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ABSTRACT In this article, a hybrid control approach combining sliding mode and H-infinity is proposed
for an uncertain single-link flexible manipulator. The sliding mode controller stabilizes the nonlinear
manipulator system, while the H-infinity controller enhances the noise rejection capability of the system by
reducing the total system nonlinearity. The proposed hybrid controller is designed with the goal of rejecting
external noises, hence providing a higher system performance, compared to a pure sliding mode controller.
To avoid unintentional consequences of switching between the slidingmode andH-infinity controller, a fuzzy
neural network weighting method is designed providing a smooth synthesis of both controller outputs. The
neuro-fuzzy method applies a weighted combination of the two controller outputs to the manipulator system.
In addition, a novel fuzzy estimation method is used to characterize the unstructured nonlinear disturbances
in manipulator systems. The proposed hybrid control approach along with the fuzzy estimator is capable of
providing a versatile means to stabilize flexible manipulator systems while maintaining a precise reference
trajectory tracking in presence of unstructured uncertainty and nonlinear dynamics, as demonstrated by
simulation results.

INDEX TERMS Flexible manipulator, sliding mode control, H-infinity, fuzzy neural network, fuzzy
estimator.

I. INTRODUCTION
Flexible manipulators have received great attention in recent
years, especially in high speed, high precision applica-
tions [1]–[6]. For instance, they have been extensively used
in space exploration technologies [7], where weight reduc-
tion and lightness are in demand and flexibility becomes an
inherent feature of such technologies. Also, several applica-
tions, including construction automation and mining oper-
ations [1], incorporate flexible manipulators in their fast,
precise tasks. While providing higher performance in damp-
ing and precision and being substantially lighter than their
rigid counterparts, flexiblemanipulator systems possessmore
uncertain behavior and nonlinearity, making their operation
and control more challenging. Therefore, efficient control
approaches are required to deal with the uncertainty and
nonlinearity present in such systems. Various approaches,
including impedance control [8], fuzzy-PID [9], hybrid linear
control [10], sliding mode [11]–[16], and iterative learning
control [17], [18], have been proposed to date to stabilize
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flexible manipulators and provide an acceptable performance
with respect to the uncertainties. For instance, a hybrid linear
control of input shaping and feedback control was proposed
in [19] for a flexible manipulator. In [20], a sliding mode
approach was used to drive the joint to the desired position,
and an adaptive neural network was applied to approximate
the unknown disturbances. In another work [21], the authors
used an iterative learning identification method to construct a
Fourier basis function space model for a flexible manipulator.
Then, a pseudo inverse type iterative learning law was used
to estimate the inverted stable non-minimum phase system.
Most of the controllers designed in the literature for the
flexible manipulators have been nonlinear approaches and
incorporation of such controllers increases the total nonlin-
earity of the entire system resulting in adverse consequences
such as higher sensitivity to the noise appearance. In addition,
the implementation cost of such nonlinear controllers is rela-
tively high. Therefore, a significant gap exists in the literature
with respect to a cost-efficient controller that can effectively
reject disturbances/noises in a flexible manipulator system
and this work intends to bridge the gap by proposing a novel
approach to reduce the nonlinearity in such systems and
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provide a precise reference trajectory tracking in presence of
unstructured uncertainty.

In this work, the sliding mode and H-infinity control
approaches are combined using a fuzzy neural network
(neuro-fuzzy) weighting method to properly control the
movement of a flexible manipulator. The proposed weighting
method provides a weighted combination of both controller
outputs to maintain a smooth synthesis of sliding mode and
H-infinity control approach rather than the drastic switch-
ing between the two controllers. The sliding mode control
is a nonlinear approach that exerts substantial influence on
accurate tracking and error cancellation, and hence the robust
conduct of a nonlinear system. However, the use of a sliding
mode controller increases the nonlinear dynamics of a flex-
ible manipulator system resulting in noise appearance and a
more complicated nonlinear system. Therefore, an H-infinity
control approach is designed in this work to accompany
the sliding mode controller (hybrid control approach) using
a neuro-fuzzy weighting approach in order to mitigate the
aforementioned defects with respect to a pure sliding mode
controller. The designed H-infinity controller affects the sys-
tem in the vicinity of equilibrium point and enhances the
noise rejection capability of the system by reducing the total
system nonlinearity. The hybrid sliding mode/H-infinity con-
troller is proposed with the goal of mitigating system non-
linearity and improving noise cancellation capability, as will
be shown later in Section V. In addition to the proposed
hybrid controller, a fuzzy estimator is derived –independent
from system dynamics– to characterize the unstructured non-
linear disturbances in flexible manipulator’s systems. The
main contribution of this work is to design a novel con-
troller stabilizing flexible manipulator system while rejecting
external noise at the same time. The rest of the paper is
organized as follows: Section II explains the dynamic model
of a flexible manipulator. The derivation of fuzzy estima-
tor for unstructured disturbances is described in Section III.
In Section IV, the proposed hybrid controller along with the
weighting method is explained. Section V demonstrates the
results and discussions for a numerical example, and finally,
conclusions are drawn in Section VI.

