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ABSTRACT Long-term sleep monitoring through the use of wearable EEG-based systems generates large
volumes of data that need to be either locally stored or wireless transmitted. Compression of data can
play a vital role to reduce the power consumption of these already resource-constrained systems. While
compression methods can result in significantly reduced data storage and transmission requirements, the loss
in signal information can have an impact on the algorithms used to extract the key sleep parameters. This
paper studies the impact of six different state-of-the-art compression methods, including wavelet, SPIHT,
filter and predictor-based methods, analysing their effects on the reconstructed signal quality particularly for
automatic sleep staging applications. It looks at how the overall sleep staging accuracy aswell as the detection
accuracy of different sleep stages is reduced as a result of different EEG compression methods. It shows
that the SPIHT and predictor-based compression methods outperform wavelet and filter-based methods in
preserving the relevant signal features. It also shows that compression ratios of up to 65 can be achieved
using the QSPIHT method with less than 10% loss in overall sleep staging accuracy.

INDEX TERMS Sleep disorders, electroencephalogram (EEG) compression, lossy compression, wearables,
brain monitoring, sleep staging.

I. INTRODUCTION
Sleep disorders can severely affect the quality of life of those
suffering from them, leading to abnormal sleep patterns that
interfere with physical, mental and emotional functioning [1].
These disorders increase risks of diabetes, cardiovascular
disease, stroke, and often correspond to increase in levels
of mental distress and suicidal intentions [2]–[4]. It is esti-
mated that more than 70 million adults suffer from different
types of sleep disorders (e.g. insomnia) in the United States.
Among those, at least 40 million suffer from long-term sleep
disorders [5].

Diagnosis of sleep disorders is generally performed in
specialized sleep clinics using an overnight sleep study
known as polysomnography (PSG). This involves monitoring
of brain activities using electroencephalogram (EEG), eye
movements using electrooculogram (EOG), muscle move-
ments using electromyogram (EMG), as well as other physi-
ological parameters such as respiration and heart rate. These
signals are then analyzed in blocks of 30-second epochs,
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and each epoch is assigned one of the five stages of sleep
(Wake, N1, N2, N3, REM) based on the criteria defined
by the American Academy of Sleep Medicine (AASM) [6].
This process is known as sleep stage scoring or sleep staging
and is an essential part of the diagnosis of various sleep
disorders.

While PSG provides useful insights into sleep that are help-
ful for diagnosis, only a limited number of PSG recordings
can be performed in sleep clinics. This is due to the cost of
the study, the time taken to perform the analysis, as well as
the limited number of specialized sleep clinics where these
studies can be performed [7]. In addition, since most sleep
studies are performed in unfamiliar environments, such as
a hospitals or sleep clinics, this may lead to ‘first-night’
effects, evident in lower sleep-efficiency and decreased sleep
time [8]. Home-based or ambulatory PSG is considered to
be an alternative to in-clinic PSG to overcome some of these
limitations. However, this requires patients to put on several
electrodes at precise locations on their scalps and bodies,
making it a difficult system to use in practice.

Recent research has focused on creating user-friendly
wearable systems and development of automated sleep
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staging methods to facilitate long-term sleep monitoring in
these systems. These wearable systems allow capturing data
overmultiple nights in order to obtainmore information about
the patient’s sleep problems [2], [9]–[12]. These systems
use EEG signals recorded from a limited number of EEG
channels to obtain the different stages of sleep automatically.
Analysis and classification of signals obtained over long
periods require methods that can extract different features
from them and identify the sleep stages automatically. With
the availability of better computing resources over the last
decade, several methods for automatic sleep scoring have
been published using various features of EEG signals together
with different classification methods [13]–[18]. This ability
to perform automatic sleep staging in comfortable environ-
ments (e.g. homes) improves scoring reliability, reduces time
and cost of sleep staging, subsequently making sleep disorder
diagnosis accessible to a larger population [19].

Wearable systems are generally very small with limited
processing and computing resources and a small power
source. Hence it is imperative to reduce the size of data stored
or wirelessly transmitted from these systems to limit power
consumption. For long-term sleep monitoring over several
weeks, large amount of EEG data is generated even from a
single channel [20].With a growing trend of wearable devices
to support higher sampling frequencies and recording chan-
nels to improve diagnostic accuracy, overcoming the power
and storage constraints becomes even more important [9].
Therefore, reduction in the quantity of data to be transmit-
ted or stored, through compression, is desirable in wearable
devices for long-term monitoring.

Compression encodes a sequence of data with smaller
number of bits compared to its original bit length. Lossy EEG
compression achieves higher compression ratio (CR) than
lossless techniques by allowing an amount of loss of signal
fidelity to be tolerated. This loss is commonly measured by
percentage root-mean squared difference (PRD). A trade-off
exists between CR and the loss in signal fidelity such that
higher CRs result in larger PRDs in reconstructed signals. In
the context of sleep staging, the overall sleep staging accuracy
as well as the detection of different stages may deteriorate
when neural features characteristic of sleep stages are dis-
torted by the compression process. Hence, it is important to
investigate how the performance of automated sleep stage
detection is affected by different state-of-the-art lossy EEG
compression algorithms at different compression levels.

