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ABSTRACT More engaging and accessible solutions that offer outstanding user experience are needed. The
virtual desktop infrastructure (VDI) is the first user access part of the cloud. Therefore, the performance of
the VDI has a significant influence on the network. The graphics processing unit (GPU) can accelerate
performance by assigning each virtual machine a dedicated GPU for performance-boosting to improve
the user experience. In this paper, we propose a high-performance VDI using an integration of a GPU on
OpenStack with a PCI pass-through. It might have certain benefits over using virtualized hardware, such as
lower latency, better performance, and more functionality. The evaluation and comparison of the computer
processing unit (CPU) and GPU are presented among the different benchmark tools.

INDEX TERMS Cloud service, virtual desktop interface, OpenStack, graphics processing unit, software as
a service.

I. INTRODUCTION
Virtualization supports a data center by increasing the utiliza-
tion of computing resources, which may otherwise be wasted.
For instance, a typical physical server with a single workload
may only use 10% to 15% of the processor cycles or memory
space on the server, wasting the remaining 85% to 90% [1].
How to effectively use and manage information equipment
investment is a constant concern, and the issue is even more
pertinent for businesses.

Server prices are much lower than before, and the perfor-
mance is similar to that of a workstation. As a result, many
companies have moved their systems and services to cloud
computing environments to reduce the cost of investment for
the management of information equipment.

In cloud computing, all resources are virtualized, such as
the computer processing unit (CPU), storage, and network
resources. Resources are allocated according to the needs of
the users. Cloud computing is a network-based computing
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model that provides access to a variety of resources, including
operations, storage, and so on, usually in the data center,
and delivers massive resources through virtualization and
dynamic scaling. There is no need to understand the infras-
tructure of the cloud or to master the technology directly, but
it can also use the resources of the cloud.

Providing an easy-to-use environment with a better user
experience for users is a challenge for information technol-
ogy (IT) managers. The part closest to the average user is
the virtual desktop. However, when the user uses applications
that rely heavily on graphical computing, the user experience
is far inferior to the traditional high-performance standalone
computer with a dedicated graphics processing unit (GPU).

In a recent study by the Lakeside Software [2], GPUs
have enabled the rise of graphics through efficient processing.
More and more modern applications running on adequate
graphics provide an excellent user experience. Today, more
than 60% of business users use at least one of these applica-
tions. Moreover, GPUs are designed to be used on computers.
However, in the virtual environment, there is now similar
technology to accelerate graphics processing. The GRID
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GPU allowsmultiple virtual machines (VMs) that are running
any application to share theGPU. TheGRIDGPU technology
distributes the GPU on the server to multiple VMs, so that the
GPU and user no longer have a one-to-one relationship but
a one-to-many relationship. The GRID GPU features are as
follows:
• GPU virtualization: The NVIDIA Kepler architecture
provides VMs designed to offer GPU hardware virtual-
ization capabilities, which means that multiple users can
use the GPU together.

• Low latency remote display: The GRID has a low
latency remote display technology that allows the user to
reduce the resource requirement to connect to a virtual
desktop infrastructure (VDI) protocol.

A VM can be configured through GPU virtualization or
through a pass-through approach to configureGPU resources,
and pass-through practice can be interpreted as a GPU ded-
icated to a VM. With this technique, we can make a spe-
cific VM a vGPU. The difference between the vGPU and
pass-through is that the vGPU is the complete GPU resource
sliced into smaller vGPU resources to provide for the needs
of the VM, and pass-through is making the resource of a
GPU unit totally occupied by a single VM. Therefore, a high-
performance VDI is built using high-load machines coupled
with VDI, which becomes an important organizational issue
for IT managers. Using VDI, it is possible to reduce the
investment in IT equipment procurement without affecting
user experience, improving the utilization of equipment per-
formance and reducing hardware purchase costs and the time
and effort required to manage large volumes of IT equipment.