FIGURE 1. Schematic of single-link flexible manipulator.

II. DYNAMIC MODEL OF FLEXIBLE MANIPULATOR [20]
To model a flexible manipulator system, its workspace is
assumed in a horizontal plane. Deviation from the rigid
form of link is small. However, this deformation calls
forth an unstructured disturbance exerted on the input tor-
que [22]. Fig. 1 demonstrates a schematic of single-link

TABLE 1. Model parameters for a single-link flexible manipulator.

flexible manipulator, and Table 1 describes pertinent param-
eters needed for deriving a dynamic model for such a
manipulator.

The total kinetic energy, potential energy and the work
originated from external forces are required to formulate the
dynamic equations. The total kinetic energy Ek is the sum-
mation of joint kinetic energy Ek−joint , load kinetic energy
Ek−load and link kinetic energy Ek−link and formulated as

Ek−joint =
1
2
Ihθ̇ (t),

Ek−load =
1
2
mṙ2(L, t)

El−link =
ρ

2

∫ L

0
ṙ2dx

−→ Ek =
1
2
Ihθ̇ (t)+

1
2
mṙ2(L, t)+

ρ

2

∫ L

0
ṙ2dx (1)

Also, the total potential energy of the system Ep is

Ep =
EI
2

∫ L

0
ω̇2(x, t)dx (2)

The work originated from the external forces can be for-
mulated as

We = [τ (t)+ d(t)]θ (t) (3)

where d(t) is the disturbance term resulted from the flexibility
of manipulator and can be expressed as

d(t) = a+ b exp(−αθ̇ )+ cθ̇ (4)

where a, b, and c are positive constants and α ∈ [0, 1] is an
uncertain parameter.

Considering the infinite number of degree of freedom for
flexible manipulators, the extended Hamilton principle can
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be written as [23]∫ t2

t1
(δEk − δEp + δWe)dt = 0 (5)

where δEk , δEp and δWe are partial variations of kinetic
energy, potential energy and the work originated from
external forces, respectively. Substituting the parameters
from (1)-(4) into (5) holds:∫ t2

t1
A1δθ (t)dt +

t2∫
t1

∫ L

0
A2δω(x, t)dxdt

+

∫ t2

t1
A3δω(L, t)dt +

∫ t2

t1
A4δωx(L, t)dt = 0 (6)

where

A1 = τ (t)+ f (t)− [Ihθ̈ (t)+ ρ
L3

3
θ̈ (t)

+ρ

∫ L

0
xω̈(x, t)dx + mL2θ̈ (t)+ mLω̈(L, t)]

A2 = −[ρ(xθ̈ (t)+ ω̈(x, t))+ EIωxxxx(x, t)]

A3 = EIωxxx(L, t)− [mω̈(L, t)+ mLθ̈ (t)]

A4 = ωxx(L, t). (7)

Considering (5)-(7), the following results can be immedi-
ately derived:

A1 = A2 = A3 = A4 = 0

τ (t) = (Ih + ρ
L3

3
)θ̈ (t)+ ρ

∫ L

0
xω̈(x, t)dx

+mLr̈(L, t)− d(t)

ρ r̈(x, t) = −EIωxxxx(x, t)

mr̈(L, t) = EIωxxx(L, t)

ωxx(L, t) = 0. (8)

The vibratory deflection is assumed to be zero according
to the Euler-Bernoulli beam theory [24] as

ω(0, t) = 0, ωx(, t) = 0. (9)

Now, by rephrasing (8), the manipulator dynamic model is
expressed as:

θ̈ =
1
Ih
[τ (t)+ d(t)+ EIωxx(0, t)] (10)

III. FUZZY ESTIMATOR FOR DISTURBANCE
To design a controller for the flexible manipulator described
in Section II, an appropriate estimation of disturbances is
needed. The disturbance in a flexible manipulator systemwas
modeled as a nonlinear exponential term, as shown in (4).
A fuzzy system is employed to estimate the nonlinear dis-
turbance of (4). The estimator is designed intuitively using
Mamdani fuzzy system with seven and three fuzzy mem-
bership functions for the estimator input( θ̇ ) and estimator
output (d̂), respectively. The fuzzy rules are demonstrated
in Table 2. It should be noted that the fuzzy rules are inde-
pendent from the system dynamics. The Fuzzy membership

TABLE 2. Fuzzy rules for the disturbance estimation.

