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ABSTRACT Automated programming assessment systems are useful tools to track the learning progress of
students automatically and thereby reduce the workload of educators. They can also be used to gain insights
into how students learn, making it easier to formulate strategies aimed at enhancing learning performance.
Rather than functional code which is always inspected, code quality remains an essential aspect to which
not many educators consider when designing an automated programming assessment system. In this study,
we applied data mining techniques to analyze the results of an automated assessment system to reveal
unexpressed patterns in code quality improvement that are predictive of final achievements in the course.
Cluster analysis is first utilized to categorize students according to their learning behavior and outcomes.
Cluster profile analysis is then leveraged to highlight actionable factors that could affect their final grades.
Finally, the same factors are employed to construct a classification model by which to make early predictions
of the students’ final results. Our empirical results demonstrate the efficacy of the proposed scheme in
providing valuable insights into the learning behaviors of students in novice programming courses, especially
in code quality assurance, which could be used to enhance programming performance at the university level.

INDEX TERMS Automated programming assessment system, code quality, educational data mining, early
learning achievement detection, programming education.

I. INTRODUCTION
Assessment and feedback are essential tasks of educational

APASs are widely accepted by both students and
institutions via their fruitful benefits. First, they reduce the

activities that enable students and lecturers to keep track of
the performance of the learning process. Through assess-
ments, students can understand their strengths and weak-
nesses in certain learning objectives, then they can improve
them based on provided feedback. In practical courses such as
computer programming, these tasks are even more important
because students rarely achieve acceptable solutions in some
first tries. However, giving frequent assessments and detailed
feedbacks significantly increases the workload of lecturers.
Consequently, many educators have developed Automated
Programming Assessment Systems (APASs) to enhance pro-
gramming assessments in their courses automatically.
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educators’ workload in code evaluation as well as provide
accurate grading and immediate feedback to learners[1].
Second, the iterative process of resubmission/assessment
by APASs provides students learn-by-error experiences,
in which students have chances to correct their mistakes by
inspecting immediate feedbacks and resubmit their solutions
until reaching a successful state. Leveraging APASs frees
educators from the constraints imposed by a lack of tutor-
ing resources [2] as well as enables Massive Open Online
Courses (MOOCs) frameworks to scale up their capaci-
ties. In their deployment environment, APASs often provide
statistical reports visualized in dashboards to students and
educators [3], [4].

In their natural targets, most of APASs aim to detect syntax
errors, run-time errors, and functional errors from students’
code. However, it is suggested that novice programmers
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should be assessed by software engineering metrics rather
than grading schemes based solely on functional correct-
ness [5]. The static quality of code also has been recently
suggested as criteria that should be considered and optimized
in students’ programming portfolios [6]. This aspect can
be assessed by inspecting adherence of students to coding
conventions [7], a set of guidelines aimed at improving the
readability and maintainability of software [4]. Nonetheless,
many APASs fail to adequately address this issue.

In our previous work [4], we developed an automated
assessment tool (referred to as ProgEdu), which was featured
by coding quality analysis functions for students’ Java assign-
ment. To facilitate students to early understand concepts and
tools of software engineering, we employed Git[8] as an
assignment submission tool and adopted GitLab[9] as a code
repository of ProgEdu, in which students use Git’s proto-
col to commit their homework code into GitLab repository.
Embedded code analysis modules are leveraged to check the
correctness of submissions in terms of syntax, coding conven-
tion, and functionality. Since 2017, this system has been used
in courses on Java programming for undergraduate computer
science students at Feng-Chia University. Free resubmission
policy was adopted to encourage students to pursue clean cod-
ing. Students are allowed to receive immediate feedback and
resubmit their improved solutions several times. This scheme
promotes reflective learning that is a form of education in
which students are motivated to make critical thinking on the
drawbacks of the current solution and to improve it in the
future [10]. As a large number of submissions were made by
students during the course, ProgEdu forms a fruitful dataset
about programming improvements of students.

The effectiveness of ProgEdu has been analyzed through
research on 69 students which was presented in our other
report [11]. Those analysis results show high acceptance of
students on the usage of ProgEdu and the iterative learning
approach. With aiming to understand the learning behavior
on code quality improvement on programming courses, we
analyzed the log data from ProgEdu to address the following
research questions:

« RQI1: How is the ability regarding code quality improve-

ment of students associated with their learning results?

o RQ2: What student groups can be formed based on
the learning behavior of students in code quality
improvement?

« RQ3: Does effort to improve code quality imply the
learning performance of students?

o RQ4: Is it possible to build a prediction model capa-
ble of early identifying at-risk students based on their
behaviors in code quality improvement?

We answer these research questions by developing an
Educational Data Mining (EDM) workflow to facilitate the
analysis of student behaviors using APSP log data. EDM
is an approach to extracting potential-valuable knowledge
from data in the field of education. This multi-disciplinary
approach deals with statistics, probability, machine learn-
ing, and artificial intelligence [12]. The review article [13]
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reported that EDM can be used for a range of applications:
(i) student modeling, (ii) student behavior modeling,
(iii) student performance modeling, (iv) student assessment,
(v) student support and feedback, (vi) curriculum, domain
knowledge, sequencing, and teacher support. Results of
these EDM tasks are often presented as dashboards to
students/teachers, in which students can be noticed about
their learning performance or at-risk situation [14]. In this
research, both descriptive statistics, data visualization, unsu-
pervised and supervised learning were leveraged to answer
the research questions.

APASs do not only serve as learning assessment tools
but also gather a great deal of data related to student sub-
missions, including the time of submissions, source codes,
grading results, code analysis reports, and stack traces. The
code analysis reports represent a vast repository of data
resulting from syntax checking, coding convention checking,
and unit testing. Adopting resubmission policy in APASs
has made available a numerous volume of log data that
records the learning progress of students. These data could be
explored to gain insight into the coding behaviors of novice
programmers [15].

