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ABSTRACT In this paper, we propose a novel method of cluster analysis called unsupervised functional
link artificial neural networks (UFLANNs), which inherit the best characteristics of functional link artificial
neural networks and self-organizing feature maps (SOFMs). UFLANNs adopt three types of basis functions
such as Chebyshev, Legendre orthogonal polynomials, and power series for mapping the input data into a new
feature space with higher dimensions, where the objects are clustered based on the principle of competitive
learning of SOFMs. The effectiveness of this algorithm has been tested with various artificial and real-life
datasets including remote sensing images. A thorough comparison with other popular clustering algorithms
shows that the proposed method is promising in revealing clusters from many complex datasets.

INDEX TERMS Cluster analysis, competitive learning, FLANN, SOFM.

I. INTRODUCTION
An unsupervised learning system evolves to extract potential
characteristics or regularities from underlying data, without
being stated what outputs or class labels associated with the
given feature vectors are desired [1], [2]. In other words,
the learning system perceives and categorizes persistent input
vectors without any feedback from the environment in par-
ticular an external supervisor or critic. Thus this type of
learning is popularly and frequently employed for data clus-
tering [3]–[6], feature extraction [7], and similarity detec-
tion [8]. In a nutshell, this paper focuses on developing an
unsupervised learning of data clustering.

Data clustering is a fundamental data analysis tool in the
area of data mining [9], [10], pattern recognition [11], [12],
[41], image analysis [47], [48], feature extraction [13], [14],
vector quantization [15], [16], image segmentation [17], [18],
function approximation [19], [20], dimensionality reduction
[49], [50] and big data analysis [21], [22]. It is a process of
revealing inherent structures present in a set of objects based
on proximity measure and competitive learning. Let us define
the problem of partitional clustering through a metric space.
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A metric space is a tuple (X , d), where X is a set and
d : XxX → [0,∞) is a metric and satisfy the axioms like
(i) d (x, y) = 0 (ii) d (x, y) = d (y, x) and (iii) d (x, z) ≤
d (x, y) + d (y, z). A set P ⊆ X is defined together with
a parameter ‘k’. The main aim is to find ‘k’ points s. t.,
k ∈ C ⊆ P so that maximum distance of a point in P to
the closest point in C is optimized (in this case minimized).
In other words, minimize the cost rc∞ (P) = Maxp∈P d (p,C).
Formally, clustering with ‘k’ means problem is to find a set
C of k points such that rC∞ (P) is minimized i.e., ropt∞ (P, k) =
min
c,|c|=k

rC∞(P).

That is every unit in a cluster is in distance at most rC∞(P)
from it’s respective centre of gravity (mean) and clustering
with k center is treated as an intractable problem. As of now,
we do not have polynomial-time exact algorithms for solving
intractable problems. Therefore, it is an urgent need to give
attention to approximation algorithms. This is one motivation
for developing an UFLANN.
In neural networks, unsupervised learning attempts to learn

for responding to different feature vectors with different parts
of the network structure [4], [42]. With no available infor-
mation in connection to the desired outputs, unsupervised
learning in artificial neural networks update weights vector
only based on given input vectors and their connectedness [5].
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The competitive learning network is a very popular approach
in various areas to achieve this type of unsupervised learn-
ing of data clustering [42], [43]. All input neurons ‘i’ are
connected to all output neurons ‘j’ with weights wij. The
number of inputs is the size of the input vector, while the
number of outputs is equivalent to the number of clusters
that the data points are to be divided into. A cluster center’s
position is specified by the weight vector associated with
the connections to the corresponding output neuron. The
output neuron with the largest activation must be selected
for further processing point what is implied by ‘‘competi-
tive’’ or ‘‘winner take all’’ [1], [34]. The Euclidean distance is
used as a dissimilarity measure for competitive learning [43].
The weights of the output neuron with the lowest activation
are updated using equation (1).

wk (t+ 1) = wk (t)+ η (x (t)− wk (t)) (1)

where wk, x, t , and η are denoted as weight vector corre-
sponding to a k th neuron of the output layer, input vector,
iteration number, and learning rate, respectively.

A competitive learning network performs the data cluster-
ing on the given input instances. When the process is com-
pleted, the input data is divided into disjoint clusters (in the
case of hard clustering) such that similarities between sample
points in the same cluster are larger than those in different
clusters. A main constraint of competitive learning is that the
random initialization of weight vectors may be far away from
any input vectors and, in the sequel, it never gets updated.
Such type of situation can be prevented by initializing the
weight vectors to instances from the input data itself, thereby
ensuring that all of theweight vectors get updatedwhen all the
input samples are presented. An alternative approach would
be to update the weight vectors of both the winning and losing
neurons, but use a significantly smaller learning rate η for the
losers; this is commonly referred to as ‘‘leaky-learning’’.

