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ABSTRACT We report the development of a biped-robot system with real-time surface recognition and
walking-speed adjustment to control the robot motion during walking on different types of surfaces. Four
types of test surfaces (i.e. rough foam (RF), smooth foam (SF), thin carpet (TC) and smooth table (ST))
are considered in the system verification. For surface-property recognition we use ultra-thin-membrane
force sensors, mounted under the robot feet, and a classification circuit, implemented on an Arduino Uno
board. The walking-speed adjustment is performed with an external control circuit, which receives the
surface-recognition signal from the classification circuit and sends a feedback signal to the robot controller
(i.e. RCB-4HV) for adjusting the walking speed accordingly. We applied the nearest-neighbor-classification
algorithm with the Euclidean-distance measure and a set of reference data, to distinguish between the
four test surfaces based on the robot’s real-time walking pattern. The mean absolute value (MAV) feature
descriptor is used to generate four different types of reference walking pattern, corresponding to the four
different surfaces. In our experiments it is observed, that the ST surface performs best in terms of average
surface-recognition latency (SRL) (∼3.6 sec) during walking on same surface. On the other hand, the surface
transition from TC to SF showed minimum surface-transition latency (STL) (∼8.2 sec) with correct speed
change from 135 to 160 robot-motor-configuration frames per stride (frames/stride), while the transition from
SF to TC surfaces showedmaximum STL (∼11.6 sec) including speed change from 160 to 135 frames/stride.
The obtained results are useful for development of the next generation of surface-recognition and speed-
adjustment systems, implemented in humanoid robots to enable balanced and stable walking in environments
with multiple changed surface properties.

INDEX TERMS Humanoid robot, force sensor, microcomputer, Euclidean distance, application specific
motion file (ASMF).

I. INTRODUCTION
ADVANCED surface-detection systems with corresponding
speed adjustment, during humanoid-robot walking on dif-
ferent surfaces with controlled and stable motion, require
multi-modal sensory data to safely interact with unknown
real-world environments, i.e., to take correct decisions and
to properly act in an autonomous way. Most of the sen-
sor based humanoid robot interaction systems have been
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investigated using visual and auditory sensors [1]. However,
the information obtained with visual and auditory sensors
sometimes shows ambiguities due to the shortage of actual
contact information. To receive exact contact information, the
interactions between tactile sensors and real-world environ-
ments are necessary, in particular for surface recognition and
corresponding decisions (e.g. speed-adjustment). The contact
information depends on the surface type (e.g. example hard,
soft, smooth and rough etc.), which can be extracted by using
tactile sensors. Hence, tactile sensors can be expected to sub-
stantially strengthen the real-world surface recognition and

169640 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3968-2681
https://orcid.org/0000-0002-9158-8406
https://orcid.org/0000-0002-9244-9539
https://orcid.org/0000-0001-5712-1020
https://orcid.org/0000-0002-5196-8148


S. Bhattacharya et al.: Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment

the self-balancing motion- control capabilities of humanoid
robots [1]. In general, the tactile sensors have drawn a greater
attention from all robotics-research communities, due to the
necessity of acquiring the provided contact-force information
for targeted processing of such information. Over the last
couple of years, an enormous number of tactile sensors have
been developed for surface recognition, as reported in [1]–[4].
The force/torque sensor is a special kind of tactile sensors,
which is used for surface recognition, as reported in [5]–[8].
The capacitive types of tactile sensors are used in biped
robots to measure the ground-contact force (GCF) and clas-
sify the surfaces with more than 90% accuracy, as reported
in [9]. Most of the previous research work focused firstly
on the tactile-sensing-hardware constituents of tactile sen-
sors and the associated electronic-processing interface for
the sensor-collected raw information. The second focus were
the computational information-processing tools, using differ-
ent artificial-intelligence-based algorithms (e.g. ANN, SVM,
AdaBoost, random forest, unsupervised learning etc.), that
help to construct real-world models for classifying different
surfaces (e.g. material, texture classification etc.) by extract-
ing the essence of raw tactile-sensor information. On the
other hand, very limited numbers of research studies, tar-
geting the self-balancing of humanoid robots with suitable
control mechanisms during autonomous dynamic walking on
different surfaces, have been reported. Research based on a
control architecture with stabilizers for stable 3D dynamic
walking of a biped robot on compliant contact environments
has been reported in [10]. The simulation-based dynamic
stable walking of a humanoid robot with a control architec-
ture has been reported in [11]. A novel feed-back control
method, called Dynamic Balancing Force Control (DBFC),
is used in [12] to perform several tasks with self-balancing
under an unknown perturbation. Shuuji Kajita et al. reported
a novel balance-control method for a humanoid robot using
a force-contact torque controller, which constitutes good
back-drivability and a feedback-control mechanism dur-
ing dynamic walking [13]. A stabilizer-based viscoelastic
reaction-mass pendulum model for dynamic balancing and
motion control of a humanoid robot (HRP-2), without using
contact-force sensors has been reported in [14], [15]. Some
recent research work, based on a whole-body-framework
control during dynamic motion of the biped robot uses
contact force/moment control, as reported in [16]. The
main approach in [16] is to maintain the dynamic balance
of torque-controlled robots by adjusting contact force and
moment through the application of a null-space torque-
control algorithm, which was implemented on the humanoid
robot’s leg. Linear model predictive control is a special kind
of control mechanism, which allows stable walking of the
humanoid robot in the presence of strong disruptions on the
surface. This control model is implemented in the HRP-2
humanoid robot, reported in [17].