A literature review of learning analytics conducted
in 2015 reported that 43.4% of inspected papers (33 per 76)
used high levels of logged data from students’ submissions in
their analysis [16]. However, to make a precise picture of stu-
dents’ status, those systems usually require multiple sources
of data that are not always available such as demographics
information and academic transcript of previous courses [17].
Alternatively, applying EDM based on in-course data is a
potential approach to simplifying data acquisition tasks and
gains the reproduction ability of conducted works [18]. This
approach is suitable for our context with the data acquired by
ProgEdu.

In our analysis, only the log data from students’ sub-
missions to ProgEdu was employed. Cluster analysis was
used to identify groups of students with similar learning
behaviors and achievements. Our analysis of cluster pro-
files revealed several factors that are strongly correlated to
final grades, including submission effort, time usage, and
behaviors in code quality improvement. We also identi-
fied five groups of novice programmers exhibiting obvious
differences in their approach to fix programming failures.
These differences should be considered when making aca-
demic recommendations, adjusting class policies, establish-
ing learning resources, and dealing with at-risk students.
This work assumes that learning behavior in the early stages
of a course is crucial to ultimate academic success. Thus,
we built a prediction model to detect at-risk students based
on programming assignments in the first half of the course.
The 87% prediction accuracy and 73% F1-measure of the
proposed scheme provide further evidence that learning suc-
cess can be predicted using EDM with limited data. Our
results demonstrate the potential benefits of applying EDM to
improving the quality of training procedures at the university
level. The use of existing tools permits the replication of
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the proposed workflow by other educators with minimal
effort.

The remainder of this paper is structured as follows:
Section 2 presents a literature review on the use of EDM
in programming courses. Section 3 outlines the proposed
methods and results. A discussion and brief conclusion are
presented at the end of the paper.

Il. RELATED WORK

Despite considerable variation in approaching methods, most
instructors share similar expectations in assessing the qual-
ity of their students’ work when building an APAS [19].
First, APASs satisfy students with timely, accurate, and fair
feedbacks. Second, APASs help in reducing educators’ work-
load. Last but not least, the operational database of APASs
introduces a programming portfolio of students which can be
learned to improve education quality [20].

A wide range of APASs has been developed for
MOOCs as well as conventional courses [2]. Almost
existing APASs focus on C, Java, and Python languages
[21], [22]-[24]. In MOOCs environment, automated
assessment plugins integrated within course management
systems (e.g., Moodle [25]) are increasingly interested to
avoid rebuild course manage features [2], [18]. With stan-
dalone courses, educators often build their own APASs with a
set of features including assignment delivery and submission
interface, code compilers and analyzers, plagiarism detector,
feedback interface, and operational database [26]. Recently,
the benefits of Git [27] and GitHub were employed in class-
rooms as a version control system and a tool for collabo-
rative coding activities for students, respectively [28], [29].
Motivated by the potential outcome of using Git and GitHub,
we designed ProgEdu, the APAS used in this paper, by inte-
grating open-source tools to facilitate code submissions with
extensions to verify the correctness of the code [4].

Since code quality is not popularly considered strictly in
almost programming courses, the relationship between code
quality and learning achievement is rarely reported. By ana-
lyzing over one million Java source files submitted into the
automated grading system Web-CAT, the authors of [30] pre-
sented interesting statistics. Among types of error, formatting,
and documentation are the most common types. The error rate
at first submission is six times higher than that in the last
submission on average. The mean of durations for students
to remove a static error is 20 hours. There is a relationship
between the code quality of a specific exercise and its grade.
Notably, the presence of coding flaws in final submission
associates with critical lower scores. These results announce
educators to pay more attention to the code quality assurance
aspect in their courses. Otherwise, this ability of students will
not be improved over the years, as reported in [31] that there
is no significant difference in the code quality of first-year
and second-year students.

As ProgEdu was used for homework submission of stu-
dents, we need to investigate studies about the homework
behavior of students. Among factors related to homework
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which associate with learning achievement, homework effort
and homework time are two important aspects of drawing
characters of students’ homework behavior [25]. Research
framework proposed by Trautwein et al. leveraged latent
profile analysis (LPA [34]) on various aspects of homework
to evaluate students’ behaviors and predict their academic
achievement [25], [26]. While people believe that home-
work time and achievement are weakly associate, the authors
of [26] argued that time spent on homework is a robust
predictor of achievement in the combination with homework
effort. Based on these two factors, students can be segmented
into five possible groups in Figure 1, in which the naming
of the groups is based on the relationship between learn-
ing behaviors and learning outcomes. We aim to adapt this
framework in our context to categorize our students based on
homework behavioral patterns.
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FIGURE 1. Possible homework learning types. Source: [26].

Student segmentation is among the most important prob-
lems in EDM, wherein students’ profiles are created based
on partitions using hierarchical clustering techniques. The
resulting cluster profiles are then used to highlight learning
patterns. With this motivation, the author of [35] examined
the relationships among student behavior, code resubmis-
sions, and final grades using data gathered from the APAS
TRAKLA [36]. That study identified five groups of students:
Talented, Ambitious, Iterators, Ordinaries, and Passers. Two
of the groups (Talented and Passers) could be early identified
from the beginning of the course. The author recommended
that the number of resubmissions should be limited to avoid
the trial-and-error strategy of some low effort students.

In [37], the authors divided students into four modes of
programming based on patterns in their programming results.
Those patterns were the product of problem-solving duration,
compilation and execution intervals, compilation frequency,
number of errors, and final grade. Ineffective characteris-
tics of each mode are clarified in cluster profile analysis
which enables teaching assistants to provide more effective
supports.

The authors of [38] introduced a recursive clustering
approach using students’ performance in terms of CGPA,
prerequisite courses, co-requisite courses, and current course.
Each group of students was assigned specific exercises. After
a while, students were re-clustered based on their new perfor-
mance on solving given problems. The process was repeated
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three times so that low-performance students can be detected
early by in-class assignments.

Similarities in the learning behaviors of students are also
means of learning achievement prediction. With an assump-
tion that students having similar learning behaviors share
similar achievement, a visual tool for students’ performance
in theoretical and practical assessed activities were intro-
duced in [18]. In this scheme, a two-dimension scatter plot
was used in which position of points in the plot repre-
sent the performance of students, the color intensity of a
point denotes the similarity of that student to a “referenced
student”. Based on similarities computed using the
Bray-Curtis metric between learning behaviors of students
in the current course and referenced students in the previous
edition of the course, both failure/success estimation and
numeric score estimation can be performed.