It is highly desired to change dynamically the learning rate
η in the weight update formula of equation (1). A setting of an
initial large value of η explores the search space widely; later
on, a progressively smaller value refines the weights vector.
The operation is very similar to the temperature cooling
strategy of simulated annealing [44].

Competitive learning lacks the ability to add new clusters
when it is deemed to be necessary. Furthermore, if the
learning rate η is a constant, competitive learning does not
guarantee stability in revealing clusters; the winning unit
responds to particular patterns may continue changing during
this training. On the other hand, η, if decrementing with
time, may become too small to update cluster centers when
new data of a different probabilistic nature are presented.
Carpenter and Grossberg [23] referred to such an occurrence
as the ‘‘stability-plasticity dilemma’’, which is common in
designing a machine learning system. Adaptive Resonance
Theory (ART) introduced byGrossberg proposes a solution to
the above dilemma. Based on ART, Carpenter and Grossberg,
proposed a series of similar networks, including ART1 [24],
ART2 [24], ART3 [24], [25] and ARTMAP [24], [26].

On the other hand, if the output neurons of a competitive
learning network are arranged geometrically (such as in a
one-dimensional array or two-dimensional arrays), then we
can update the weight vectors of the winners as well as
the neighbouring losers. Such a capability corresponds to
the notion of Kohonen feature maps [27], [28]. The above
unsupervised neural networks have suffered from many diffi-
culties like slow learning rate, trapping in local optimality, not
scale well for patterns with a large number of elements, etc.
Hence our second motivations ignite us to cope-up with these
problems. It may be an alternative to enhance the original
representation right from the start, in a linearly independent
manner, so that hyper-planes for separation might be learned
more readily [47], [48]. One way of enhancing the initial
representation at a pattern is to describe it in a space of
increased dimensions through functional links. It has also
been observed that supervised FLANN has achieved remark-
able success in many areas of pattern classification [29]–[31].
Therefore, if we can combine the best attributes of supervised
FLANN and competitive learning networks like SOFM [32]
for uncovering clusters then some of the problems of tradi-
tional clustering approaches including SOFMs can be easily
addressed.

Further, in the process of searching an efficient, robust, and
scalable clustering algorithm, recently owing to the develop-
ment of deep learning, a set of new algorithms have been
added under the umbrella of deep clustering e.g., Autoen-
coder [52], Generative Adversarial Network (GAN), [57]
Variational Autoencoder (VAE) [58], Deep Subspace Cluster-
ing [56], and a few more presented in [51], [53], [54]. From
the perspective of network architecture a detailed survey of
deep clustering can be found in [55]. Although a series of
developments have been made in the area of deep clustering
but its computational complexity in the absence of a very
powerful computing and visualizing unit opens up avenues
for development of new clustering algorithms and this makes
the third motivation of this journey for developing UFLANN.

Like SOFM, UFLANN is also trained by the method of
competition learning. It learns a weight vector configuration
without being told explicitly of the existence of clusters
at the input, then it is said to undergo a process of self-
organized or unsupervised learning. This is to be contrasted
to supervised learning like gradient based learning, delta rule,
back-propagation, etc., [40], [41].

The advantages of our method in discovering natural
clusters over SOFM can be realized easily because instead
of grouping around until we find a suitable sequence of
transformation, we enhance the original representation right
from the start and the hyper-planes for separation have been
learnt more rapidly. In our UFLANN, we enhance the initial
representation of a pattern by describing it in a space of
increased dimensions.

The rest of the paper is set out as follows. In Section II,
we discuss the preliminary materials like FLANN and
SOFM. Our contributed work is presented in Section III.
The experimental details and conclusions are presented in
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FIGURE 1. A FLANN with adaptive supervised learning.

Sections IV and V, respectively followed by a list of very
useful references.

II. PRELIMINARIES
A. FLANNs
The widely used functional neural network was designed
to be computationally more feasible and efficient that the
multi-layer perceptron. This architecture consists of a single
layer of neurons using polynomial functions to expand the
feature space to increase variance and faster convergence
allowing the algorithm to fit more complex functions. The
introduced non-linearity at each of the neurons which makes
it easier to back-propagate the gradient as in the general
neural networks, increasing the neuron’s layers leads to
increasing computational complexity. Thus, the introduced
nonlinearity whatever they maybe would help us to learn a
better representation of the data.