FIGURE 2. a) Fuzzy membership functions for a) input estimator (θ̇) and
b) output estimator (d̂ ).

functions for θ̇ (input estimator) and d̂ (output estimator)
are Gaussian functions, shown in Fig. 2. Also, the singleton
fuzzifier, product inference engine, and the center of average
deffuzzifier are used in the proposed estimator system. The
disturbance term of (4) can be estimated with the designed
fuzzy system as

d̂ =

N∑
l=1

ȳlµθ̇ l

N∑
l=1
µθ̇ l

(11)

where d̂ is the estimation of disturbance, µθ̇ l is the member-
ship function of θ̇ and ȳl is the center of membership function
for d̂ .

IV. HYBRID SLIDING MODE/H-INFINITY CONTROL
A hybrid control approach combining the sliding mode and
H-infinity control is designed for the flexible manipulator
model described in Section II. The dynamic model has con-
siderable degree of nonlinearity, as shown in (10), so a non-
linear sliding mode controller is designed to stabilize the
system. In addition, an H-infinity controller is designed to
accompany the sliding mode controller in order to mitigate
the noise appearance and increase the overall performance
of the control system. To avoid unintentional consequences
of switching between the sliding mode and H-infinity con-
troller, a fuzzy neural network weighting method is proposed
providing a smooth synthesis of both controller outputs. The
neuro-fuzzy weighting method applies a weighted combina-
tion of the two controller outputs to the manipulator system.
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The dynamic model of a flexible manipulator system has
considerable degree of nonlinearity, as shown in (8). In the
proposed sliding mode controller, a dynamic sliding surface
based on the vector of tracking errors [e, ė, ë, . . . , e(n−1)] is
introduced as

S(θ, t) = (
d
dt
+ λ)n−1e = 0

n=2
−→ S(θ, t) =

de
dt
+ λe = 0

(e = θdesired − θ ) (12)

where λ is a positive constant and θdesired is the desired tra-
jectory of manipulator’s joint. The goal is to derive a control
law by which the vector of tracking errors is directed towards
origin. As a result, the sliding condition is used to establish
an appropriate constraint as

1
2
d
dt
S2(θ, t) ≤ −η |S(θ, t)|

⇒ S(θ, t)Ṡ(θ, t) ≤ −η |S(θ, t)|

⇒ X + τs − θ̈desired + λė ≤ −ηsgn(S(θ, t))

(θ̈ = X + τs) (13)

where η is a positive constant. According to (13), the control
law (τs) is presented as

τs = S − ksgn(S) (14)

k ≥ X − X̂ (15)

where k is a positive constant and X and X̂ are uncertain
dynamics of system and estimation of uncertain dynamics of
system, respectively. Also, sgn is the sign function. To cancel
the chattering phenomenon [25], the sign function is replaced
with a saturation function as

τs = S − ksat(S) (16)

where sat is saturation function. As the uncertain dynamics
are embodied in the disturbance term of the manipulator, (15)
is rephrased as

k ≥ d − d̂ (17)

The nonlinear dynamic terms appear in the model of a
flexible manipulator system, as shown in (10). The use of
a pure sliding mode control law of (16) even increases the
total nonlinearity of the manipulator system resulting in a
more complicated system prone to noise appearance. In such
circumstances, the overall performance of the sliding mode
manipulator control system may not be satisfactory, espe-
cially in presence of noise as will be shown later in Section V.
Therefore, an H-infinity control approach is proposed to
accompany the sliding mode controller in order to efficiently
decrease the nonlinearity and promote the performance of the
manipulator control system, as will be later demonstrated in
Section V. In the proposedmethod, the maximum feedback or
feedforward gain is calculated to stabilize the overall system
in presence of uncertainty. The proposed H-infinity controller
linearizes the overall system in accordance with a weight-
ing method. To design an H-infinity controller, linear state
space equations and system transfer function are needed [26].