Motivated by the previous works, we have implemented a
low-cost, flexible and hardware-efficient surface-recognition
and dynamic speed-adjustment system for humanoid robots,

based on force sensors and external control circuitry. In our
experiments, we used four different types of test surfaces
for detection during robot walking. The developed dynamic
surface-detection and speed-adjustment system, as illus-
trated in Fig. 1, consist of the Kondo KHR-3HV humanoid
robot [18], two thin and flexible force sensors [19] attached
under the robot feet, microcomputer-1 (i.e. Arduino-UNO
board) used for raw sensor-data processing, microcomputer-2
(i.e. robot-controller RCB-4HV) for controlling the robot
motion dynamically and finally, an external control circuit
to control the robot motion dynamically by accessing the
decision signal frommicrocomputer-1. To recognize different
flat surfaces during real-time humanoid-robot walking on
these surfaces, we extract feature vectors from the force-
sensor-generated raw data and use the Euclidean-distance cal-
culation to search the closest neighbor among given reference
vectors to generate the corresponding decision signal.

FIGURE 1. Overall Proposed system level architecture for surfaces
recognition and dynamic walking-speed adjustment on different surfaces
using humanoid robot, force sensors and external control circuits.
(b) Schematic view of Humanoid robot Kondo KHR-3HV and
piezo-resistive force sensors.

The paper is organized as follows. Section II describes the
related work. Section III describes the robot-system develop-
ment for real-time surface-recognition and speed adjustment
during dynamic walking. Section IV describes the experi-
mental setup. Section V describes surface recognition and
decision-signal generation, followed by the results presenta-
tion and discussion in Section VI. The conclusions are drawn
in Section VII.

II. RELATED WORK
In this section, we described previous related research find-
ings on walking-speed adjustment of humanoid robots during
walking on different walking terrains. In [20], a method for
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walking speed improvement without changing the reduction
ratio at the robot’s joint-motor system is reported for differ-
ent surface conditions, using the Bonten-Maru II humanoid
robot. In their experiment, the authors have worked with
both simulation approaches and experimental measurements,
to verify performance improvements. A comparative study
based on walking-speed transition for both humans and
humanoid robots with controllable stiffness and limb coor-
dination is reported in [21]. In this work, it is demonstrated,
that variable stiffness and limb coordination are important for
adaptive human walking, and that implementation of these
concepts can also improve the performance of a bipedal
walking robot. Gait generation inspired by human behavior
and related walking-speed control for humanoid robots, using
a neural oscillator and an evolutionary algorithm (MLP),
is reported for different walking surfaces in [22]. The authors
have suggested, that their present research result is more
accurate for smooth walking-speed transition between sur-
faces, than earlier results. A novel hierarchical control strat-
egy for biped-robot walking on uneven terrain is reported
in [23]. In this work, authors have considered a blind
humanoid robot, walking on uneven terrain with highwalking
speed, which may generate a huge foot-contact force. Using
their control strategy, the foot-contact impact can be reduced.
Thus, the robot can walk blindly with fast walking speed and
high reliability on an uneven terrain.

III. ROBOT-SYSTEM DEVELOPMENT
The proposed system is developed for dynamical surface
detection and speed adjustment during humanoid-robot walk-
ing on different surfaces to enable stable movement with the
help of force sensors, microcomputers and an external control
circuit.