The use of machine learning to predict learning perfor-
mance has attracted considerable attention from educators.
Most of this work has been conducted using Decision Trees
(DT), Support Vector Machines (SVM), Linear/Logistic
regression, Naive Bayes (NB), K-Nearest Neighbors, artifi-
cial neural networks (ANN), and random forest (RF) algo-
rithms. These methods can be used for the early identification
of at-risk students [39] or for predicting learning outcomes in
MOOC:s [40]. Ensemble methods based on traditional classi-
fiers were also used to boost the prediction performance [41].
Long short-term memory (LSTM) [42] is a learning model
based on a recurrent neural network (RNN) that has also been
used to predict learning status in MOOCs [43].

Statistical attributes extracted from programming activities
can be used as significant predictors of the final achievements
of students. As reported by an analysis of 89,979 assign-
ment submissions of 1,101 students to the Web-CAT grading
system, those students who received A/B grades start and
finish their programming assignments earlier than students
received C/D/F grades [44]. By incorporating the assessment
service Test My Code [45] in an introductory programming
course with 52 students, the authors of ([46] built predic-
tion models for students’ success in the concurrent mathe-
matics course using students’ snapshots describing weekly
statistics on programming activities such as working hours,
minutes to deadline, minutes between sequential snapshots,
minutes spent programming, percentage of assignment done
during the night, number of compilations and style errors, etc.
These researches are consistent in proving the relationship
of time-related attributes to student achievements. However,
students’ behaviors in certain states of failure within each
assignment were not considered yet. In this paper, we conduct
a deeper analysis of this aspect, to determine the association
between the ability of code quality improvement and the
learning performance of students.

Early warning or detection at-risk students are interesting
and have a high educational impact. The research [47] used
ANN on demographics information and learning conditions
of students to identify school dropout risk groups of stu-
dents in Brazil and reported the prediction accuracy of 76%.
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The article [48] presents two approaches to early predict
students’ final grades. In the first approach, study-related
patterns and social behavior of students were inputted to
classification and regression models to improve the predic-
tion from the first quarter of the course. In the second,
collaborative filtering was leveraged to predict the final grade
of a student based on previous achievements of similar stu-
dents. By employing previous academic results of students,
the author of [49] presented a mining framework to identify
potential dropout students.

To achieve the early prediction target, the aforemen-
tioned studies require large datasets derived from LMSs or
other sources to obtain data on demographics, academic
background, and learning behaviors of students. However,
the practicality of such studies is limited due to the less
availability and accessibility of needed data. In such cases,
in-course data mining is a good deal for those educators who
aim to understand their students’ learning behavior in time
without using any external data [18]. The detection model of
at-risk students in this paper was implemented based on this
approach. Its results and the comparison with similar works
are present in section IV.

Ill. DATA AND METHODOLOGY

A. DATA

This section details the source of background data from which
relevant features were extracted.

1) DATA CHARACTERISTICS

The dataset used in this paper was compiled by ProgEdu [8],
an APAS developed by and operated in the Department of
Information Engineering and Computer Science, Feng Chia
University, Taiwan. The instructional scheme employed at
our institution is based on iterative learning [40], which
means that students can submit their code and obtain feed-
back in a cycle, which repeats until all of the requirements
of the assignment have been satisfied or the deadline comes
due. We extracted log data of homework submissions from
69 students enrolled in a Java programming course during the
spring semester of the 2018-2019 academic year. Originally,
79 students registered for the course. 10 students decided to
drop out after the midterm exam. Since they did not engage
in all given assignments, we eliminated their data from the
dataset.

The course addressed in this study included six homework
(HW) assignments, three of which were assigned before
mid-term exams and three after. The students were given
one week to finish each assignment. The requirements of the
assignments were available on the ProgEdu web interface,
and the initial sample code was downloadable from the sys-
tem repository. Upon each submission, the code was imme-
diately analyzed at multiple levels using (i) a compilation test
to ensure that the code was free from syntax errors, (ii) a unit
test to determine whether all functional requirements were
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satisfied, and (iii) a code quality test to detect violations of the
coding convention. The test results were encoded as follows:

o CPF: Compilation Failure — The program could not be

compiled due to syntax errors.

e UTF: Unit Test Failure — The program does not me et all

assignment requirements in terms of functionality.

o CSF: Coding Style Failure — Code quality requirements

(adherence to established conventions) are not satisfied.

e S: Success — All tests are passed.

The grading scheme used in that course included three
parts with equal weights: homework assignments, midterm
exam (writing test), and final exam (writing test). All stu-
dent assignments were evaluated using a scale of 1 to 100.
Students who earned a final grade of not less than 65 passed
the course. We obtained log data 1310 records related to
feedback on student code, including 4 fields: student ID,
homework ID, timestamp of submission, and testing results.
The average number of submissions per student was 19
(sd =17.5), the minimum value was 9 and the maximum value
was 44. The density plot of the number of submissions within
six homework is shown in Figure 2. Among the 69 students
who enrolled for the course, 51 passed and the remaining
18 failed.

0.6-

Homework
0.4- HWA
= Hwz
B
5 i\ D HW3
a f HW4
0.z HWS
IJ \ HW6
1 W\\\
o C— E—
0.0
] ) } ! ]
0 5 10 15 20

Number of submissions

FIGURE 2. Density plot of the number of submissions within the
homework.

2) FEATURE SELECTION

We began our analysis of homework performance and aca-
demic achievement by addressing one particular question:
what features best describe student behavior in terms of
homework performance? Trautwein et al. [32] reported that
the homework behavior of students can be modeled in three
dimensions: effort, time, and learning strategies. In the cur-
rent study, we tailored the model to focus on the first two
dimensions. Statistical features extracted from the log dataset
were used to adapt the conceptual features proposed in the
model presented in [32] to the context of our APAS, resulting
in the features listed in Table 1.