A simple FLANNmodel [33] with a pattern of two features
is shown in Figure 1. For this, in a single layer FLANN
consisting of a two-dimensional input sample vector Ex =
[x1, x2]T is mapped to a higher dimensional space by func-
tional expansion using trigonometric functions = [(x1, sin
x1, sin 2x1, cos x1, cos 2x1), (x2, sin x2, sin 2x2, cos x2,
cos 2x2), (x1∗x2)]T. The expanded feature space is mapped to
output activation Ok using weight vector wk , the linear sum
for which can be calculated as:

Sk =
∑N

k=1
wkxk + θk (2)

θk , is the inductive bias to the output. FLANN obtains the
solution for the weights iteratively comparing the acquired
sum to the ground truth class labels Ok . The error in learning
of FLANN is back-propagated by calculating cost functions
as,

E =
1
2
[tk − Ok ]2 =

1
2
ε2k (3)

Ok = f (Sk) (4)

where tk , is the desired output εk is the final error and f is
a non-linear activation, usually a logistic function to squish
values between a specific range.

The final weights are updated using the following policy,

wk (New) = wk (Old)+1wk (5)

FIGURE 2. (a) Self-organizing feature maps architecture; (b) Topology of
SOFM.

where, change is calculated as,

1wk (t) =
[
−η (t)

∂E
∂wk

]
(6)

where, −η (t) is the learning rate.

B. SOFMs
Kohonen’s Self-organizing featuremap (SOFMs) [32], [34] is
an artificial neural network based on unsupervised learning.
It works on a competitive learning algorithm which learns to
fit the given datasets overtime and comes up with a learned
representation of amap in the form of a 2D lattice to compress
the vector space such that they best approximate the density
distribution of the data as shown in Figure 2(b). They also
simultaneously distribute the quantization prototypes on the
rigid lattice by preserving their neighbourhood relations in
the data space, a learned SOFM has relevant clustering infor-
mation which can be extracted and used to find relationships
among the data points, making them widely used for cluster
extraction and data analysis tasks [35]–[37].

Let an input vector x = [x1, x2, x3 . . . xn], be mapped to
each cell v in the rectangular/ hexagonal structure as shown
in Figure 2(a). The mxn lattice of neurons is typically smaller
than, the x. Each of the ith neuron comprises of weights wi,
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where, wi = [w1,w2,w3 . . .wm]T ∈ Rn, the adaptation
mapping criterion is based on the Euclidean distance norm
i.e. x,wi ∈ R2. The minimum distance between x, and the
weighted neurons is defined by wc. The updation of weight
vectors is inspired by biological neurons that affect spatial
neighbouring cells using lateral feedback connections and
interactions.

Thus, in the neighbourhood ρc(wc, k, t), around the
updated cell c at a given time step t , the ripples of the
revision of weights is propagated in a diminishing locality of
radius. So, shrinking with time towards the end the radius gets
constrained to the best-matching-unit (‘‘winner neuron’’) that
gets updated, given by:

1. At each time t, present an input x(t), and select the
winner,

wc(t) = arg mink∈m.nx(t)− wk (t) (7)

2. Update the weights of the winner and its neighbors,

1wk (t) = η(t)ρc(wc, t)[x(t)− wv(t)] (8)

Until the map converges.
Here, η(t) is the suitable learning rate, ρc(wc, t) is the

neighbourhood updating function with exponential decay.
The performance of a map for this optimization task is

commonly measured by the mean squared error (MSE):

MSE =
1
K

∑K

1
min ||xk−wj||2; j ∈ {1, . . . ,M} (9)

Here || . . . || is the Euclidian distance norm.
The algorithm can be briefly described as below:
1. Each neuron’s weights are initialized either by

randomly or by using some prior domain knowledge.
2. An input vector is selected at random from the set of

training data.
3. Every neuron is examined to calculate which one’s

weights are with proximity of the input vector. The
winning node is commonly known as the ‘‘Best
Matching Unit (BMU)’’.

4. Then the neighbourhood of the BMU is computed. The
amount of neighbours gradually decreases over time.

5. The weight of the winning neuron is rewarded with
becoming more like the sample vector. The neighbours
also become more like the sample vector. The closer a
node is to the BMU, the more its weights get updated
and the farther away the neighbour is from the BMU,
the less it learns.

6. Repeat steps 2 to 6 until a stopping criterion is reached.

III. UNSUPERVISED FUNCTIONAL LINK NEURAL
NETWORKS
Recall that a number of neural network models for unsuper-
vised learning particularly clustering have been proposed so
far [5]. In pattern recognition problem the pattern vector tend
to form clusters, a center for each cluster, and therefore the
first step for a typical unsupervised learning technique is the
estimate of these clusters. The clusters are usually separated
by regions of low pattern density. We present here a new

method of unsupervised learning in higher-order neural net-
works known as unsupervised FLANNs. The newly proposed
method reveals clusters through two major phases. In first
phase wemap the given input vectors in to higher dimensions.
The details of mapping lower to higher dimensions of the
input vectors are given below.