Figure.1 illustrates the system-level architecture of
our developed biped-robot system, which recognizes the
walking-surface types using force sensors and adjusts the
walking speed during transition from one surface to another
surface, in order to prevent robot falling and improve walking
stability.

The Kondo KHR-3HV humanoid robot [18] is used for our
ongoing experiments. It includes 17 active servomotors and
an RCB-4HVmicrocontroller. Height and weight of the robot
are 40.11 cm and 1.5 kg, respectively.

The force sensors form a major part in this system and are
mounted under the robot feet, to extract raw sensor data for
enabling surface-type detection and robot-speed adjustment.
The total active area of each of the piezo-resistive force
sensors is 39.6× 39.6 mm [19].

The classification unit is another important part in this
system, applied for raw-sensor-data processing with an
ATmega328P microcontroller, which is attached into an
Arduino-UNO board (i.e. Microcomputer-1). Hardware-
compatible-embedded programming is used to design the
classification unit, so that it can recognize the exact walking
surface using force-sensor data and further can generate a
decision signal in the form of an analog voltage.

The external control circuit contributes the active role of
dynamically adjusting the robot’s walking speed duringwalk-
ing on different surfaces. It applies 4 different colors of LEDs,
4 operational amplifiers (LM358) and a 16-channel analog
multiplexer (i.e. TC9152P) [24]. This external controller cir-
cuit receives a pulse-width-modulation (PWM) signal as the
decision-signal from the classification unit and provides the
feedback to the AD-port of the robot controller (RCB-4HV)
in the form of a stable analog voltage (i.e. constant DC
voltage), to control the robot’s walking speed when the robot
is moving from one surface to another surface.

In this work, we mainly focused on the system devel-
opment for high-accuracy real-time surface recognition and
appropriate speed adjustment, when the robot is walking on
changing surfaces.

IV. EXPERIMENTAL SETUP
A. TYPES OF TEST SURFACES
Test-surface selection for humanoid-robot walking is a vital
part for verification of the system development. Some surface
related recent work was reported in [3]–[8]. The proposed
experimental setup involves the following four types of sur-
faces, where the robot can walk smoothly without falling
(see Fig.2 (left-side)).

• S-1: rough foam (RF)
• S-2: smooth foam (SF)
• S-3: thin carpet (TC)
• S-4: smooth table (ST)

Due to surface-property variations in smoothness, roughness
or softness, the sensor-detected voltage also varies during
robot walking as shown in Fig.2 (right-side). Rough-foam,
smooth-foam, thin-carpet and smooth-table surfaces have a
thickness of 0.9 cm, 0.9 cm, 0.3 cm and 3.5 cm, respectively.
In every experimental run, we set the humanoid robot to
walk on each of the four surfaces individually and collected
the force-sensor data for surface-pattern recognition and
corresponding decision-signal generation for dynamic speed
adjustment of the humanoid robot. From Fig.2, it is observed
that the sensor-detected voltage responses show surface-
related variations during robot walking. These voltage-
pattern variations are useful for surface recognition and
walking-speed control.

B. PIZO-RESISTIVE FORCE SENSORS
Advanced tactile sensors have been widely used for surface
recognition in several robotics applications. Some latest tac-
tile sensors for surface recognition are reported in [1]–[4].
The force sensors are a special tactile-sensor kind, which are
attached under the robot feet to measure the robot-weight-
induced foot-contact force in the form of an analog voltage
with a suitable sampling rate [19]. In our measurement setup,
we used low-cost, thin and flexible piezo-resistive-membrane
force sensor (see Fig.1) with analog-type force resolution and
39.6 × 39.6 mm active area. Working range is 0∼5V with
<1ms response time, to measure the foot-contact force of
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FIGURE 2. Left-side: Schematic representation of robot walking on four
different types of surfaces (rough foam (RF), smooth foam (SF), thin
carpet (TC), and smooth table (ST)). Right-side: Left-foot-sensor-detected
raw data in the form of an analog voltage during walking on the different
surfaces.

the robot during walking on different surfaces. Force-sensor-
generated raw-voltage data are sent to the classification unit,
implemented on microcomputer-1 (see Fig.3 (a)), for fast
dynamic surface-property recognition and generation of a
decision signal in the form of an analog voltage to adjust the
walking speed.