B. METHODOLOGY
Multiple data preprocessing techniques were used in the
extraction of meaningful features from the log data.
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TABLE 1. Homework behavior model of Trautwein et al. and adapted
features for the proposed model.

Trautwein et al. model features
Homework effort

Our adapted features

Compliance Number of specific failures

Investment Number of submissions in total
Number of on-time submissions

Not used

Concentration

Number of tasks complete/
Percentage attempted

Homework time

Time on homework Time to first submission
Time to last submission

Durations in a specific state of failures

Additional learning Not used
Learning strategies

Cognitive Not used
Metacognitive Not used

Note that the log data is an unevenly spaced time series,
in which observations are captured after student submissions
without fixed intervals. Pivoting, aggregation, and other data
manipulation methods were used to reshape the data into a
tabular format. The final data was organized in a table, where
each row denotes all lists of the features on one specific
student.

Correlation analysis between the statistical features
in Table 1 and the final grade was used to characterize the
relationship between learning behaviors and achievements.
We then employed K-means clustering to identify groups of
students with similarities in learning patterns and achieve-
ments. Cluster profile analysis was used to highlight signifi-
cant characteristics in student behavior/effort in each cluster.
These patterns related to academic achievement can be used
by instructors to formulate strategies to support students or
adjust class policies.

Finally, the features identified in previous steps were then
applied to the log data before midterms to train a model to
make predictions of final course outcomes. The results of the
prediction model are based on selected features (via informa-
tion gain) in terms of importance in identifying at-risk student
profiles. We assessed various machine learning algorithms for
our prediction task: K-nearest neighbors (KNN) [50], naive
Bayes (NB) [51], support vector machine (SVM) [52], deci-
sion tree (DT) [53], random forest (RF) [54] and AdaBoost
(AB) [55]. 10-fold cross-validation was used to assess the
models. The workflow used in this research is illustrated
in Figure 3, and the results are detailed in the following
section.

IV. RESULTS

A. DATA EXTRACTION AND EXPLORATORY DATA

ANALYSIS

The features are categorized according to learning effort and
homework time at two statistical levels: an individual level
for each homework assignment (i.e., assignments 1 to 6), and
an overall level for the entire set of assignments (Table 2).
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FIGURE 3. Workflow adopted by the current study.

TABLE 2. Behavioral features of students in homework submission.

ID Individual-
level feature
name

Homework effort (count)

Fl1 CPF.Count; Total.CPF.Count

Overall-level
feature name

Description

Number of submissions

given CPF

F2 CSF.Count; Total.CSF.Count Number of submissions
given CSF

F3 UTF.Count; Total. UTF.Count Number of submissions
given UTF

F4 Sub.Count; Total.Sub.Count Number of submissions

F5 Ontime.Sub. Total.Ontime.- Number of on-time

Count; Sub.Count submissions

Homework time (minutes)
F6 Time.To.Start;  Avg.Time.To.Start

Time to first submission

F7 Time.To.End;  Avg.Time.To.End  Time to last submission
F8 CPF .Dur; Avg.CPF.Dur Duration of CPF
F9 CSF.Dur; Avg.CSF.Dur Duration of CSF
F10  UTF.Dur; Avg.UTF.Dur Duration of UTF

1) INDIVIDUAL LEVEL

Features related to homework effort indicated by the number
of times the student submitted a particular homework assign-
ment (submission count). Features related to the amount of
time the student spent doing homework are measured in
minutes, based on the difference between the timestamps
of corresponding events (e.g., receiving assignments, getting
failures, passing tests and so forth). Duration in failure refers
to the amount of time the student struggled to surmount or
move past a specific type of failure, based on the difference
between the timestamps of adjacent submissions.

2) OVERALL LEVEL

Features related to homework effort are computed by sum-
ming up the total number of submissions made by a given
student completing all the assignments. Features related to
homework time are computed by averaging the total amount
of time spent in completing each of the assignments. Given n
homework assignments, the total values of the features (f;) in
the homework effort category are computed as follows:

Total f = Zﬁ (D

i=1
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Average value of the features (f;) in the homework time
category is computed as follows:.

1 n
Avg.f = - Zfi‘ 2
i=1

Exploration data analysis (EDA) is often performed prior
to mining operations to gain insight into the nature of the
data, including distributions, statistical descriptions, and rela-
tionships among properties. In this study, we employed two
techniques based on graphical EDA (correlation matrix and
correlation network), to elucidate the behavioral patterns
exhibited by students in the submission of homework and
how the patterns affect their final grades. Figure 4 presents a
correlation matrix constructed using Pearson coefficient and
Figure 5 is the correlation network containing strong corre-
lated features (|p|>0.50, p < 0.05) extracted from Figure 4.

Pearson
Correlation

Total. CSF.Count - - . 0.04 -0.16

-10 -05 00 05 10

Total. CPF.Count 021 005 -0.09

. 033 -0.16 0.35 0.57

. 0.38 . 065 025 0.01

. 0.1 0.04 0.07 0.09 027 0.09

. -0.05 0.13 -0.27 0.08 0.31 -0.12 -0.32

. 034 007 01 -024 014 01 001 -0.36

. 057 055 0 0.01 . 009 021 -017 .

Avg.Time.To.Start .. 023 0.18 -0.02 -0.14 . -0.08 0.1

Total. UTF.Count

Total.Ontime.Sub.Count

Total.Sub.Count

Avg.UTF.Dur

Avg.CSF.Dur

Avg.CPF.Dur

Avg.Time.To.End

& & & & N X X > ‘2
%@é g,/ﬁ\b QQ\\' ((Q\’ 90 OQQ °0° 00(‘ 0\\5‘ o"(\ (bb
07 AT g S \5«(( 0.0 609 (<§) QQ O @\Q
& ,Q@Q' K I SN ; AN N
< ¥ ¥ & @ @
& \?:\g <0 O&\ S SEIP)
N

FIGURE 4. Correlation matrix extracted between features.