In this work, we have chosen three recurrences in respect
of Chebyshev polynomial, Legendre polynomial, and power
series for generating the first three polynomials for each
category.

The recurrence relation for the Chebyshev polynomials is
defined as:

Ch0 (x) = 1 (10)

Ch1 (x) = x (11)

Chn+1 (x) = 2.x.Chn (x)− Chn−1 (x) , n ≥ 1 (12)

In the Chebyshev approximation the average error can be
large but the maximum error is minimized. The Chebyshev
approximations of a function are said to be min-max
approximations of the function.

The Legendre polynomial forms an L2([−1, 1]) - orthog-
onal set of polynomials and is also good choices for
approximation. The following recurrence relation can
generate the Legendre polynomials.

L0 (x) = 1 (13)

L1 (x) = x (14)

Ln (x) =
1
n
{(2n− 1) x.Ln−1 − (n− 1)Ln−2} (15)

Similarly, the recurrence relation in respect of power series
can be generated as follows:

P0 (x) = 1 (16)

Pn+1 (x) = xPn (x) (17)

In all the above cases, we have considered the first three
polynomials for functional expansion. The reason is that the
Principal Component Analysis (PCA) of more added values
from other higher-order polynomials, contributes very less in
increasing the accuracy or right shape of clusters. Alongside,
if we consider more number of polynomials for functional
expansion in the method then it leads to higher computational
cost.

Now it is to be noted that each of the above polynomial
have their merits and demerits, hence to address some of
the demerits of the said polynomials, we have taken all
three polynomials for functional expansion coherently. For
example, let the input vector Ex =<x1, x2>. Then we map
this feature vector to a higher dimension by using these three
polynomials combined as follows.

Ex = <x1, x2>

Exf = <Ch0 (x1) ,Ch1 (x1) ,Ch2 (x1) ,Ch0 (x2) ,Ch1 (x2) ,

Ch2 (x2) ,L0 (x1) ,L1 (x1) ,L2 (x1) ,L0 (x2) ,L1 (x2) ,

L2 (x2) ,P0 (x1) ,P1 (x1) ,P2 (x1) ,P0 (x2) ,P1 (x2) ,

P2 (x2)>
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FIGURE 3. Unsupervised FLANN with 2 inputs and 18 features often
functional expansion and 49 output neurons at the output layer.

That is a two-dimensional vector is mapped to an
18-dimensional vector. In general if we have a feature vector
of n-dimensions, then the new dimension of the feature space
will be 3× (n× 3).

In the second phase of our proposed method a competitive
learning networks also known as Kohonen’s feature
maps or topology preserving maps are used for revealing
the natural clusters. Figure 3 depicts the architecture of the
proposed method.

A step-by-step description of the proposed unsupervised
FLANN to discover clusters is as follows:

1] The given set of input vectors mapped to a set of vectors
with higher dimensions using the first three polynomials from
each category like Chebyshev polynomials, Legendre poly-
nomials, and power series. Ex = Exf, where Ex is the input vector
and Exf is the vector obtained after functional expansion.

2] The connection weights of the network are initialized
using the PCA of the input data obtained after functional
expansion.

3] Select the winning output neuron as the one with the
highest similarity measure between all weight vectors Ewi and
the vector Exf. If the Euclidean distance metric is chosen as the
dissimilarity measure, then the winning neuron ‘c’ satisfies
the equation given below.

‖Exf − Ewc‖ = min
i
‖Exf − Ewi‖ (18)

where, the index ‘c’ refers to the winning neuron.
4] Let Nc denote a set of index corresponding to a

neighbourhood around ‘c’. The weights of the winner
and its neighbouring units are then updated by: 1 Ewi =

η(i) (Exf − Ewi) , i ∈ Nc, where η(i) is a small positive learning
rate. Instead of defining the neighbourhood of a winning unit
we use here a neighbourhood function like Gaussian function
ρc(wc, i) around a winning unit ‘c’. The Gaussian function is
defined around ‘c’ is as follows:

ρc(wc, i) = e
−(−||ρi−ρc||

2

2σ2(i)
)

(19)

where, ρi and ρc are the position of the output units ‘i’ and ‘c’,
respectively, and σ (i) reflects the scope of the neighbourhood

radius which is a monotonically or exponentially decreas-
ing function of time. By using the neighbourhood function,
the update formula can be rewritten as:

1wi = η (i) ρc (wc, i) (Exf − Ewi) (20)

where, i is the index for all the output units.
To achieve a better convergence, the learning rate η(i)

and size of the neighbourhood (or σ (i)) should be decreased
gradually with each time.