C. MICROCOMPUTERS
Microcomputers are major building blocks in our experi-
mental setup. We use two different microcomputer types,
as explained below in detail.
• Microcomputer-1: The microcomputer-1 is basically
an Arduino-UNO open-platform board, which consist
of an 8-bit microcontroller (i.e. ATmega328P), imple-
mented by CMOS technology with RISC architecture
and 32k Bytes on-chip flash memory. It is used to collect
the raw analog data from the piezo-resistive-membrane
force sensors during humanoid-robot walking on dif-
ferent surfaces and to process those data for surface
recognition with a software-implemented classification

FIGURE 3. (a) Full experimental setup for surface detection and speed
control during humanoid-robot walking on different surfaces. (b) Details
of External control circuit for online speed adjustment (used components:
four different colored LEDs, four RC-low pass filters, four operational
amplifiers and one 16-channel analog multiplexer).

unit. The classification-unit output is then used to gen-
erate a decision signal in the form of an analog volt-
age across the LEDs. Classification-unit implementation
on the ATmega328P microcontroller uses embedded
programming by employing an integrated development
environment (IDE) on system-1 (see Fig.3 (a)).

VOLUME 8, 2020 169643



S. Bhattacharya et al.: Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment

• Microcomputer-2: The microcomputer-2 is another
important component in our experimental setup. It is
functioning as a robot controller (i.e. RCB-4HV),
embedded with a single-chip microprocessor-control
unit (MCU) (i.e. M30260F8AGP) and fabricated using
high-performance CMOS technology with 68k Byte
internal memory (i.e. flash type). It also contains a
12-channel, 10-bit A/D converter, which is used for
the decision-signal feedback coming from the classi-
fication unit (see Fig.3 (a)). The RCB-4HV board is
interfaced with the robot-controlling software and uses
the application specific motion file (ASMF) through
which the robot can change the dynamic motion dur-
ing walking (see Fig.3 (a)). The AD-port of RCB-4HV
receives only one decision signal (i.e. analog voltage) at
a time, coming from the output terminal of the external
control circuit. After AD-conversion, it is transferred
to the software-driven ASMF (see Fig. 3 (a)), contain-
ing four object-oriented comparators, which compare
the four surface-specific decision signals, generated as
voltage-drops across LEDs, separately. Each decision
signal for the surface recognition is compared with all
four comparators. If the online decision signal matches
with the assigned reference values, stored in the com-
parator objects, then the main motion file will call the
speed-change object (i.e. very slow, slow, medium and
high) to appropriately adjust the robot-motion speed
during transitions between surfaces (see Fig. 3 (a)).

D. EXTERNAL CONTROL CIRCUIT FOR SPEED
ADJUSTMENT
Surface recognition and speed adjustment are primary tasks
of any advance robot controller for adjusting the walk-
ing speed autonomously and to obtain dynamic balanc-
ing features. The external control circuit plays an active
role for the change of the walking speed by identifying
the exact surface pattern and is functioning as an interme-
diator between microcomputer-1 (i.e. Arduino-UNO) and
microcomputer-2 (i.e. RCB-4HV), for walking-speed adjust-
ment when the robot crosses between surfaces, as illustrated
in Fig.1 and Fig.3 (b). To design the external controller cir-
cuit, we used four resistors (R=4.7k�), four electrolyte-type
capacitors (C=0.1pF) with operating-voltage rating of 50V,
as well as four low-power operational amplifiers (LM358)
with 1MHz bandwidth and wide power-supply range
(3-32 V). Further, we applied one low-power CMOS-
based 16-channel analog multiplexer (TC9152P) with wide
operating-voltage range (5-32) and four different colored
LEDs to generate the analog-voltage drops correspond-
ing to the decision signal, as illustrated in Fig.3 (b). The
RC networks are functioning as passive low-pass filters to
remove unwanted voltage fluctuations of the decision sig-
nal due to robot-motor-generated noise across the LED ter-
minals, resulting from mechanical robot-body oscillations
during dynamic walking, as illustrated in Fig.3 (b) and
Fig.4. The outputs from the four RC filters are connected

FIGURE 4. Measured decision signals across the LEDs, including the
maximum peak voltages. We obtained max-peak values of 212 mV,
147 mV, 156 mV and 118 mV for rough-foam, smooth-foam, thin-carpet
and smooth-table surfaces, respectively.