The strong correlation values in Figure 5 reveal
interesting patterns among student effort, student con-
centration, code quality ensuring and learning results.
Three features are strongly correlated with Final Grade:
Total.Ontime.Sub.Count (p = 0.57, p = 0.00), Avg.Time-
To.Start (p = —0.56, p = 0.00), and Avg.Time.To.End
(p=—0.62, p=0.00). 1t is conspicuous that Avg. Time.To.End
correlates to Avg.CPF.Dur (p = 0.57, p = 0.00) and
Avg.CSF.Dur (p = 0.55, p = 0.00). The correlations can be
interpreted as follows:

o The earlier students begin working on their homework,
the earlier they finish.

o Students who begin and finish their homework earlier
achieve higher grades. Students who make more effort
to finish their homework before the deadline will earlier
finish their homework and achieve higher grades.

VOLUME 8, 2020



H.-M. Chen et al.: Analysis of Learning Behavior in an Automated Programming Assessment Environment

IEEE Access

Total.Ontime.Sub.Count

Total.UTF.Count
Tolf Sub.Count

Total.CSF.Count
Avg.Time:To.Start

Tot? CPF.Count

Avg.Tide. To.End

Fiia\.Grade

‘Ava.CPE.Dur
@ Avg.UTF.Dur
Av?.CSF Dur é

FIGURE 5. The network of strong correlation features.

o Code quality improvement ability of students relatively
affects their learning performance. Since students who
have higher ability of code quality improvement spend
less time to solve CPF and CSF failures and finish their
work earlier (smaller value of Avg.Time.To.End), they
can reach higher final grade. The negative correlation
between Avg. Time.To.End and Final.Grade (p = 0. —62,
p = 0.00) well support this implication.

These findings are related to self-regulated behaviors of
students in time management and code quality improvement
which help to resolve RQ1: How is the ability regarding
code quality improvement of students associated with their
learning results? The answer is as follows: Those students
whose better ability of code quality improvement and tried
to make more prompt efforts to overcome coding failures in
their homework have better learning results.

B. LEARNING PATTERN ANALYSIS

Student clustering is a usual task done based on the assump-
tion that those students sharing similar learning behaviors
are similar in learning performance [18]. Clustering is an
effective approach to data segmentation in cases where the
analyst has no prior knowledge pertaining to the nature of the
data. Clustering is used to categorize data without predefined
classes (clusters); however, data instances within a cluster still
tend to present similarities. In this study, clustering analy-
sis was used to answer RQ2: What student groups can be
formed based on learning behavior of students in code quality
improvement? We adopted the protocol established in [27],
where k = 5 was deemed the optimal number of clusters,
to differentiate among various groups of students.

We used overall level features listed in Table 2 as the input
of k-means clustering. Since Total.Sub. Count partly depends
on counts of specific failures, we eliminated this feature in
the input set. After considering data distribution, features
related to UTF were also excluded because there were too
few UTF failures resulted from student submissions. Conse-
quently, selected features for clustering include {F'1, F2, F5,
Fo6, F7, F8, F9}. Due to the heterogeneity of selected features,
we applied Principal Component Analysis (PCA) dimension-
ality reduction to obtain a better projection of data in a new
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space with lower dimensionality which maximizes the vari-
ance of data. After transformed original data into reduced 3D
space, it is conspicuous that homework time features highly
correlate with the first principal component PC/, homework
effort features highly correlate with the second one PC2,
and PC3 correlates to Avg.CPF.Dur and Total. CSF.Count,
as depicted in Figure 6.

Pearson
Correlation
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FIGURE 6. Correlation matrix between original features and PCs.

K-means clustering was performed using Euclidean dis-
tance in the 3D space from PCA. We performed a detailed
analysis of the quality of the code (in terms of adherence
to code conventions) as well as specific stages of failure in
the students’ code. Figures 7a and 7b present the results of
K-means clustering in 3D PCA space (a) and in the pro-
jected space of three selected attributes which represent the
relationship between learning type and learning outcome:
Final.Grade, Total.Sub.Count, and Avg.Time.To.Start (b).
Note that individual clusters were assigned names according
to the relationship between learning patterns and the corre-
sponding outcomes. The naming of clusters is detailed below:

C1. Effective learners appear in the top-left corner of the
figures. These individuals achieved high scores within only a
few iterations. They appear to be good at resolving program-
ming problems. They begin working on their homework early
and finish it quickly.

C2. High-effort learners appear in the top-right of the
figures. They achieved final grade scores that are comparable
with those of the effective learners. They made a large number
of submissions and did not succeed as rapidly as their effec-
tive counterparts. They iteratively resolved problems without
giving up. They eventually succeeded but did not take the
most direct path.

C3. Average learners appear in the middle-left of the
figures. The number of submissions in this group was similar
to that of effective learners and less than that of high-effort
learners. They appear to have made a moderate effort and
their final results were acceptable, albeit lower than those of
the two groups mentioned above.

C4. Blind-trial learners appear in the bottom-right of
the figures. This group used the submission system much
more than did the other groups; however, they did not
always resolve the problems adequately, even after many
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FIGURE 7. Five clusters of students a) in PCA space, and b) in learning behavior and achievement space.

submissions. They failed to achieve results on par with the
effective and high-effort learners, and many were unable to
pass the course.

CS. Low-effort learners appear in the bottom-left corner
of the figures. They received the lowest score after making
only a small number of submissions. Many of them ceased
submitting code after meeting with initial failures. Many of
these individuals failed the course

Further analysis and discussion about differences among
the five groups are mentioned in the following sections.
To compare learning patterns of students in specific groups,
we apply Wilcoxon tests on each pair of clusters and use
p-value to conclude about the significance of differences.
Wilcoxon test was used in our analysis because the distribu-
tions of behavioral features of students do not conform to the
normal distribution. Cluster profiles described by normalized
mean value (z-score) are shown in Table 3.

TABLE 3. Five cluster profiles described in mean value of features
(z-standardized).