Therefore, the exponential disturbance of (4) is converted
to linear terms using appropriate series. By linearizing the
disturbance term as θ̇ approaches the origin, the model of (10)
can be rewritten as:

θ̈

=
1
Ih
[τ (t)+ a+ b exp(−αθ̇ )+ cθ̇ ++EIωxx(0, t)]

linearized asθ̇approaches origin ( in the neighborhood of equilibirium point)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

θ̈

=
1
Ih
[τ (t)+ a+ b(1− αθ̇ )+ cθ̇ ++EIωxx(0, t)] (18)

Based on the H-Infinity condition, the inequality of (19)
must be met to provide stable system dynamics:∥∥KTtf ∥∥∞ ≤ ‖K‖∞ ∥∥Ttf ∥∥∞ ≤ 1 (19)

where Ttf is the linearized transfer functions and K is the
constant state feedback or feedforward gain that forms the

control loop.
Also, the switching operation between the sliding mode

and H-infinity controller is replaced by a neuro-fuzzy weight-
ing method so that unintentional consequences of switching
are eliminated, and a smooth synthesis of both controller
outputs is provided. In fact, the control law τtotal is defined
as the weighted sum of control torque from the sliding mode
controller τs and from the H-infinity controller τ∞, where the
weights (gains) ks and ki are determined by a neuro-fuzzy
approach, i.e.,

τtotal = ksτs + kiτ∞ (20)

To construct the neuro-fuzzy weighting system, a single
layer neural network with one input is employed and synaptic
weights are tuned by the fuzzy logic to appropriately compute
the gains ks and ki. Fig. 3 shows the schematic of a general
neuro-fuzzy system along with the configuration of the pro-
posed neuro-fuzzy weighting method.

The neural network functions fs and fi in Fig. 4 are
set to be: 

fs =
1− exp(−ωsf d̂)

1+ exp(−ωsf d̂)

fi =
1− exp(−ωif d̂)

1+ exp(−ωif d̂)

(21)

Also, the membership functions for ωsf and ωif are shown
in Fig. 4 and the fuzzy rules for tuning of ωsf and ωif
demonstrated in Table 3. In this learning logic, the singleton
fuzzifier, product inference engine, and the center of average
deffuzzifier are applied. The fuzzy system computation is:

ωsf = ωif =

N∑
l=1

p̄lµθ̇ l

N∑
l=1
µθ̇ l

(22)
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FIGURE 3. a) Schematic of a general neuro-fuzzy system b) Proposed
neuro-fuzzy weighting method.

FIGURE 4. Membership functions for ωsf and ωif .

where ωsf and ωif are synaptic weights of NN learning
process in sliding mode and H-infinity control, respectively.
µθ̇ l is membership function of θ̇ and p̄l is the center of
membership functions for ωsf and ωif .
In summary, in the designed controller, the maximum feed-

back gain is calculated using the H-infinity method in a way
that the system remains stable in presence of uncertainties,
as shown in Eq. (19). This feedback gain along with the slid-
ing mode controller, influences the nonlinear system (the two
controllers are switched based on a fuzzy- Neural network
weighting method).

Fig. 5 demonstrates the schematic of the overall system.
As shown in the Fig. 5, a fuzzy estimator mechanism with
derivative of joint trajectory as estimator input and distur-
bance as estimator output is designed to approximate unstruc-
tured disturbance. The result of this estimation is used in the

TABLE 3. Fuzzy rules for tuning ωsf and ωif .

FIGURE 5. Overall system schematic.

process of sliding mode controller designing and learning
procedure of neural network. Hybrid sliding mode/ H-infinity
approach weighted based on FNN logic provides control
signal for the system.

Stability analysis of the overall system is formulated via
the dissipativity theory [27,28].
Definition 1: The supply rate function J , which is inte-

grable and independent of the states, is dissipative (and sys-
tem is stable) if there exists a continuously differentiable
storage function V ≥ 0 such that

T∫
0

J [τ (t), y(t)]dt≥V (θ (t)),

T∫
0

J [τ (t), y(t)]dt<+∞ (23)

where τ (t) is the input torque and y(t) is the system output
(joint trajectory). The supply rate function is nominated as

J [τ (t), y(t) = θ (t)] = ‖y(t)‖2 + ‖τ (t)‖2 (24)

where ‖‖ denotes the Euclidean norm. Also, the correspond-
ing energy function for the manipulator is