to four unity-gain-buffer circuits (i.e. operational amplifiers)
to retain constant DC levels without voltage shifts, because
the RCB-4HV board needs constant voltage levels for reli-
able recognition. These voltage levels are assigned in the
robot operating software (i.e. the H-T-H software-specific
motion file, also referred to as ASMF) (see Fig.3 (a)). The
four operational-amplifier outputs are connected to the input
terminals of the 16-channel analog multiplexer, which selects
one of the four voltage inputs (i.e. the decision signal) for
connection to the input terminal (i.e. AD-port) of the robot
controller (i.e. the RCB-4HV board). Similarly, the robot
operating software (i.e. the H-T-H software) compares the
decision signal from the AD-port by using the comparator
object (i.e. the software-driven ASMF) and decides the robot-
motion speed according to the corresponding recognition
result. When the classification part in Fig.3 (b) recognizes
that the robot is walking on a rough-foam surface, only the
green color LED will be activated to glow and the volt-
age drop across this LED (∼212mV) will be transferred to
the output of the multiplexer by choosing the select line
S0 = high. Similarly, for smooth-foam, thin-carpet and
smooth-table surfaces, the corresponding blue, red or
magenta LED will be activated to glow and the respective
voltage drop (∼ 147mV,∼156mV or∼118mV) will be trans-
ferred to the output of the multiplexer by activating the S1,
S2 or S3 line. The output terminals of the four operational
amplifiers can be directly connected with S0, S1,S2, and S3
for the selection purpose, because the voltage drops across
the LEDs are sufficient for activating the corresponding
analog-multiplexer port.

E. DATA COLLECTION
The force-sensor-generated raw-data collection is one of the
elementary tasks during robot walking on different surfaces,
to recognize the surface pattern and adjust the walking speed.
In our experiment, we collected a large amount of serial
raw-sensor data online, using the Arduino UNO board (i.e.
microcomputer-1), which were then segmented offline into
the corresponding robot-walking steps. Each walking step
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FIGURE 5. Motor design specification with assigned frame number and
angle of rotation for all 17 servomotors (H-T-H s/w supported GUI).

represents one walking-reference sample or stride (see Fig.1),
consisting of M (M>0) raw sensor-data points. During the
data extraction process, two consecutive raw sensor-data
points are separated by 50 ms. The sampling rate TS is
therefore 50 ms/point, which can in principle be adjusted
by embedded programming (10ms ≥ TS <1000ms). So,
the total time TP required to cover the sample period of one
stride can be represented as

TP = M × TS (1)

The number of sensor-data points per stride M is a variable
parameter, which depends on robot walking speed and is
M equal 76, 64, 58, and 50 for very slow, slow, medium,
and fast speeds, respectively, at a fixed sampling rate of.
TS = 50 ms/point. The walking speed of the humanoid
robot is related to the number of frames (i.e. robot-motor
configurations) per stride, which is determined in the robot-
design specification. It can be adjusted by changing the
mechanical parameter for the robot motors, such as the fixed
angles of rotation in the robot-operating software (see Fig. 5).
Each frame represents in principle a static posture of the
humanoid robot during its motion, while the frame rate fRATE
defines the delay time for changing between two subsequent
robot postures. In our experiments, we considered fRATE =
20 ms/frame. So, the humanoid robot’s walking speed can be
related to the frame number per stride in the following form

V−1SPEED =
Tp
fRATE

(2)

By using above equation, the robot’s walking speed can
be adjusted by changing the number of motor-configuration
frames per stride and therefore the number of sampling
points per stride, as illustrated in Table 1. In our experiment,
we used the walking-speed adjustments given in Table 1 for
our 4 different test surfaces. During reference-data collec-
tion for the different surfaces, the first few strides were

TABLE 1. Adjusted parameters during robot walking.

ignored until the robot walking became stable, and then
we collected the offline reference data for surface recog-
nition by nearest neighbor search. For feature extraction,
we used the mean absolute value (MAV) feature descrip-
tor, which is sufficiently simple and has low computational
cost. The feature-vector construction for surface recognition,
subsequent decision-signal generation and the walking-speed
adjustment are explained in the following Section IV.

