN ⊗ C)F̃
0(α)

∫ t

0

1f (δzk (τ ), τ )

(t − τ)1−α
dτ . (57)

Taking norm on Eq.(57) derives

‖ek+1(t)‖

6 b1 ‖ek (0)‖ + b2 ‖ek (t)‖

+

‖IN ⊗ C‖
∥∥∥Ã∥∥∥+ lf ‖IN ⊗ C‖ ∥∥∥F̃∥∥∥

0(α)

∫ t

0

‖1δzk (τ )‖

(t − τ)1−α
dτ.

(58)

Denote b̄3 = ‖IN ⊗ C‖‖Ã‖ + lf ‖IN ⊗ C‖‖F̃‖. Multiply-
ing by the factor e−λt on both sides of Ineq.(58), one has

‖ek+1(t)‖ e−λt

6 b1 ‖ek (0)‖ e−λt + b2‖ek‖λ

+
b̄3
0(α)

p

√
1

1− p(1− α)
t
1
p−(1−α)

1
q
√
qλ
‖1δzk‖λ, (59)

FIGURE 1. Directed fixed topology among agents in the network.

FIGURE 2. Directed iteration-varying topology among agents in the
network.

which implies the following results

‖ek+1‖λ
6 b1 ‖ek (0)‖ e−λT + b2‖ek‖λ

+
b̄3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ
‖1δzk‖λ.

(60)

According to Lemma 4, it indicates that

‖ek+1‖λ

6 (b1+
2a1b̄3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ

) ‖ek (0)‖ e−λT

+ (b2 +
2a2b̄3
0(α)

p

√
1

1− p(1− α)
T

1
p−(1−α)

1
q
√
qλ

)‖ek‖λ.

(61)

Finally, for some sufficient large λ, satisfying Ineq.(55) and
the following one, i.e.,

λ > 2̄2 :=
1
q

(
1

0(α)
p

√
1

1− p(1− α)
t
1
p−(1−α)

2a2b̄3
b2

)q
,

(62)

Furthermore, one yields

‖ek+1‖λ 6 2b2‖ek‖λ + (b1 +
a1b2
a2

) ‖ek (0)‖ e−λT . (63)

The rest of proof is similar to Theorem 2. �
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FIGURE 3. Output trajectories of all agents at 1st iteration in Example 1.

FIGURE 4. Output trajectories of all agents at 20th iteration in Example 1.

Corollary 2: For the nonlinear SFOMASs (1) with the iter-
ative learning algorithm Eq.(9) and the initial state learning
mechanism Eq.(10), Assumptions 1 and 2 are satisfied. Then
the consensus tracking objective (3) holds if there exists the
gain matrix satisfying

‖ImN − B̃(Hk ⊗ C91)‖ < 0.5, (64)

where B̃ = [(IN ⊗ E)+ (Hk ⊗ B91C)]−1(IN ⊗ B).
Proof: The proof is similar to Corollary 1, we omit it

here. �

IV. SIMULATION EXAMPLES
In this section, two simulation results on tracking examples
are given to demonstrate the effectiveness of the developed
iterative learning algorithm (9) and (10).

In the following examples, we set α = 0.85
and the initial state at first iteration is chosen as
z1,1(0) =

[
−1 1

]T
, z1,2(0) =

[
−3 2

]T
, z1,3(0) =[

4 −1
]T
, z1,4(0) =

[
1 −5

]T. The initial control signal
u1,i(0) = 0, i = 1, 2, 3, 4 for all agents.

Example 1: Consider the linear SFOMASs with fixed
graphs and initial state errors. The dynamics of the ith agent
is described by{

EDα
t zk,i(t) = Azk,i(t)+ Buk,i(t),

yk,i(t) = Czk,i(t),
(65)

where i = 1, 2, 3, 4, t ∈ [0, 3.5] and

E =
[
1 0
0 0

]
, A =

[
0.1 0.2
0.4 −0.1

]
,

B =
[
1 0
0 2

]
, C =

[
1 0
0 1

]
,

zk,i(t) =
[
z1k,i(t)
z2k,i(t)

]
, yk,i(t) =

[
y1k,i(t)
y2k,i(t)

]
.