5] Finally, the set of output neurons will have the learned
representations of the clustered data. So, new data can be now
passed through the network and mapped to the consecutive
neurons for classification.

IV. EXPERIMENTAL DETAILS
To investigate the advantages of UFLANN in comparison
to other unsupervised learning approaches, numerous exper-
imental scenarios were considered. Both real-world and
synthetic datasets were considered to compare against the
learning tasks and multiple metrics were employed to study
thoroughly the benefits of the proposed methodology.

A. DATASET DESCRIPTION
This section broadly describes the datasets that were used.
In terms of the real-world datasets, the basic Iris dataset [38],
[39] was used (referred to as Dataset 1), where the input fea-
tures – sepal length, sepal width, petal length, and petal width
served as the input to the unsupervised algorithms. The class
division served into three main classes–Setosa, Versicolour,
Virginica. The dataset was divided into two mutually exclu-
sive parts- 90% for training and 10% for testing purposes.
Though training and testing terms in the case of unsupervised
learning is confusing but here we have considered 90% for
class discovery and then 10% for testing.

Figure 4 shows the synthetic data (Dataset 2 and Dataset
3) for which the considered network had m = 25 neurons
applied over L = 750 points on the 2D plane. Figure.4(a)
was designed to cover the edge cases for types of data made
use of analyzing effectively if neighbourhood function was
optimizing to the exponential decay in η(t) & η(ν, k, t) for
(t)th epoch(that is, t = 1, 2, 3 . . . . tmax; tmax = 10000). It was
developed to represent concentric circles, using:

θ = 2π ∗ Rand (i) , i ∈ (0, 1) & Rand ∈ Rǹ (21)

For which,
h+ cos (θ) ∗ r, k + sin (θ) ∗ r (22)

This generates the individual data points, where h and k
are the centers and r is the radius of the concentric circles.
Similarly in Figure 4(b), it was made to generate half-moons
using line spacing on data points.

For outer circle:
x = cos(random(0, π/2)) (23)

y = sin(random((0, π/2)) (24)

For inner circle:
Innerx = 1− x (25)

Innery = 1− y− 0.5 (26)
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FIGURE 4. (a) Synthetic - Dataset 2; (b) Synthetic - Dataset 3.

FIGURE 5. Chain-link Dataset (Custom 1).

For Figures 5 and 6 also known as the famous
spatial Chain-link datasets were generated using the same
methodology as in equations (18) and (19), (L= 2000 points
on the 3D plane, as offered in Fundamental Clustering
Problems Suit [4]) but the axes are changed and in the
Figure 6 Gaussian noise is added to investigate the effect
on UFLANN’s results. The learning algorithm had m = 49
neurons applied over the data in both cases. A data of a total
of 112 experiments was averaged to provide for the current
noise in Figure 6. This dataset is preferred as a benchmark
to justify unsupervised clustering because according to Pear-
son’s coefficient data is non-linearly-separable, so its PCA
projection to a vectorial sub-space is impossible without data
loss (σ1 = 33.95, σ2 = 33.46, σ3 = 32.57).

FIGURE 6. Chain-link with increased variance (Custom 2).

A few satellite images were scraped off from the internet
to visualize and compare the clustering power of the provided
approach, in terms of colour clustering for segmentation
tasks. This has been mentioned in the latter part of the
paper.

In addition to the above datasets, we have applied our
proposed method over two well known datasets MNIST and
CIFAR10 that are very popular in the field of clustering.
MNIST [45]: A collection of 32X 32 black andwhite pictures
denoting handwritten digits (0-9), with≈ 60000 images with
labeled annotations. This dataset is the extension of the NIST
dataset.

CIFAR-10 [46]: This consists of another 60000, 32 × 32
colour images in 10 classes, with 6000 images per class.
These images belong to 10 real-life objects like airplane, cat,
deer, etc. The dataset is divided into five training and one
testing batch. The test batch contains 1,000 randomly selected
images from each class. The training set contains the rest of
the images in a random order.

B. EVALUATION METRICS
The performance of a clustering algorithm depends on the
type of dataset that we are using and the type of improvement
in performance that is to be achieved. For our research,
we consider the common clustering metrics that have been
used to compare the performance of such algorithms.