V. SURFACE RECOGNITION AND DECISION SIGNAL
GENERATION
The dynamic surface recognition during walking on different
surfaces is one of the challenging tasks for a humanoid robot.
For the surface recognition, the feature extraction from the
raw sensor data is one of the crucial steps, which should
allow distinguishing the four different surface types even
in the presence of noisy force-sensor data. There are sev-
eral ongoing research studies based on pattern recognition
using different types of feature vectors to distinguish different
types of surfaces. Some work related to feature-extraction
algorithms was reported in [25]–[31]. In our experiments,
we used the mean absolute value (MAV) feature, to sim-
plify the calculation and to reduce the information-processing
cost. The sliding window algorithm, implemented on the
ATmega328 microcontroller, is used to generate the MAV
feature [30], [31] (see Fig.6). For real time pattern match-
ing we use the Euclidean-distance-search algorithm with the
k-nearest neighbor (kNN) classifier [32]–[34] to match the
online pattern dynamically with the most similar reference
pattern (see Fig.6). The MAV feature calculating equation is

MAV =
1
N

∑N

i=1
xi (3)

where, N (in our case chosen as N=M/2) and xi denote the
sliding-window size and the raw sensor-data points, respec-
tively. For online MAV feature generation, the window slides
online over the raw input data, transmitted serially from the
force sensor. The generatedMAV feature represents therefore
the dynamic results from a mathematical convolution oper-
ation between the sliding window and the raw force-sensor
data [31]. In our analysis, we used four different test sur-
faces, for which corresponding MAV reference features are
shown in Fig. 6 with four different colors (i.e. green, blue,
red and magenta). These green, blue, red and magenta col-
ored features represent offlineMAV-reference data for rough-
foam, smooth-foam, thin-carpet and smooth-table surfaces.
The Euclidean distance is used for determining the nearest
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FIGURE 6. Mean absolute value (MAV) features (i.e. reference pattern
with four different colors) generated offline from the force-senor data
(left foot only) on rough-foam (RF), smooth-foam (SF), thin-carpet (TC)
and smooth-table (ST) with 50 ms/point sampling rate and
190 frames/stride robot-walking speed. The dotted black-color lines
represent the online data during dynamic reference-pattern matching.

offline-reference feature to the online MAV-feature, gener-
ated dynamically from the raw force-sensor data and shown
by the black dotted line in Fig.6 [35]. When the robot is
walking on different surfaces in real-time, the correspond-
ing offline-reference pattern and online-walking pattern are
close to each other. For example, when robot is walking
on a rough-foam surface, the green colored MAV feature
and the online black-dotted line are closest to each other.
The hardware-accelerated classification unit generates the
decision signal in the form of a pulse width modulation
(PWM) output. Since the amplitudes of the MAV features
for all surfaces are different, the PWM-signal widths are also
different (see Fig.6). The corresponding duty cycles of the
PWM signals for all different recognized surfaces are listed
in Table 2. Maximum duty cycle corresponds to maximum
detection time (i.e. glowing time) across the LEDs. The
generated PWM signals are connected with the four corre-
sponding colored LEDs, to display the recognition results of
the different surfaces visually. The voltage drops across the
colored LEDs are different due to their illumination prop-
erties (i.e. different frequency) (see Fig.7). These voltage

FIGURE 7. Decision-signal generation across LEDs in the form of analog
voltages. Rough-foam (RF), smooth-foam (SF), thin-carpet (TC) and
smooth-table (ST) surfaces correspond to green, blue, red and magenta
colored curves of the LED-generated signals, while maximum peak
voltages are 212 mV, 147 mV, 156 mV and 118 mV, respectively.

drops across the LEDs serve as feedback to the robot con-
troller (RCB-4HV board) via the external controller circuit
to dynamically change the robot motion when a transition
from one surface to another surface is detected. The obtained
results for surface recognition and robot-speed adjustment
will be presented in the next section.

VI. RESULTS AND DISCUSSION
Here, we discussed the experimental surface-recognition and
speed-adjustment results for humanoid-robot walking on dif-
ferent types of surfaces. We separately analyze the experi-
mental surface-recognition results for robot walking on the
same surface and for a transition between walking surfaces.
Concerning the walking-speed adjustment, we considered
only the transition between surfaces. Figure 8 illustrates the
surface-recognition-latency (SRL) measurements, when the
robot is walking on the four different surface types. Here,
S1 to S4 represent the initial walk-starting time and R1 to
R4 represent the surface-recognition time by the humanoid
robot of the four different surfaces. The differences between
the walk-starting times (S1 to S4) and the recognition times
(R1 to R4) represent the respective surface-recognition laten-
cies (1T1 to 1T4). These latencies are different for the
different surface types, due to the different material properties
(e.g. softness, hardness) of the used surfaces.