Effective High- Average Blind-trial Effortless
learners effort learners learners learners
Cluster N=29 learners N=13 N=4(6%) N=12
(42%) N=11 (19%) 17%)

Feature (16%)
Avg.Time.To.Start -0.46 -0.81 031 0.16 47
Avg.Time.To.End B 068 @ -072 1 o027 idlso 148
Avg.CPF.Dur B 048 F -018 B -037 {243 09
Avg.CSF.Dur B 048 F -027 1 034 250 i o021
Avg.UTF.Dur f -017 i 038 [ -018 [ -018 ] 032
Total.Sub.Count B -044 ©£Thas 0.09 111 B -050
Total.Ontime.Sub.Count ] o018 {53 @B -076 B -049 [ -086
Total.CPF.Count B 040 331 [E -034 o2 [ -017
Total.CSF.Count B -0s3 013 101 i E -030
Total.UTF.Count 008 ] 046 B -029 E -029 [ -0.19
Final. Grade 1 040 i 049 B -031[F -1.18 [ -0.68

1) HOMEWORK EFFORT

Figure 8 illustrates the differences among the five groups
in terms of homework effort. The high-effort learners made
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FIGURE 8. Boxplots indicating homework effort of five groups.

the largest number of submissions, followed by the blind-
trial learners. The other three groups made roughly the same
number of submissions. The most important attribute for
this analysis is the number of on-time submissions, which
PoZenel et al. [26] noted was an important indicator of com-
pliance, investment, and concentration. We found it advan-
tageous to combine the effective learners and high-effort
learners into a supergroup, called high achievers, who made
significantly more on-time submissions than did the individ-
uals in the other three groups (Wilcoxon test, p <0.05). This
is a clear indication that high-performance students make
more of an effort to meet submission deadlines, whereas
low achievers postpone their efforts until it is too late. This
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pattern is consistent with the correlation between the number
of on-time submissions and final grade (o = 0.57, p = 0.00).

2) HOMEWORK TIME

We observed a strong correlation between the time of the
first submission and the time of the last submission as shown
in Figure 9. Essentially, the effective and high-effort learners
began submitting code earlier and finished the assignments
earlier.

B3 Effective leamers B3 High effort learners B8 Average learners B8 Struggling learners B Effortless learners

Avg.Time.To.Start
| '

Avg.Time.To.End

Avg.CPFDur

Avg.CSFDur

Avg.UTF.Dur

10000 20000 30000 40000 50000
minute

FIGURE 9. Boxplots indicating homework time of five groups.

To assess the ability to overcome difficulties, we applied
the Wilcoxon test to assess the length of time students
remained in CPF or CSF. Our results did not reveal significant
differences among the five groups in terms of CPF; however,
we observed significant differences in terms of CSF among
four of the groups, except the group of Effortless learners
(Wilcoxon test, p< 0.05). Note that many of the students
in the low-effort group gave up entirely, sometimes before
receiving any CSF feedback. Overall, our results indicate that
students who try to maintain code quality generally achieve
higher final results. This suggests that code quality should be
emphasized in novice programming courses.

3) MAINTAINING CODE QUALITY

The compilation test, unit test, and code quality test revealed
considerable variations among the five groups in terms of
coding behavior. We recorded only a small number of UTF
failures, perhaps due to the fact that most of the students
examined the satisfaction of assignment functional require-
ments locally before submission. Note also that many syntax
issues can be resolved quickly and easily using Java inte-
grated development environments (IDEs), such as Eclipse
and IntelliJ. Thus, it is not surprising that we did not observe
significant differences in CPF duration between the effective,
high-effort, and average learners. Overall, we found that a
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student’s ability to maintain code quality can be assessed in
terms of code style failures (CSF).

Figure 9 indicates that students who rapidly resolved CSF
failures achieved higher final grades. The effective learners
received little in the way of CSF feedback and acted quickly
to resolve the minor issues they did encounter. They were also
attentive to the feedback from ProgEdu and coding conven-
tion documents, which no doubt contributed to their high final
grades.

The high-effort learners tended to follow a different strat-
egy, in which they focused on a few errors at a time and
resubmitted their code iteratively. This resulted in a large
amount of CSF feedback; however, they did not have to spend
significantly more time on this issue than did the effective
learners.

It appears that the average learners were unable to con-
centrate on completing their assignments. After receiving
CSF feedback, they tended to postpone their revisions/
resubmissions for a long time, with the result that they
were unable to move past the CSF stage without difficulty.
Compared to the high-effort and blind-trial learners, they did
not resubmit their code many times; however, most of them
were able to resolve the issues when provided sufficient time.

Like the high-effort learners, those in the blind-trial group
resubmitted code numerous times; however, they displayed
an inability to resolve difficulties and conform to syntax rules
and coding conventions. They received a large amount of
error feedback with the result that they remained in the CPF
and CPF states for an extended period.

The low-effort learners tended to give up early, i.e., imme-
diately after receiving a few CPF feedbacks. Most of them
were unable to pass syntax checking and therefore remained
in the CPF state for a long time. It is possible that this
behavior can be attributed to cognitive difficulties, requiring
early detection and intervention.

The aforementioned analysis can clearly address the
research question RQ3 about the relationship between code
quality maintaining effort and learning outcomes. Those stu-
dents who pay earlier or more effort in solving the CSF
failures can achieve higher final results.

Our analysis of student progress in learning to ensure
code quality involved applying paired Wilcoxon tests to all
pairs of homework assignments to assess differences in the
mean number of CSFs (Table 4). Note that CSF was not
available for assignment 1; therefore, only the last five assign-
ments were available for comparison. Our results revealed a
decrease in the mean number of CSFs after assignment 3,

TABLE 4. Statistics of CSF failures in specific assignments.

CSF. CSF. CSF. CSF. CSF.
Count, County County Counts Countg
Mean 1.35 1.55 1.07 0.88 0.38
SD 1.95 2.26 1.86 1.37 0.95
Max 8 14 9 8 6
Min 0 0 0 0 0
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particularly in the final homework assignment (Wilcoxon
tests, p < 0.05). This demonstrates the advantages of the
iterative learning approach employed in our APAS (ProgEdu)
in promoting adherence to code quality.