Moreover, VDI is a desktop virtualization technology in
which the desktop operating system (OS) is run and managed
on premises or in a cloud data center. The virtual desktop
image is delivered through a network to an endpoint device,
which allows the user to interact with the OS and its appli-
cation as it runs locally. The endpoint may be a traditional
personal computer (PC), a thin client device, or a mobile
device. Virtual desktop OSs can be configured with virtual-
ized resources to the user’s needs, and different applications
can be installed on the OS. However, virtual desktops are
limited by the network or for other reasons, which can lead
to sluggish user experience.

Using virtualization solutions to simplify IT infrastruc-
ture can help system administrators reduce the risk of
capital expenditures, reduce operating costs through automa-
tion, reduce planned and unplanned losses, and signifi-
cantly reduce revenue through less downtime. Capital and
operating costs are reduced by improving energy effi-
ciency while reducing hardware requirements through server
consolidation.

In recent years, the OpenStack [3]–[5] has been one of
the most widely used open-source technologies to construct
cloud platforms. OpenStack-supported hypervisors include
KVM, QEMU, VMware, VSphere, XenServer, Hyper-V, and
so on. Different hypervisors have their own VDI. There are
generally noVNC, Spice, remote desktop protocol (RDP),

and so on. Users use VDI to connect to the hypervisor, but
not all VDIs can support the GPU display.

In our previous work [6], we revealed partial results of
network delay and benchmark comparison results for this
issue. In this paper, we further reveal the complete system
architecture and more experimental results. According to the
PCI pass-through technology to leverage GPU resources to
accelerate virtual desktop performance and improving the
smoothness of virtual desktops. We use OpenStack inte-
grated with XenServer as the VM monitoring program layer.
By means of the pass-through technology, a VM can be
created on the GPU with an RDP environment to achieve
accelerated VM image processing. Then we evaluate perfor-
mance through different benchmark software to assess the
GPU and the effect of the vCPU virtual desktop performance.

The organization of this work is as follows. In the
Section II, we review the background knowledge for later
use, regarding the system design and implementation.
In Section III, we present the proposed system implementa-
tion of our work. The fourth section presents the experiments
methodologu of our work. In Section V are the results of the
experiments and a short discussion of our work. We intro-
duced the related works in Section VI. In the last section,
we summarize and organize our contributions and future
work.

II. BACKGROUND REVIEWS
In this section, we review the background knowledge for later
use regarding the system design and implementation.

A. VIRTUALIZATION
In cloud computing technology, virtualization [7]–[10] is the
abstraction and transformation of computer entity resources,
such as servers, networks, memory, and storage. The virtual
part of the system is not affected by the existing resources
or setup of the geographic or physical limitations. This refers
to virtualized resources, including computing power and data
storage. In computer science, virtualization is a technology
for a computer or OS. Virtualization hides the real hardware
devices for the user and presents another virtual computing
platform. Virtualization technology transforms the entity into
a virtual computing environment (i.e., VM) available to the
user.

The user uses a client application to operate the VM. The
VM does not restrict any applications or OSs and is like
a direct run on the same machine. Moreover, VMs are the
unified management of hardware resources (e.g., network,
screen, and hard drive) and are more restrictive than proces-
sors or memory. The client is restricted from accessing the
entity’s peripherals, depending on the access policy adopted
by the entity.

B. OpenStack
Among the technologies related to cloud services, virtualiza-
tion technology plays a decisive role, distributing many kinds
of virtualization projects from the beginning with VMware
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vSphere and Hyper-V deployments to OpenStack [11]–[13]
platforms. OpenStack is NASA’s open-source software devel-
oped jointly by NASA and Rackspace. The Apache license
is free software and is an open-source project for building
infrastructure as a service (IaaS). OpenStack has three mod-
ules, a network access module, a storage module, and a cen-
trally managed dashboard module to form a set of OpenStack
shared serviceswithVMs, external operational resources, and
easy and flexible scaling or scheduling. Users can use the
open-source OpenStack to build their own Amazon EC2-like
services. TheOpenStack specification is also compatible with
Amazon EC2, so regardless of developing a system on it,
using the system still helps people develop systems and use
them. OpenStack can do it all, which is why IaaS is popular.
In this work, we used OpenStack to construct the infrastruc-
ture of the environment.