A. SURFACE RECOGNITION (WALKING ON THE SAME
SURFACE)
For humanoid-robot walking on the same surface, reliable
surface recognition and short recognition latency are
important tasks during recognition-system development.
To confirm correct recognition and to measure surface-
recognition latency on the same surface (SRL-SS), we used
50 experimental test runs with four walking speeds for
each surface (see Table. 1). Correct surface recognition was

169646 VOLUME 8, 2020



S. Bhattacharya et al.: Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment

FIGURE 8. Schematic representation of surface-recognition-latency (SRL)
determination for the four different surface types, where 1T1 to
1T4 represent the time delay between initial walk-starting times
(S1 to S2) and surface-recognition times (R1 to R4) of the robot.

verified in all tests and the surface-recognition latency var-
ied for different surfaces, due to variations in the time for
decision-signal generation. In particular, we observed that
the surface-recognition latency is shortest for ST surfaces
with an average of 3.6 sec and longest for TC surfaces with
an average of 7.9 sec (see Fig.9). Further, our experimental
results indicate that the humanoid robot can recognize the
smoother surfaces (ST and SF) with less surface-recognition
latency than the rougher surfaces (RF and TC).

FIGURE 9. Measured surface-recognition latencies during each of the
experimental test runs for robot walking on the four different surfaces
without surface transition.

The faster recognition of smoother surfaces in terms of
surface-recognition latency is attributed to the fact that the
total surface area, directly touched by the force sensors,
is larger in the case of smoother surfaces. As a result, max-
imum mechanical forces are utilized in the conversion to

TABLE 2. PWM-signal generation for different surfaces.

electrical signals, which obviously leads to a speed-up of the
recognition time.

B. SURFACE RECOGNITION (TRANSITION BETWEEN
SURFACES)
When the robot is transitioning between surfaces during
walking, surface-recognition latencies of the new surface
after surface transition (SRL-ST) are found to be quite similar
to the case of walking on the same surface.We havemeasured
the 12 possible combinations for transitions between the
four different surfaces with 100 experimental runs for each
combination. Table 3 shows these possible surface-transition
combinations and also lists the average of the measured
surface-recognition latencies for the new surfaces after sur-
face transition (SRL-ST). The different colors correspond to
the colors of the LEDs, across which the surface-specific
decision signal is generated. A comparison of the results
for the average surface-recognition latencies after the sur-
face transitions is illustrated in Table 4. It can be seen that,
when the robot walks from a TC, SF or RF surface to a ST
surface, the average surface-recognition latency (SRL-ST)
(∼3.5-3.6 sec) is shorter than for other surface-transition
cases, whereas the SRT-ST latency is longest (∼7.7-7.9 sec),
when the robot walks from a RF, SF or ST surface to a
TC surface. The above experimental results confirm that our
developed walking-surface-recognition system for humanoid
robots performs fastest in terms of surface-recognition laten-
cies (SRL-ST), when the robot moves from any of the other
surfaces to a ST surface. On the other hand, the recognition
latencies are slowest, when the transition occurs from any of
the other surfaces to a TC surfaces.

C. SPEED ADJUSTMENT
Appropriate walking-speed adjustment is another essential
task during humanoid-robot transition between surfaces. For
example, when the humanoid robot walks on a RF surface,
it first recognizes the surface type using the MAV-feature
generated from the force-sensor data and then adjusts the
walking speed to 190 frames/stride, by using the decision
signal (generated by classification unit) and the external
controller circuit. During transition from RF to SF sur-
faces, the speed is adjusted to 160 frames/stride after surface
recognition, requiring a speed-adjustment time (see Fig. 11).
The surface-recognition time is represented by the surface-
recognition latency for surface transition (SRL-ST) and
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TABLE 3. Transitions between two surfaces.

the speed-adjustment time is represented by the speed-
adjustment latency (SAL) (see Fig.11). The summation of
these two time intervals is denoted as the surface-transition

TABLE 4. Surface transition latency (STL) for transitions between
different surfaces.

FIGURE 10. Measured average surface-transition latencies (STL) after
robot transition between surfaces.