V (θ (t)) =
1
2
Mθ2(t) ≥ 0 (25)

Therefore, based on the dissipativity theory, the inequality
of (26) must be enforced to satisfy the stability condition:

T∫
0

J [τ (t), y(t)]dt

≥ V (θ (t))

⇒

T∫
0

[‖y(t)‖2 + ‖τ (t)‖2]dt ≥ V (θ (t))

⇒

T∫
0

[‖y(t)‖2 + ‖τ (t)‖2]dt − V (θ (t)) ≥ 0 (26)
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V. NUMERICAL EXAMPLE
In this Section, performance of the proposed hybrid control
method is tested via a numerical example. Consider a flexible
manipulator system presented in Section II and assume the
model parameters to be:

Ih = 0.5kg.m2,EI = 2 N.m2

ρ = 0.2 kg.m−1, m = 0.6 kg, L = 1 m (27)

and the disturbance parameters to be given as

d(t) = 0.2+ 0.2 exp(−αθ̇ )+ 0.02θ̇

(a = 0.2, b = 0.2, c = 0.02 and α ∈ [-1,1]). (28)

To model the disturbance, the following parameters are set
for the fuzzy estimator:

membership function variance for θ̇ (t) = 0.02

membership function variance for d̂ = 0.1

θ̇min(t) = −1,

θ̇max(t) = 1, d̂min = 0.3,

d̂max = 0.7,N = 7 (29)

For the sliding mode controller, the parameters of (12) are
considered: λ = 20, n = 2, so k is obtained from (17) as
kmin = 0.4

The H-infinity controller parameter ‖K‖∞ is computed
from (19) as∥∥KTtf ∥∥∞ ≤ ‖K‖∞ ∥∥Ttf ∥∥∞ ≤ 1

⇒ ‖K‖∞ ≤

∥∥∥∥ s
s2 + 0.2α − 0.02

∥∥∥∥−1
∞

⇒ ‖K‖∞ ≤

∥∥∥∥ s
s2 − 0.02

∥∥∥∥−1
∞

+ ‖0.2α‖∞

⇒ ‖K‖∞ ≤ 0.22 (30)

which is the robust state feedback gain. This gain (H-infinity
control gain) is restricted in a way that the whole system
becomes stable. The parameters of the neuro-fuzzy weighting
method, is set as follows:

membership function variance for θ̇ (t) = 0.02

membership function variance for ωsf , ωif = 10

θ̇min(t) = −1, θ̇max(t) = 1

ωsf min = ωif min = 0,

ωsf max = ωif max = 20,

N = 2 (31)

The fuzzy estimation error (ê = d − d̂) is shown in Fig. 6.a.
which is properly bounded in the vicinity of origin (Fig. 6.a).
The reference trajectory tracking for a linear H-infinity con-
troller is depicted in Fig. 6.b. As clearly shown in Fig. 6.b,
the linear H-infinity controller alone cannot properly stabilize
the nonlinear manipulator system. There-fore, a nonlinear
method based on the sliding mode control is nominated to
stabilize the system. On the other hand, a pure sliding mode

controller makes the system vulnerable to the noise appear-
ance, as will be shown later in Fig. 7. Therefore, the proposed
hybrid controller (sliding mode combined with H-infinity)
is designed to provide satisfactory stability and performance
requirements for the manipulator system.

According to (30), the H-infinity feedback gain needs to be
less than or equal to 0.22. To visually demonstrate how this
gain might affect the hybrid controller results, two values of
H-infinity feedback gain are chosen: ‖K‖∞ = 2(outside of
the calculated range) and ‖K‖∞ = 0.22. The correspond-
ing sinusoidal reference trajectory tracking for the gains
are shown in Figs 6.c and 6.d. The gain computed by (30)
(‖K‖∞ = 0.22) leads to more efficient tracking and will be
used in the rest of the calculations. Fig. 6.e demonstrates the
reference trajectory tracking of the hybrid controller for the
square pulse reference signal. The designed hybrid controller
causes the flexible manipulator to appropriately track the
reference (desired) trajectory (Figs. 6.d and 6.e), which are
a sinusoidal path and square pulse with the amplitude of 1
and frequency of 1 rad.s−1 and 0.05s−1, respectively.