C. VIRTUAL DESKTOP INFRASTRUCTURE
The VDI [14], [15] is a software technology that separates
the desktop environment and associated application software
from the physical client device used to access it. Desktop
virtualization can be used in conjunction with application
virtualization and user profile management systems, now
known as ‘‘user virtualization.’’ It provides a comprehensive
management system for the desktop environment.

In this model, the components required for the desktop
are virtualized. This allows for greater flexibility and a more
secure environment for virtual desktops. This approach sup-
ports multiple disaster recovery strategies because all com-
ponents are stored in the data center and maintained by
the system backup. It is also easy to recover if a user’s
components or files are lost because all desktop compo-
nents can be registered on the machines in other entities.
The data are not stored in the user’s device. The loss can
also be reduced if the user’s device is lost, and the data
are stored in the data center. Software technology separates
client devices. The types of desktop virtualization technolo-
gies used in typical deployments are described in detail
below.

D. DESKTOP VIRTUALIZATION TECHNOLOGY
The work in [16]–[19] can be divided into the following
stages: the mainframe era. The mainframe was very expen-
sive when it first appeared, but the computing power of the
mainframe is good. Thus, the idea of sharing a machine for
multiple users was proposed. This is not virtualization, but
rather a form of multi-tasking that relies on multiple users of
the system.

Desktop virtualization is commonly used in the following
scenarios.

• In distributed environments with high availability
requirements where desktop technical support is not
readily available,

• In environments where high network latency degrades
the performance of traditional client/server applications,

• In environments where remote access and data security
requirements create conflicts that can be resolved by
retaining all (application) data in the data center.

Remote Desktop Protocol (RDP) is a desktop virtualization
protocol that was originally developed by Microsoft from the
Citrix bought the technology and developed it themselves.
The RDP server is built into the Windows operating system;
there are also RDP servers for Unix and OS X.

III. SYSTEM DESIGN AND IMPLEMENTATION
Due to the popularity of cloud computing, people are increas-
ingly exposed to the environment. Most people use partial
virtual desktops, and virtual desktops generally have lower
performance, making them more difficult to operate. This
work is about integrating the GPU into OpenStack and accel-
erating the performance of the VDI by allowing the VM to
use GPU resources.

A. SYSTEM ARCHITECTURE
This section describes the overall architectural design and use
of open-source software. As illustrated in Fig. 1, we used
OpenStack as the basis for the entire virtualization. We inte-
grated the GPU into OpenStack, allowing the VM to use the
GPU resources by delivery, and tested it in multiple VDIs to
discover a VDI protocol that works for OpenStack.

FIGURE 1. System architecture.

The framework proposed in this paper is examined
in several parts. First, we integrate OpenStack with
XenServer. In addition, Fig. 2 is the concept model of Open-
Stack nova with KVM and XenServer.

The OpenStack conceptual architecture is depicted
in Fig. 3. The VM generation is one of the most important
use cases in a cloud environment. We described the steps
to configure the instance in the OpenStack cloud, which
includes the order of the requests and interaction between
various OpenStack components to successfully start the VM.
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FIGURE 2. OpenStack nova with KVM and XenServer.

FIGURE 3. OpenStack conceptual architecture.

FIGURE 4. Virtual machine spawning sequence in OpenStack.