The fixed graph G̃ in the network is shown in Fig. 1. Vertex
0 represents the leader agent, and only agent 1 can receive
the leader’s information. The Laplacian matrix for followers
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FIGURE 5. Output trajectories of all agents at 40th iteration in Example 1.

FIGURE 6. Initial state errors and tracking errors for all agents in each iteration in Example 1.

is given by

L=


1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1


and S = diag{1, 0, 0, 0}. It can be seen that the graph G̃
has a spanning tree with the leader as its root, which satisfies
Assumption 1.

According to the Dα-type iterative learning algorithm (9)
and (10), the gain matrix is taken as

91 =

[
0.9 0
0 1.2

]
and 92 =

[
0.3 0
0 0.3

]
.

The leader’s trajectory is given by

yd =
[
1.5 sin(π t)+ cos(π t)

0.25(et − 1)

]
, ∀t ∈ [0, 3.5] .

Fig. 3-5 show the output trajectories of all agents at 1st,
10th and 40th iterations, respectively. As the iteration number

increases, all output of each follower agent approach consis-
tently to the leader’s trajectory. Moreover, Fig. 6 (a) depicts
the initial errors along the iteration axis. It is observed that
the initial states converge to the desired initial state. It can be
seen from Fig. 6 (b) that the consensus tracking is achieved
by the proposed learning learning algorithm (9) and (10).
Example 2: In Example 2, the nonlinear SFOMASs with

iteration-varying graph and initial state error are considered.
Considering the ith agent model as follows:{

EDα
t zk,i(t) = Azk,i(t)+ f (zk,i(t), t)+ Buk,i(t),

yk,i(t) = Czk,i(t).
(66)

where the remain parameter settings are the same as Exam-
ple 1. Nevertheless, the nonlinear term is expressed as

f (zk,i(t), t) =
[
0.5 sin(z1k,i(t))− 0.8z2k,i(t)
0.3z1k,i(t)+ 0.2 sin(z2k,i(t))

]
. (67)

Accordingly, it satisfies Assumption 2.
The iteration-varying topologies are depicted in Fig. 2,

in which there are four graphs. In each iteration, the graph
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FIGURE 7. Output trajectories of all agents at 1st iteration in Example 2.

FIGURE 8. Output trajectories of all agents at 30th iteration in Example 2.

FIGURE 9. Output trajectories of all agents at the 60th iteration in Example 2.

is chosen by the selection function k = 4h+ j, j = 1, 2, 3, 4,
and h is a non-negative integer.

H1=


2 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , H2=


2 0 0 −1
−1 2 0 −1
0 −1 1 0
0 0 −1 1

 ,
H3=


3 −1 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , H4=


2 0 0 −1
−1 1 0 0
−1 −1 2 0
0 0 −1 1

 .
Fig. 7-9 show the output trajectories of all agents in 1st,

10th and 60th iterations, respectively. As the iteration number
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FIGURE 10. Initial state errors and tracking errors for all agents in each iteration in Example 2.

increases, all output profiles can track the desired trajectory.
In view of Fig. 10 (a), all initial states can converge to the
desired initial state during the initial state learning process.
Fig. 10 (b) depicts the tracking errors in each iteration, which
demonstrates the precise tracking performance over a finite
time interval.

V. CONCLUSION
This paper has investigated the consensus tracking for both
linear and nonlinear singular fractional-order MASs under
iteration-varying topologies and initial state errors over a
finite time interval. The closed-loop Dα-type ILC proto-
cols based on initial state learning laws have been proposed
for the follower agents and the update laws depend on the
information available from the neighbour agents. Then, with
the developed Dα-type ILC protocols, the sufficient conver-
gence conditions have been presented and the perfect tracking
can be achieved for both linear and nonlinear SFOMASs
asymptotically. Two simulation examples demonstrate that
the designedDα-type ILC protocols with initial state learning
laws in this paper are effective. Future efforts will now turn to
add from the respect of robustness against uncertainties which
include not only external disturbances but also find the the
feasibility condition of Theorem 3 cases.
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