The total control torque for the manipulator hybrid control
system is shown in Fig. 6.f. The total torque, i.e., weighted
combination of slidingmode andH-infinity control, smoothly
changes within a certain range in time and avoids any drastic
shifting or switching. Fig. 6.g demonstrates the stability sub-
stantiation curve of the system for the hybrid control method.
The stability curve, the difference between the storage func-
tion and the nominated supply rate, is an absolute positive
number, as shown in Fig. 6.f. According to the dissipativity
approach, the stability equation (inequality of (26)) must be
a positive number to satisfy stability and the curve shown
in Fig. 6.g is absolutely positive (converging to infinity)
verifying the system stability (for M = 1).

As flexible manipulators may frequently encounter exter-
nal noises in their application [1,3], the performance of
the proposed hybrid control method in presence of noise is
assessed by applying a white noise with the power of 0.001 to
the manipulator system. The results of reference trajectory
tracking for a pure sliding mode control approach and a
hybrid sliding mode/H-infinity control method are depicted
in Figs. 7.a and 7.b, respectively. The system is vulnerable
to noise acquisition in case of pure sliding mode controller,
as demonstrated by Fig.7.a. By contrast, the hybrid sliding
mode/H-infinity controller possesses a lower degree of sen-
sitivity to the noise appearance, Fig. 7.b.

The fact that the hybrid controller decreases the total non-
linearity of the system due to combining H-infinity with the
sliding mode leads to the higher performance with respect to
noise cancellation. In fact, the hybrid controller reduces the
excess use of sliding mode and its derivative operator (deriva-
tive intensifies the noise magnitude, (see (12)). Consequently,
the controller affects the system like a low-pass filter. The
trajectory tracking errors for the two control approaches are
shown in Figs. 7.c and 7.d. The mean, standard deviation,
and the mean squared error of trajectory tracking are used
as the performance measures for comparison of controllers.
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FIGURE 6. a) Fuzzy estimation error b) Reference trajectory tracking for H-infinity control method (sinusoidal reference) c) Reference trajectory tracking
for hybrid control method when feedback gain for H-infinity controller is out of calculated range (for

∥∥K
∥∥

∞
= 2, sinusoidal reference) d) Reference

trajectory tracking for hybrid control method (for
∥∥K

∥∥
∞

= 0.22, sinusoidal reference) e) Reference trajectory tracking for hybrid control method ( for∥∥K
∥∥

∞
= 0.22, square pulse reference) f) Total control torque for hybrid control method g) Stability substantiation curve for hybrid control method.

The mean and standard deviation of error for the pure slid-
ing mode and the hybrid controller are (0.04 ± 0.03) and

(0.02 ± 0.01), respectively. Also, Figs. 7.e and 7.f demon-
strate the mean squared error for trajectory tracking in
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FIGURE 7. a) Reference trajectory tracking in presence of noise for pure sliding mode controller b) Reference trajectory tracking in presence of noise for
hybrid sliding mode/H-infinity controller c) Trajectory tracking error in presence of noise for pure sliding mode controller d) Trajectory tracking error in
presence of noise for hybrid sliding mode/H-infinity controller e) Mean squared trajectory tracking error samples in presence of noise for pure sliding
mode controller f) Mean squared trajectory tracking error samples in presence of noise for hybrid sliding mode/H-infinity controller.

presence of noise for the pure sliding mode and hybrid con-
troller, respectively. Comparing the performance measures
clearly indicates a higher performance (less error) for the
hybrid controller. Results of Fig. 7 verifies the efficiency of
the proposed hybrid sliding mode/ H-infinity controller in
terms of noise cancellation, compared to a pure sliding mode
controller.

VI. CONCLUSION
In this article, a new control approach for stabilizing a
single-link flexible manipulator was presented. The proposed
approach was a hybrid control method combining the slid-
ing mode and H-infinity control using a neuro-fuzzy based

weighting method. While the sliding mode has a descent
performance in stabilizing the nonlinear manipulator sys-
tem, the accompanying H-infinity controller reduces the total
nonlinearity, hence promoting the overall performance of
the system, especially in rejection of external noises. Also,
a fuzzy logic system was designed to estimate the unstruc-
tured nonlinear disturbances in flexible manipulator systems.
The stability as well as efficiency of the proposed hybrid
controller was verified through a numerical example. Also,
the superior performance of the proposed controller in terms
of noise cancellation was demonstrated against a pure sliding
mode controller. The practical implementation of the hybrid
controller and the effect of parameter variations on the system
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dynamic response need to be further investigated, as future
research directions.
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