In Fig. 4, the communication process is presented for
OpenStack. These connections are initiated using the associ-
ated APIs as remote procedure calls (RPCs), when the tenant
communicates via the command-line interface or dashboard
when issuing an instance request. It can be converted into a

nova-boot command. The nova-api server sends the user’s
credentials to Keystone for authentication (1 and 2). After
successful authentication, the nova-api contacts nova-db to
initialize the new instance’s initial configuration informa-
tion in the database (4, 5, 6, and 7). Then, the nova-api
sends an RPC to the nova-scheduler requesting the host of
the boot instance of the ID (8 and 9). The nova-scheduler
fetches information from nova-db and uses filters and the
weight function to select the best (or least loaded) host and
returns its ID (10, 11, and 12).The scheduler selects the
appropriate compute node as the host and sends a message to
start the new instance (12 and 13). Nova-compute runs, then
the RPC calls nova-conductor, and nova-conductor accesses
nova-compute to nova-db to obtain the host ID, flavor disk,
vCPU, and other information (14, 15, 16, 17, and 18). Using
authentication tokens, nova-compute makes representational
state transfer (REST) calls to glance-api from the image.
The image is retrieved from the library and uploaded to the
selected host (19, 20, and 21). This uploaded image is cached
for future use. Subsequently, nova-compute calls neutron-api
to retrieve network allocation and configuration information
for the assigned fixed internet protocols (IPs) to the new
instances (22, 23, and 24). If the user requests that some vol-
umes be attached to the instance, nova-compute uses REST
calls and additional volumes (25, 26, and 27) for cinder-api.
Finally, nova-compute puts all the information forwarded to
the virtualization driver, and an instance request is generated
on the hypervisor (28). At each stage of the provisioning
process, the corresponding instance status can be observed
from the Horizon dashboard as Dispatch > Networking >
Spawning > Running.

We built an OpenStack cluster with eight physical
machines, one of which is a controller and four of which
compute nodes equipped with K2 GPUs with different hyper-
visors: KVM, XenServer, ESXi, and so on. Moreover, Fig. 5
illustrates the experimental environment architecture of the
system. This node uses XenServer as the endpoint of the
experiment. The other two nodes are the network and storage
nodes. The network node is responsible for network packet
transfer and VLAN management, whereas, in the storage
part, Cinder and Swift suite are used. Cinder is the block
storage service. In this paper, we split the space of Cinder as a
VM hard disk. Swift is the object service used as the storage
file of XenServer. Table 1 is the software specification and
version of the system implementation.

FIGURE 5. Experimental environment.

VOLUME 8, 2020 170165



C.-H. Chang et al.: On Construction and Performance Evaluation of a VDI With GPU Accelerated

TABLE 1. Software specification.

When creating the VM, we used the Ubuntu OS. Open-
Stack was applied to build and manage this cloud environ-
ment. Moreover, Fig. 6 and Fig. 7 illustrate the graphical
user interface of the OpenStack management dashboard and
VM instance information for the environment.

FIGURE 6. OpenStack overview.

FIGURE 7. OpenStack virtual machine instances.

1) VDI DEPLOYMENT noVNC
OpenStack uses noVNC to implement a user interface
for virtual desktops using the web client for Socket and
HTML5 Canvas. However, the use of noVNC can cause
delays and lag in the use of virtual desktops, which is very
inconvenient for users. Because noVNC was not smooth
enough, we integrated Spice (a standalone computing envi-
ronment) into the OpenStack cloud platform, which allows
users to view the ‘‘desktop’’ environment. The Spice envi-
ronment in the system are depicted in Fig. 8 and Fig. 9.

2) GPU AND GRID GPU
We expect to use GPUs to accelerate the VDI smoothness and
the ability of VMs to handle graphics. The K2 is a GPU that

FIGURE 8. OpenStack Spice web console.

FIGURE 9. OpenStack Spice client.

performs graphical operations on a GPU, server, or another
device. In this section, we use the NVIDIA GRID K2 as our
GPU device, and K2 is a device that uses the NVIDIA Kepler
architecture designed to deliver a rich design experience in a
virtual environment.