C. LEARNING ACHIEVEMENT PREDICTION

There is a crucial relationship between learning patterns
and learning outcomes. In this study, we built a prediction
model by which to characterize students according to learn-
ing behavior in the early stages of the course. The target
of the prediction model was the final result (pass or fail).
Students who eventually failed should be identified as at-risk
as early as possible (preferably before mid-terms) to facilitate
behavioral correction.

1) DATA AND FEATURE SELECTION

To achieve the goal of identifying at-risk students before mid-
terms, we obtained data for predictions from only the first
three assignments. We focused on 10 individual-level features
from each assignment, resulting in a total of 30 features.
We implemented feature selection using information gain to
avoid overfitting due to a large number of features. Infor-
mation gain is a measurement used to select the best split
attribute based on a reduction in entropy [42]. We first ranked
all the computed information-gain values. The training and
validation steps were repeated using top-weighted features,
and feature selection was performed using the hill-climbing
method. Table 5 lists the eight weighted features that gen-
erated the best validation results, and their corresponding
information-gain values.

TABLE 5. Top-8 features ranked by information gain.

Feature Information gain
Time.To.End; 0.1363
Time.To.Start; 0.1239
CPF. Dur, 0.1204
CSF. Dur; 0.1005
CSF.Count; 0.0977
Ontime.Sub.Count; 0.0951
Ontime.Sub.Count, 0.0858
Time.To.End, 0.0697

2) CLASSIFICATION EVALUATION

In assessing the performance of the prediction models, it was
particularly important to avoid overfitting, due to the fact
that our ultimate objective was to build generalizable mod-
els capable of generating reliable predictions using unseen
data. This was achieved using 10-fold cross validation. The
original data was first divided into 10 blocks. In each valida-
tion round, 9 blocks were used as training data and 1 block
was used for validation. The process was repeated 10 times
using different testing blocks in each round. The overall
performance of the models was estimated by averaging the
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measurements derived in all 10 cases of cross validation. Our
use of all entries in the original data for training as well as
validation helped us to estimate how the machine learning
models generalize independent datasets.

In our evaluation of effectiveness, we adopted confusion
matrix-based measurements, including Accuracy (Acc), Area
Under the Curve (AUC), Precision (Pr), Recall (Re), and
FI-measure, which are widely used in classification-related
problems. A confusion matrix describes summarized results
of a binary classifier with four possible prediction cases:
True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN). Accuracy is the overall correct rate
achieved by the classifier. Precision indicates the exactness of
the classifier in positive cases. Recall indicates completeness
in positive detections. Due to the inverse relationship between
precision and recall, the F-measure is used as a harmonic
mean between the two. The calculations used in the evalu-
ation metrics were as follows:

. TP
Precision = —— 3)
TP + FP
TP
Recall = —— “4)
TP + FN
Precision x Recall
F1 — measure = 2 X ®)

Precision 4 Recall

A relatively small proportion of the students were unable
to pass the course; therefore, the task of predicting at-risk
students became an imbalanced classification problem (pass
rate = 73.9% (51/69) and fail rate = 26.1% (18/69)).
To ensure a reliable assessment of prediction performance,
we performed evaluations on both classes of the target fea-
ture (i.e., at-risk and non-risk students). Table 6 presents the
results of 10-fold cross validation.

TABLE 6. Cross-validation results for identifying at-risk students using
the early detection model.

Method AUC  Acc Non-risk At-risk
F1 Pr Re F1 Pr Re

SVM 0.68 0.71 082 077 086 033 041 0.28
AB 0.73 0.80 086 086 086  0.61 0.61 0.61
DT 0.80 0.83 0.88 088 088  0.67 0.67 0.67
NB 0.81 075 081 093 0.73 0.64 0.52 0.83
RF 0.85 078 085 086 084  0.60 0.58 0.61
KNN 0.87 087 091 089 094 0.73 0.80 0.67

The evaluation results reveal that the proposed scheme per-
formed reasonably well in the early detection of at-risk stu-
dents. KNN provided the best performance with an accuracy
of 0.87, and Fl-measures of 0.914 (non-risk students) and
0.727 (at-risk students). NB was the most sensitive to at-risk
students, with a recall of 0.833; however, its precision in this
area was only 0.517. The performance of DT was slightly
lower than that of KNN, with an accuracy of 0.826 and
F1-measures of 0.882 (non-risk students) and 0.667 (at-risk
students). The performance of the remaining algorithms was
roughly the same, with accuracy varying from 0.710 to 0.797.
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When using KNN, we were able to detect 70% of at-risk
students based solely on data obtained prior to mid-terms.
This finding also answers the RQ4: Is it possible to build a
prediction model capable of early identifying at-risk students
based solely on their behaviors in code quality improvement?
A list of important predictors in Table 5 reveals that ability in
code quality improvement has strong effects on the success
of students in the course.

Our predicting results are comparable to those of the
papers [39] and [56]. In [39], the early prediction of at-risk
students was produced after the first five weeks of the first-
year-engineering course at the Midwestern US university.
The robustness of algorithms used in our work and that paper
also consistent: KNN outperformed the others in overall pre-
diction accuracy (87% vs 94.9% in accuracy) and NB was the
most sensitive algorithm with at-risk students (83% vs 86.9%
in recall). Note that in [39], by the end of the fifth week,
students already took part in 10 quizzes, five homework with
33 learning objectives, and one written exam which referred
to as the midterm. In [56], the authors proposed an APAS
for Java course at National Taichung University of Education
and use the log data to predict the final grades of students.
The best accuracy of forecasting was 77% when using data
extracted from pre-midterm exercises and the midterm exer-
cise. We claim that our prediction can be made with fewer
data and does not require any additional grade given by
manual assessments of the educators such as writing exams
or midterm. Although our prediction just can be done until
before the midterm using current data, we believe that earlier
predictions can be made if the instructors having more fre-
quent assignment schedule, e.g. weekly homework, in future
courses.