FIGURE 11. Surface recognition and speed adjustment during transition
from rough foam (RF) surface to smooth foam (SF) surfaces.

latency (STL). Figure 10 summarizes the STL results for all
possible surface transitions. These STL results include the
time from surface recognition to decision-signal feedback at
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FIGURE 12. Surface recognition and speed adjustment during transition
from smooth foam (SF) surface to rough foam (RF) surfaces.

FIGURE 13. Surface recognition and speed adjustment during transition
from thin carpet (TC) to smooth table (ST) surfaces.

the AD-port for walking-speed adjustment. During RF to SF
surface transition, the average measured STL is 10.2 sec.
In Fig.11, it is clearly observed that, when the robot is walking
on RF surfaces, the time for one stride is 3.8 sec (i.e. width of
the MAV feature in green color). After transition from the RF
to a SF surface, the time for one stride is correctly changed
from 3.8 sec (i.e. very-slow walking speed) to 3.2 sec (i.e.
slow walking speed) and the corresponding MAV feature is
generated (shown with blue color in Fig.11).

Similar measurements have been performed for SF to RF
surface transitions, to verify the correct walking-speed adjust-
ment (see Fig.12). In this case, the surface-transition latency
(STL) becomes 9.4 sec. Figures 13 and 14 illustrate the tran-
sitions from TC to ST surfaces and vice versa with different
walking speeds and different MAV-feature widths (i.e. times
for one stride). It is observed that, during transition from TC
to ST surfaces, the walking speed correctly changes from
135 frames/stride (i.e. medium speed) to 125 frames/stride
(i.e. fast speed) with an appropriately changing MAV feature
width from 2.7 sec to 2.5 sec (see Fig.13). The surface-
transition-latency (STL) becomes 9.3 sec, including the
change of the walking speed from medium to fast.

Similarly, we performed the surface-transition experiments
from ST to TC surfaces, as illustrated in Fig.14. It is
observed that the walking speed correctly changes from
125 frames/stride (i.e. fast speed) to 135 frames/ stride

FIGURE 14. Surface recognition and speed adjustment during transition
from smooth table (ST) to thin carpet (TC) surfaces.

(i.e. medium speed) with a surface-transition latency (STL)
of 9 sec. The measured data including SRL-ST, speed-
adjustment latency (SAL) and STL for all other surface-
transition cases are listed in Table 4. It is verified that, for
all possible surface transitions, the speed is changed cor-
rectly. For example, the STL for SF to RF surface transitions
becomes 9.4 sec, with a SAL of 3.1 sec, whereas for the
inverse transition from RF to SF surfaces, the STL becomes
10.2 sec, with a SAL of 4.6 sec. The basic reason for the
additional 1.5 sec in SAL, during transition from RF to SF
surfaces, is attributed to the necessary increase of the induced
motor-driving currents and the corresponding servomotor
speed (i.e. very-slow to slow speed transition). In terms of
STL analysis, we observe that the transitions from TC to SF
surfaces complete faster in comparison with other surface
transitions, i.e., the measured surface-transition latency for
this case is the shortest of all the possible surface transitions.

VII. CONCLUSION
In this work, we explored a surface-recognition and walking-
speed-adjustment system, developed for humanoid robots to
enable stable dynamic walking on different surfaces with-
out falling. The raw force-sensor data and the MAV feature
descriptor are used to generate reference feature vectors for
the studied four different surface types. All of these reference
patterns are compared with the online-generated feature vec-
tors when the robot is walking on an unknown surface, using
the nearest-neighbor-searching algorithm and the Euclidean
distance to obtain the classification result for surface recogni-
tion, which is then encoded as a specific decision signal. It is
observed that, the smooth table (ST) walking-pattern recogni-
tion performs better with less surface-recognition latency on
the same surface, when compared with other surfaces. On the
other hand, the transition from thin-carpet (TC) to smooth
foam (SF) surfaces showed the minimum surface-transition
latency (STL) in comparison to other surface transitions,
including the correct dynamic robot-walking-speed change
from 135 frames/stride to 160 frames/stride. The analysis
results from our study are useful for future AI-based robot-
system design, where the robot can balance itself through
changes of the robot’s movement speed and its motor-angle

VOLUME 8, 2020 169649



S. Bhattacharya et al.: Force-Sensor-Based Surface Recognition With Surface-Property-Dependent Walking-Speed Adjustment

adjustments for different types of surfaces, by using an exter-
nal controller circuit.
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