A VM can be configured through GPU virtualization
or through a pass-through approach to configure the GPU
resources. The pass-through practice can be interpreted as
a GPU dedicated to a VM. With this technique, a specific
VM vGPU can be created. The various parts of the vGPU
comprise the configuration of all GPU resources. In addition,
the vGPU is the complete GPU resource sliced into smaller
vGPU resources to provide for the needs of the VM and pass-
through, which comprise the complete resources allocated to
the same VM.

IV. EXPERIMENTS METHODOLOGY
In this work, we expected to use GPUs to accelerate the
VDI smoothness and the ability of VMs to handle graphics.
We used OpenStack and the integrated XenServer, which was
delivered via a pass-through method and was installed on
the compute node of the GPU (NVIDIA K2) assigned to the
VM (XenServer). OpenStack and XenServer were used with
the experimental data to determine whether the GPU affects
the display performance of the VM. Theywere also employed
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in testing in different situations, including correlating mem-
ory size, the number of vCPU cores, and so on with the
GPU, to determine the most effective method to enhance the
VM desktop performance settings. Therefore, we designed
some experiments.

We simultaneously executed the ping command through
the host and VM and recorded the return value during this
period to determine whether network problems exist, such
as latency on the VM. The influence of the GPU on the dis-
play performance of the machine was tested via the Heaven
Benchmark in three scenarios, as follows:

1) Installing the GPU on the physical machine.
2) Opening and obtaining GPU resources for the VM via

OpenStack and the PCI pass-through (for) hypervisor
for XenServer.

3) Opening directly through XenServer and obtaining the
VM through the PCI direct GPU resources.

To testing all three cases above, in the VM section, we set
the memory to 8 G and the virtual CPU section is divided
into three sections: 1) two slots per slot, two cores per slot
(four vCPU), 2) two slots per slot, four slots per slot nuclei
(eight vCPU), and 3) two slots, four cores per slot (16 vCPU).
Four results were obtained from the Heaven Benchmark:
score, FPS, MinFPS, and MaxFPS.

For the third experiment, we used the CineBench Bench-
mark tool [20]. The CineBench test obtains two return values:
one for the GPU-related OpenGL FPS and the other related to
CPUScore. Thus, we performed the CineBench test. As a sec-
ond experiment, the test was conducted using three different
scenarios, and some of the VMswere tested. The first test was
performed under different CPU numbers, and then two values
were returned to determine whether the GPU can accelerate
the effect in a VM.

V. EXPERIMENTAL RESULTS
In this section, we present the experimental environment
and the results of the experiments. In the first subsection,
we describe the experimental environment, and in the follow-
ing subsection, we present the experimental results.

A. EXPERIMENTAL ENVIRONMENT
We used OpenStack to build the cloud platform and then
used it to create and manage the storage distributions. As a
simple example, we integrated two heterogeneous storage
technologies. We built our storage system through several
VMs, where HDFSwas built from three VMswith a four-core
spec. CPU, 4 GB of random access memory (RAM), and
a total of 200 GB of storage. Table 2, 3, and 4 present the
experimental environment specifications.

In our experiments, we will use the NVIDIA K2 GPU as a
device for accelerating VDI.

B. NETWORK DELAY EXPERIMENT
The first experiment used the ping instruction in the host and
VM at the same time. The command is to ping 8.8.8.8, to test
whether the VM and external machine between the network

TABLE 2. Experimental environment hardware specification.

TABLE 3. Experimental environment virtual machine specifications.

TABLE 4. Experimental environment software specifications.

are delayed. We tested for 60s and 120s, and the experimental
results are presented in Fig. 10 and Fig. 11.

FIGURE 10. Ping 60s.

FIGURE 11. Ping 120s.