Our prediction results are also consistent with the inves-
tigation of the effectiveness of EDM techniques in early
prediction failures of students in introductory programming
courses [57]. Both distance learning and on-campus course
datasets are used in that study. With an in-campus course,
the data of each student including demographics information,
amount of exercises done, number of correct exercises, and
weekly performance in activities and exams; the first exam
was given in the fourth week. With distance learning course,
the data was enriched by online activities in quizzes, interac-
tions with the LMS and forum, etc.; the first exam was given
in the fifth week. The highest performance of academic fail-
ures prediction was produced by SVM when using data from
the beginning of the courses to the first exam (F1-measure
was 92% in distance learning course and 83% in on-campus
course). In the case of the first exam results were excluded,
these measures dropped down to 79% and 78%, respectively.
Our results again, with fewer input data, are comparable when
we only use the log data from three homework. To obtain
earlier and more accurate predictions, it is suggested to
the instructors of the future courses that homework should
be given more frequently to provide enough data for the
prediction model.
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D. THREATS OF VALIDITY

Although we discovered interesting patterns in homework
behaviors which affects students’ final achievement in a Java
programming course, it is important to note some threats:

First, the data source used for analysis represents infor-
mation about students of the course Java programming in a
university in Taiwan. Consequently, the experimental results
are not general.

Second, the performance of early detection of at-risk stu-
dents may depend on the difficulty levels of individual home-
work. For example, easy assignments at the beginning of
the course do not contribute significantly to the prediction
models. In this study, homework 3 required most efforts to be
solved and had the most impact on the detection model, con-
sequently. The same prediction results might not be obtained
in other courses because of differences in assigning time and
difficulty level of given homework assignments.

Third, besides homework performance, the results of the
midterm exam are also a strong factor affecting the possibility
to be the failure of students. There were 10 students who
dropped out after the midterm exam. We leave the dropout
prediction problem of students for another study. Therefore,
discovered learning patterns and the prediction model of
at-risk students in this study do not include dropped out
students.

Finally, the volume of data obtained in this study might be
governed by the instructors of the course, who are also the
authors of this paper. In this first study about the usage of the
system, we aimed to understand students’ learning behaviors
in a freedom mode, so that the number of submissions was
not limited. In other scenarios, the behaviors of students
may significantly be shifted if any restriction is in place.
For example, the groups of students with a high number of
submissions will be no longer detected.

V. DISCUSSION

The purpose of this paper is to find out the relation-
ship between student behaviors in code quality improve-
ment and learning achievement. First, we suggest that the
homework behavioral model of Flunger et al. [32] can be
adapted to the context of programming courses to analyze
the learning performance of students. Second, we segmented
students based on their behavioral characteristics in code
quality improvement and describe in detail the differences
between groups of students. There are significant differences
in homework behavior between high-performance groups
and low-performance ones. The homework time attributes
have more impact on student segmentation than homework
effort attributes. Third, employing attributes related to coding
quality improvement provides good signals to understand
students’ situations. Long durations to overcome CPF and
CSF failures are denotations that a student has trouble with
their learning. Late starting, early giving up after some CPF
failures, and rarely receiving CSF failures are characteristic
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of effortless learners. Finally, we believe that we can gain
more with unlimited resubmission since a high number of
submissions is also a good signal of potential struggling
learners. In overall, a dashboard containing visualizations of
proposed attributes is useful for instructors to give appropri-
ate instructions that improve students’ learning performance.

The prediction model for early warning of at-risk students
was built only in-course data, especially high level of home-
work submission logs. Although deeper analyzing system
feedbacks and students’ code may bring potential fruitful
knowledge, we leave those tasks for future research since
we aim to maintain the replicability of the current mining
flow. The warning made before the midterm does not seem
very early. Yet, three assignments are few enough to be
arranged in the first quarter of any course. Hence, this is also a
notable remark for those educators who want to make earlier
predictions.

Acceptance of students on code quality improvement func-
tionalities of ProgEdu was surveyed and presented in the
article [11]. More than 70% of asked students agreed with
the assessment method given by the system, especially with
code quality assessment. The most frequent errors were miss-
ing comments or documentation. The students commented
that there are some given functions are too simple to be
commented on. Hence, they always got CSF when ignor-
ing such comments. Overall, our iterative approach to the
improvement of code quality of students is widely acceptable
by students. With experiences conducted, we will apply the
research flow of this study in future courses to validate it and
increase its impact on programming teaching.

VI. CONCLUSION

In this study, the EDM approach was used to characterize
the learning behavior of students engaged in a computer
programming course using data extracted from the APAS
ProgEdu. A set of data mining techniques including EDA,
clustering, classification, and data visualization was lever-
aged. Behavioral features related to the time and effort that
went into homework assignments were extracted from system
log data. Graphical EDA revealed that students who made a
pronounced effort to complete their homework early tended
to finish earlier and earn higher final grades.

K-means clustering analysis was used to differentiate stu-
dents into five groups based on their learning behavior in
the coding course. Cluster profile analysis confirmed that
the effort students put into their homework (denoted by the
number of submissions) was not linearly associated with final
grades. In contrast, learning motivation (denoted by early
and on-time submissions) was strongly associated with final
grades.

From the perspective of code quality, we found that
high-performance students had fewer CSF failures and were
able to resolve errors more quickly. Our analysis of adherence
to coding conventions revealed that throughout the course,
most of the students improved in their ability to keep their
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code clean, such that in the final assignment, the probability
of receiving a CSF in a certain submission was less than 0.4.

Concerning the prediction of learning performance, KNN
achieved the highest overall accuracy in predicting learning
results, whereas the Naive Bayes approach produced the best
results in predicting at-risk students. We believe that inte-
grating this prediction model within the APAS system would
help to identify at-risk students and provide insight that could
prove beneficial to reforming their learning behaviors.

In conclusion, our results demonstrate the efficacy of
EDM, even with a relatively small dataset. We believe that
the simple workflow proposed in this paper could easily
be replicated by educators via referencing the information
and tools provided by the repository of ProgEdu.! We claim
that the information collected from assignment submissions
is valuable for multiple educational purposes, for instance,
to improve the assignment design for the next versions of
the course, and to be featured for learning analytics related
to students’ behavior. In the future, we will analyze system
feedback in conjunction with students’ behavior to clarify
how students could improve their code based on the feedback
which they receive after each submission.
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