Firstly, we use the standardized accuracy evaluation metric
because the synthetic/real data we generated/ scraped had
predefined classes that could be used to treat it as a standard
classification problem, and penalizing the metric for wrongly
generated predictions. Thus, the first metric is unsupervised
clustering accuracy (ACC):

ACC = maxm
∑n

i=1

1{yi = map(ci)}
n

(27)

where, yi is the ground-truth label, ci is the cluster assignment
generated by the algorithm, and the map is a mapping
function that ranges over all possible one-to-one mappings
between assignments and labels.

Secondly, we use the Completeness-Score, which can be
considered as Completeness metric of a cluster labelling
when the ground truth label is given, a clustering result
satisfies completeness if all the elements of a given cluster
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TABLE 1. Comparison of completeness score of algorithms (in %).

FIGURE 7. (a) Experiments on various datasets; (b) Comparison of SOFM
and UFLANN.

are data points that are members of the same class. This can
be regarded as a useful metric because it is independent
of the absolute values of the labels: the permutation of the
class or cluster label values won’t change the score value in
any way.

Thirdly, we used the Adjusted Rand Index, a form of
the Rand index that is adjusted for the chance grouping of
elements. The calculation of Rand Index mostly relies on the
calculation of class-based contingency matrix thus for a set of
N elements where S = {S0, S1, S2 . . . . . . .Sn} with partitions

TABLE 2. Comparison of accuracy of algorithms (in %).

FIGURE 8. (a) K-means clustering on Chain-Link; (b) Mini-Batch K-means
clustering on Chain-Link.

A = {A0,A1,A2 . . . . . . .Ar } and B = {B0,B1,B2 . . . . . . .Bs}
ought to be containing r and s number of subsets respectively.

Thus for two such subsets, the Rand Index is:

R =
(tp+ tn)

(tp+ fp+ fn+ tn)
(28)

tp - True positive; tn- True Negative; fp- False Positives; fn
- False Negatives.

But, the Adjusted Rand Index is the corrected-for-chance
version of the Rand index, the baseline uses the expected
similarity of all pairwise comparisons between clustering
specified by a random model, usually, Rand Index yields
values between 0 and +1 but adjusted Rand Index can give
negative results for unexpected values.

We also use the Silhouette Coefficient which ismostly used
for data where the ground truth labels are not known, but
we have not included the results as it did not seem to show
the considerable difference for different clustering which is
evident as it is calculated using themean intra-cluster distance

VOLUME 8, 2020 169221



B. S. P. Mishra et al.: UFLANNs for Cluster Analysis

TABLE 3. Comparison of silhouette coefficient of algorithms (in %).

TABLE 4. Accuracy of clustering on MNIST and CIFAR-10 dataset (in %).

TABLE 5. Completeness score of clustering on MNIST and
CIFAR-10 dataset (in %).

a and the mean nearest-cluster distance b for each sample.
Thus, Silhouette Coefficient for a sample is:

Sc =
(b− a)
max(a, b)

(29)

In our work, we recognize that the use of popular clustering
metrics for famous concentric circles problems would prove
incompetent.

C. ENVIRONMENTAL PARAMETERS
The training for the proposed methodology was carried out
on an Intel Core i5, 7th Gen, 8.00GB RAM, and a Microsoft
Windows 10 Home Edition based personal computer. The
programming was carried out in Python 3.6, in Anaconda
3 development environment with Spyder. The datasets were
divided into 90-10 training is to testing ratio for all data. The
hyper-parameters used during experimentation have been
specified in Section D. To validate our method on the MNIST
[45] and CIFAR10 dataset [46], the input is flattened in to
784 units. Each row works as a feature vector and taken as an
input to clustering algorithm.

D. RESULTS AND DISCUSSION
The performance of the proposed unsupervised FLANN as
already discussed in Section III is compared with various
competitive baselines and methods to prove the efficiency as
tabulated in Table 1. Again the proposed method was also
applied over the well-known data set MNIST and CIFAR10,
the accuracy and the completeness score is presented in the
Table 4 and 5. Figure 7 shows the plot for the ‘‘averaged
experiments’’. This is because BIRCH and K-means perform
well only on linearly separable data. Moreover, Figure 7(b)
the additional 2D lattice maps provide insights into the data
density structure of particular clusters in our approach. As we

FIGURE 9. (a) Clustering with 2 clusters; (b) Dendograms on data; (c)
Clusters according to dendograms.

can see, UFLANN fairs over all the other approaches in terms
of data representation by efficiently segregating the data. This
shows the formation of two categories as far as the number
of detected clusters (mean ± std. deviation) = (2.0 ± 0.0),
which is a perfect match as represented by the symbols.
Figure 8(a), (b) is the averaged result of 55 experiments done,
on Figure 5, provides clear evidence on the presence of 4 and
2 cluster categories for K-means and Mini-Batch K-means
respectively. The performance of clustering algorithms varies
because of the random initialization of the starting point.
Thus, to evaluate how sensitive the unsupervised FLANN is
to the initialization, UFLANN has been executed 50-80 times
on each dataset described in subsection A of IV. Table 2 helps
us to compare the accuracy of different clustering algorithms
against the same set of datasets. Similarly, in Table 3 we
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FIGURE 10. (a) Clustering with equal density; (b) Clustering reducing
density of one cluster.