From this experiment, no significant difference was found
between the VMs and physical machines outside of the net-
work, indicating that the VM is unaffected by OpenStack and
that the Windows two-tier OS causes latency on the network.
Therefore, subsequent parts of the experiment can be ignored.
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C. HEAVEN BENCHMARK EXPERIMENT
This experiment uses the free benchmark tool from Heaven
Benchmark to measure the physical machine and the perfor-
mance of the VM, using pass-through technology to allocate
GPUs to the VM bymodifying the virtual. The CPU core part
is used to measure whether it affects the display performance
of the vCPU for the VM.

First, testing OpenStack open VMs through the Heaven
Benchmark yields four values: FPS, Min FPS, Max FPS,
and score. We tested three cases: 4vCPUs, 8vCPUs, and
16vCPUs, all with 8 G RAM, and the results are illustrated
in Figs. 12, 13, 14, and 15.

FIGURE 12. OpenStack virtual machine Heaven Benchmark FPS.

FIGURE 13. OpenStack virtual machine Heaven Benchmark MaxFPS.

The four figures display the FPS, Max FPS, Min FPS,
and score. The data are plotted to reveal that the FPS aver-
ages of DirectX9 are all about the same, and with fixed
memory, the number of virtual CPUs does not affect the
performance of DirectX9 when the average FPS is around 60.
DirectX11 affects the performance significantly because of
the difference in CPU cores, which are superior to the other
two drivers. However, the OpenGL part of the performance is
not particularly outstanding. Moreover, we found in the tests
that different screen resolutions also affect the performance;
thus, we fixed the 1280*720 resolution for testing. When we
used 1920*1080, the FPS and score were reduced to 50% of
the figures, which are usually between 20 to 30.

FIGURE 14. OpenStack virtual machine Heaven Benchmark MinFPS.

FIGURE 15. OpenStack virtual machine Heaven Benchmark Score.

FIGURE 16. OpenStack and XenServer instance performance comparison
(4 vCPUs).

In the second part of the VM test, we compared OpenStack
integrated with XenServer with only the XenServer environ-
ment to test the performance by modifying the vCPU for the
experiments. As in the last part of the experiment, the three
VMs are 4vCPUs, 8vCPUs, and 16vCPUs. Three VMs, and
all configured with 8 GB of memory, were configured to the
VMs via PCI pass-through technology K2 and the previous
part of the experiment. The following results were obtained
using the Heaven Benchmark test. The 4vCPU results are
illustrated in Figs. 16, 18, 19, and 17. The 8vCPU results
are displayed in Figs. 20, 22, 23, and 21. The The 16vCPU
results are depicted in Figs. 26, 24, 25, and 27.
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FIGURE 17. OpenStack and XenServer instance performance comparison
(4 vCPUs).

FIGURE 18. OpenStack and XenServer instance performance comparison
(4 vCPUs).

FIGURE 19. OpenStack and XenServer instance performance comparison
(4 vCPUs).

The results of this second experiment test reveal that the
Heaven Benchmark test part shows that DirectX11 still has
the best performance. OpenGL and DirectX11 are affected
by the number of CPUs in the test results for better or worse,
whereas DirectX9 is not. With a fixed RAM size, the per-
formance of DirectX11 is far higher than the other two by
about two to three times, and the performance results from
OpenStack and XenServer open VM testing were not what a
difference.

FIGURE 20. OpenStack and XenServer instance performance comparison
(8 vCPUs).

FIGURE 21. OpenStack and XenServer instance performance comparison
(8 vCPUs).

FIGURE 22. OpenStack and XenServer instance performance comparison
(8 vCPUs).

In the comparison above, Figs. 28, 29, 30, and 31 present
the VM performance test section, using the OpenStack or
OpenStack directly between two data through VMs with
very small gaps between them. Almost no gap exists; thus,
OpenStack does not affect the performance display of the
virtual desktop. The reason for this could be that our exper-
imental environment integrates OpenStack and XenServer,
where OpenStack only opens VMs and communicates with
XenServer via the nova-api. Then, we do not need to
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FIGURE 23. OpenStack and XenServer instance performance comparison
(8 vCPUs).