compare the silhouette coefficient of various datasets against
the set of algorithms considered in this work. The Iris dataset
(Dataset 1) has not been considered in the table as it had
been considered earlier and our approach showed a fairly
competitive baseline w.r.t it. We have replaced the competi-
tive baselines with Agglomerative and DBSCAN clustering
algorithms as they proved to be more useful in our exper-
iments. In both cases, our algorithm fairs over the other
baselines.

Howsoever, most competitive baselines come very close
to the proposed methodology. But, further investigation into
these algorithms revealed flaws that were exposed during our
experiments - making them fail. Further in this section of
the paper, we have discussed how minor changes in the used
datasets, breakdown of the competitive baselines, and how
our algorithm significantly would outperform the considered
baselines in each case.

By applying our proposed method on the MNIST data
set we got high accuracy, which is tabulated in Table 4.
As the MNIST dataset consist of digits with black back
ground, hence it made easy for UFLANN to identify the
underlying function representing the digit. Again UFLANN
gives better result in comparison to all other algorithms as
the input provided to the UFLANN is passing through the
Functional Expansion Network which represents the input
in the form of different polynomial functions like legendry
polynomial, Chebyshev and power series. While calculating
completeness score as shown in Table 4 it is clear that the

FIGURE 11. (a) Application of SOFM; (b) Proposed method.

proposed method could able to classify the dataset properly
which proves that there is no imbalance or bias towards
a certain cluster. So, it can be derived that the proposed
model has learned the underlying relationship between the
data properly and act as a good classifier for each of the
cluster.

Fig. 9 describes the use of Hierarchical Clustering using
agglomerative technique with the Euclidian affinity and
linkage ward. The drawback of this approach is the algorithm
itself utilizing-min {d (a, b) : a ∈ A, b ∈ B} ,A,B → obsv.
i.e. greedy approach for calculating core cluster center for
intra-cluster variance rather than expanding or learning vector
subspace or explicitly-differentiable features. Experiments
were carried out using different values of threshold dcoef =
0.1, 0.2, 0.3, 0.4 . . . .2.0, and k = 0, 1 . . . 4 clusters under
observation to see how the algorithm behaves. This leads
to unusual clustering patterns as visualized in dendograms
in Figure 9(b).

Thus, the clustering categories were to be amongst,
(4.0 ± 2.0) as observed. Density-based clustering was
analyzed as a competitive baseline due to the efficiency in
near-perfect classification as shown in Figure. 10. Through
various observations, it can be analyzed that the concept of the
algorithm heavily banks on recursively finding all its density
connected points and assigning them to the same cluster as
the core point. Thus, if the cluster capacity of 1st cluster was
reduced to less than 1/2 of other, then the algorithm fails
as in Figure 10(b). We experimented on the neighbourhood
of the data points eps = 0.1, 0.11, 0.12 . . . . . . 0.3 and the
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FIGURE 12. (a) Clustering using SOFM; (b) Proposed method.

multiple values of Gaussian noise the average result of which
was taken after analysis. Finally, the results of our proposed
methodology and the comparison with the basic SOFM are
seen in Figure 11. The 2D grid of neurons by using a partial
BP algorithm on the current neuron and the nearby neigh-
bourhood of neurons, thus we see that the clustering is much
more efficient, as seen in Figure 11(b). The results provided
here are the best case are derived from 62 out of the 85 trials
carried out (73%), furthering our study into the non-linearity
of representation and performance over the previous dataset
we experimented by trying to scatter the points of a specific
cluster over a more generalized area i.e. adding noise for
allowing expanding the vector subspace which would affect
such that the distance metric of features between the clusters.
Finally, we can see the advantages of UFLANN in Figure 12
where it out performs the basic SOFM algorithm as the
expansion of the functional link allow the learning neurons
to better map the data from Figure 6 as seen in Figure 12 (b).
This approach was tested with multiple hyper-parameters
η(i) ∈ 0.1, 0.2 . . . 0.5 and ρc(wc, i) ∈ 1.0, 1.1, 1.2 . . . .2.0 the
provided results are the generalized versions of the obtained
results.
Clustering on Image Data: The technique of reduction of

image size by losing out on ‘‘less-important’’ information
like colours is a concept introduced earlier. This technique
generally utilizes unsupervised algorithms to learn informa-
tion and can be used to segment satellite images by per-
forming colour segmentation on images. As we proposed
unsupervised FLANN which belongs to the plethora of such

FIGURE 13. (a) Given image; (b) Clustering k = 3; (c) Clustering k = 5.

algorithms by experimental analysis we apply the proposed
methodology to images and compare it with previous efforts
to do the same.