FIGURE 24. OpenStack and XenServer instance performance comparison
(16 vCPUs).

FIGURE 25. OpenStack and XenServer instance performance comparison
(16 vCPUs).

manipulate the VM through OpenStack. Therefore, when
testing the performance, we can simply ignore the influence
of OpenStack.

D. CineBench EXPERIMENT
In this experiment, we experimented with the VM using the
CineBench Benchmark tool, which graphically tests the CPU
andGPU.We divided the results into three VMs, as in the pre-
vious experiments: four vCPUs, eight vCPUs, and 16 vCPUs.
All three VMs have a fixed memory of 8 GB.

FIGURE 26. OpenStack and XenServer instance performance comparison
(16 vCPUs).

FIGURE 27. OpenStack and XenServer instance performance comparison
(16 vCPUs).

FIGURE 28. Comparison of the physical FPS.

The results of the test are presented in Figs. 32 and 33.
The test data reveal a significant increase in the number of
different CPUs based on the CPU part values. Eight CPUs
take about twice as long as four CPUs for the score, with
16 CPUs taking about 1.5 times as long to score as 8 CPUs.
The relationship is presented in the figures. The difference
is too much, almost always around 120 or so and not much
more. How the CPU count affects the OpenGL is depicted.
The effect of the VM is not that significant, and this result
can be verified with the results of the Heaven Benchmark.
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FIGURE 29. Comparison of the physical Max FPS.

FIGURE 30. Comparison of the physical Min FPS.

FIGURE 31. Comparison of the physical score.

E. DISCUSSION
The above three experiments can be analyzed to conclude
that no significant difference exists between the VM and
host network; therefore, the network part is almost negligible.
Second, the Heaven Benchmark revealed that the number of
different CPU cores indirectly affects theGPU and screen dis-
play. Different drivers have different effects on performance,
especially in Direct X11, where the influence is the greatest,
whereas DirectX9 had no effect and performed the worst. The
third part of the experiment was performed using CineBench
to discover the combined effects of the CPU.

FIGURE 32. CineBench comparison of CPU.

FIGURE 33. CineBench comparison of OpenGL.

VI. RELATED WORKS
Song et al. [21] proposed new high-performance encoding
and decoding for hierarchical RAID accelerated by the GPU
in a multiple VM environment. For each VM, pass-through
GPU technology was used to provide dedicated access to
GPU cores. For a virtual desktop, it often allows better encod-
ing and decoding efficiency than conventional vGPU technol-
ogy. The proposed hierarchical RAID eliminates the overhead
for the GPU and avoids the failure of nodes. Their experimen-
tal findings reveal that the average encoding efficiency of the
proposed hierarchical RAID 55 increases by 11.03% com-
pared with hierarchical RAID 51 compared to different file
sizes. In comparison, the average disk-based decoding effi-
ciency of the proposed hierarchical RAID 55 also increases
by 59.61%.

Xue et al. [22] introduce gScale, an open source GPU
virtualization solution based on gVirt, which is scalable and
realistic. GScale offers a sharing system incorporating par-
titioning and sharing to overcome global graphics memory
space hardware constraints. In particular, we propose two
approaches for gScale: (1) the private shadow graphics trans-
lation table (GTT) which allows global graphics memory
space sharing between virtual GPUs, (2) ladder mapping
and fence memory space pool allowing CPU access to host
physical memory space (serving graphics memory) bypass-
ing global graphics memory space. Evaluation reveals that
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gScale scales up to 15 instances of virtual GPU guests in
Linux or 12 instances of virtual GPU guests in Windows,
which is 5x and 4x respectively that of gVirt. At the same
time, when hosting multiple virtual GPU instances, gScale
brings in a slight but acceptable runtime overhead.