Figure 13 gives the vague conception of the clustering
methodology of K-means, the most common pitfall in this is
the specification of clusters beforehand which does not give
the algorithm enough dynamicity to adapt to more complex
data. The images are generally converted to HSV format
for giving ease to clustering but this may lead to important
feature loss in terms of small images with similar colors.
Figure 14 shows the application of hierarchical clustering on
such data, since the algorithm requires the consideration of all
points in the linkage table for complex data like images the
number of features are exponentially greater thus the image
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FIGURE 14. (a) The process of down-sampling via Gaussian kernel);
(b) Down-sampled image with hierarchical clustering; (c) Density-based
agglomerative clustering on the image.

has to be down sampled by using a Gaussian kernel i.e.

1
16


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1


Yet, this method also leads to reducing the quality of the

image and hence a reduction in the overall quality of image
leading to loss of features. Density-based clustering as used
earlier as a baseline is generally not commonly used for
such tasks as the pixels clutter around regions of high pixel
concentration as seen in Figure 14 (b).

For images we improved our algorithm such that the data
to the algorithm in the form of batches which also is a hyper
parameter effectively making use of the T-based clustering
[4] so that data points are very near to each other do not get
cluster in different clusters.

In Figure 15, using our proposed analogy, we see that
the pixel values of the image increase overall and hence
giving a more enhance image because the distances between
neighbouring pixels values increase exponentially but this
also has its pitfalls that it increases the Gaussian noise thus
we mean-normalize the data as in Figure 15(c), Figure 16(c)
which wouldn’t cause a great decrease in performance

FIGURE 15. (a) Input image; (b) Image using SOFM; (c) Proposed method.

because it was a linear transformation but it would allow us to
learn more features suppress the unnecessary small features
which are getting added to increase the unnecessary number
of clusters which are present. The increase in the distance
between different features which would effectively allow us
to segment the image based on the color representations.
We also saw that increasing the number of neurons allows
us to learn more complex colors and improve distinguishing
between the color representations of the images. UFLANN
will especially aid the situation of low lighting or dim pho-
tography as it expands the feature space and then contracts
bleak color representations which become separable this is
also illustrated in Figure 16.

E. TIME COMPLEXITY ANALYSIS
In this section, we get into the details of UFLANN, and
a brief analysis of our algorithm in comparison with the
benchmark algorithms in consideration. The time complexity
of the SOM is considered to be O(NC) i.e. N is the input
vector size and C is the number of document presentation
cycles. So subsequently UFLANN in worst case performs a
given classification in O(k.n.m) time complexity for a given
sample where ‘‘k’’ is the number of polynomial expansions
and n, m are the sizes of the 2D lattice, where the input vector
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FIGURE 16. A comparison between (a) Input image, (b) Image generated
using SOFM (c) Proposed method + Mean-normalization (d) Proposed
method.

is compared to each of the weights to find the BMU. The
average time taken by the algorithm is 0.026s for inference,
compare that to the SOFM algorithm that takes 0.021s, and
the sole FLANN algorithm that takes 0.015s for non-image
data. The slight increase in time can compensate for the gain
in accuracy achieved by the network. When compared with
other benchmark algorithms for image datasets, it can achieve
inference faster than most algorithms except simple ones like
k-means which again is due to time-accuracy trade- off.

V. CONCLUSION
The proposed approach UFLANN has designed by inheriting
the best attributes of FLANN and the competitive learning
mechanism of SOFM. The experimental design of the pro-
posed approach throws the light that UFLANN is better in
accuracy than other algorithms taken in this paper for com-
parison. The results obtained show that this methodology can
be used as a complete solution to clustering with acceptable
accuracy for both numerical and image datasets. The main
issues of colour image segmentation is being systematically
addressed in this paper including perceptual uniformity in
colour representation, colour reduction by mean normal-
ization and clustering in unsupervised segmentation. The
UFLANN algorithm shall serve very useful in photo sensitive
base colour image segmentation in low-lighting conditions.

The approach shows good results and has a straight-forward
application in the vision domain. In nutshell, we provide a
novel unsupervised learning based on FLANN that can find
its application in a variety of fields like remote sensing image
processing, earthquake studies, outliers detection, insurance,
marketing, etc.
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