Tan et al. [23] proposed a multi-channel GPU virtual-
ization architecture (VMCG), modeled the related credit
allocation and transfer processes, and redesigned the GPU
fair-scheduling virtual multi-channel algorithm. For each
guest VM (DomU) competing with other VMs for the
same physical GPU resources, VMCG provides a separate
V-channel, and each DomU submits command request blocks
according to the corresponding DomU ID to their respec-
tive V-channels. Not only can multiple DomUs make full
use of native GPU hardware acceleration through the vir-
tual multi-channel GPU fair-scheduling algorithm, but the
fairness of GPU resource allocation is also greatly improved
during GPU-intensive workloads from multiple DomUs run-
ning on the same host. The experimental results reveal that
performance is similar, at 96% of that of the native GPU for
2D/3D graphics applications. The performance is improved
by around 500% for parallel computing applications, and the
resource-allocation equity of the GPU is improved by about
60% to 80%.

Comparison with the related work above, we not only
implement by pass-through to allow VMs to use the host’s
GPU resources. But also make completed experimental test-
ing include network latency, performance comparison for
a variety of VDIs configurations such as OpenStack inte-
grated with XenServer, according to Heaven Benchmark and
Cinebench Benchmark tools.

VII. CONCLUSION AND FUTURE WORK
To accelerate the smoothness of virtual desktops and
their ability to handle graphics. In our previous work of
Yang et al. [24] use graphics processing units to build a
high-performance computing cloud cluster. We use GPU
passthrough technology, InfiniBand virtual, and 10 Gb Ether-
net network to improve the performance of the virtual cluster.
In [25], they propose two algorithms of a dynamic resource
allocation strategy and the energy-saving method, to increase
energy utilize consumption efficiently. In this work, we used
pass-through to allow VMs to use the host’s GPU resources.
According to testing, including the network latency tests,
the OpenStack VM difference in terms of network latency
with the host in the neutron architecture is so small that parts
of the network are almost negligible.

We tested a variety of VDIs before experimenting, and
there are few VDIs that OpenStack can support on a GPU.
Neither noVNC nor Spice worked properly; thus, we used
RDP as our experimental VDI. By conducting benchmark
experiments after selecting the VDI, we tested and com-
pared the CPU and GPU parts. Among the different bench-
mark tools, DirectX11 is the one for NVidia GRID K2.
The strongest compatibility and DirectX9 is the least effi-
cient, and the number of CPUs for DirectX9 is not affected.

DirectX11 outperforms both DirectX9 and OpenGL by about
two to three times for Min FPS, Max FPS, and FPS AVS.

During our experiments, we also found that K2 would
not be used if the entity was displayed directly through
another graphics card and that it would not be used if it
was displayed through the RDP connected to the physical
machine. In addition, K2 starts running with 10% to 25% up
and down utilization during that time to show the action. The
GPU via RDP accelerates the display. However, because the
GPU is VDI accelerated, the performance via the RDP test
is worse than the direct physical machine test above, almost
as bad as 20% or so. The GPU also accelerates faster than a
direct running physical machine via the RDP connection test.
While the performance is not as good as a physical machine,
the GPU does accelerate VDI performance, and the GPU
can be used for virtual desktops using authentication that can
significantly improve user experience.

In this paper, we conducted experiments on the GPU
pass-through on XenServer. In future work, we will replace
different hypervisors, such as VMware ESXi or KVM, and
compare with them to determine what kind of hypervisor
works for the GPU to obtain the best performance according
to pass-through support. OpenStack does not support the
vGPU mode, only through pass-through, but this approach
may result in a waste of GPU resources because, as powerful
as the GPU is, a mere virtual desktop may not be able to
perform all of the features. Using virtualization technology to
allocate GPUs to different VMs so that each VM has access
to different VM resources is probably a better approach.

In other future work, we plan to implement a vGPU in var-
ious ways, including the existing VMware full virtualization,
the XenServer vGPU, KVM, and KVM-GT, and so on. These
are all options we plan to try in the future to incorporate the
vGPU functionality above into OpenStack and to determine
where virtual desktop performance can be maximized.
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