This paper aims to study the effects of different EEG
compression algorithms and compression ratios on the output
of automatic sleep staging algorithms for use in long-term
sleep monitoring systems. It presents a detailed analysis
demonstrating the impact of state-of-the-art compression
methods on the quality of EEG signals and subsequently
their resulting impact on automatic sleep stage classifica-
tion. Section II reviews specific compression algorithms that
are suitable for EEG signals. Based on this review and the
specific requirements of wearable sleep staging, six algo-
rithms are selected. Section III describes the implementation

of these algorithms, the database used to study their per-
formances, the sleep staging algorithm to characterise the
effect of compression, and the evaluation metrics used to
present the results. In Section IV, the results of compression
are presented demonstrating the impact of different com-
pression parameters on reconstructed signal quality and the
reconstructed signal error at different compression ratios.
Section IV also includes a runtime comparison between the
compression algorithms and briefly describes how they per-
form on noisy EEG data. Finally, Section V presents the
impact of different compression methods on the overall sleep
staging accuracy as well as in the different sleep stages.

II. REVIEW OF COMPRESSION METHODS
There are hundreds of compression schemes that already exist
in academic literature, many of them already quite widely
used for various industrial and medical applications. In this
paper, we have restricted our focus to compression methods
that are relevant for the specific application of wearable
EEG-based sleep staging. As a result, the methods reviewed
in this section include those that are known to be appropriate
for compressing EEG signals, have a high compression ratio,
and can be implemented in hardware with relatively low
computational complexity. In light of these requirements, this
paper focuses on lossy compression methods, which provide
higher compression ratio compared to that of lossless com-
pression at the expense of non-exact reconstruction.

There are three main types of lossy EEG compres-
sion methods: (1) Transform-based (2) Filter-based and
(3) Predictor-based. Transform-based compression involves
transformation of the signal to a different domain, where
the sparsity of the signal can be exploited by retaining
only the most significant components through a threshold-
ing stage [21]. Majority of transform-based compression
methods in current literature uses discrete wavelet trans-
form (DWT) pre-processing [22]–[27] to get a sparse rep-
resentation of the signal. Higgins et al. [25] proposed a
modified JPEG2000 compression algorithm that consisted
of a DWT pre-processing stage, followed by thresholding
and uniform quantization of wavelet coefficients. They used
Cohen-Daubechies-Feavueau 9/7 (CDF9/7) wavelet to com-
pute the DWT coefficients of the EEG data, and added a hard
thresholding stage in which the threshold was tuned to study
the trade-off between CR and seizure detection accuracy.
In comparison to using an arithmetic encoder (AC), they
showed higher CRs at set seizure detection accuracies using
the Set Partitioning in Hierarchical Trees (SPIHT) encoding
algorithm. This compression method can be coined as the
Lossy SPIHT algorithm. In a separate study [22], they also
studied the processor load of the Lossy SPIHT algorithm on
a 50MHz Blackfin BF537 device, and summarized SPIHT’s
nature as an embedded coder and its advantages of low
computational complexity. Higgins et al. [26] proposed that
scalar quantization of wavelet coefficients coupled with a
lossless SPIHT stage, further improved CR-PRD balance,
compared to directly encoding coefficients with standard
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lossy SPIHT without prior quantization (Lossy SPIHT
method). Higgins et al. coined this new compression algo-
rithm the QSPIHT. In [28], Cardenas-Barrera et al. used
the same compression architecture as in [25], but pro-
posed wavelet packet transform (WPT) pre-processing and a
run-length coder (RLC) for encoding and achieved a peak CR
of 9.13 at a PRD of of 5.25%. Adopting a different transform,
Birvinskas et al. [29] applied fast fixed-point DCT trans-
forms to EEG data and truncated last DCT coefficients of
each frame for lossy compression. The examined DCT trans-
forms included Chen DCT, Loeffler DCT and BinDCT, since
the high speed and low computational complexity of these
transforms are attractive candidates for low-power, embedded
systems. In [23], Nguyen et al. adopted a similar compression
architecture as in [25], but applied DWT on 2D arranged EEG
and used an adaptive arithmetic coder (ACC). The proposed
method with 2D DWT and AAC outperformed the SPIHT-
based method described in [22] slightly at a higher CR for a
given PRD.

Predictor-based compression methods often consist of two
stages. A predictor, such as a neural network, in the first
stage estimates the value of the current sample based on those
of several past samples, and only residual errors from these
estimations and header information that describes the pre-
dictor model are transmitted. Several predictive models have
been examined for EEG compression, including autoregres-
sive model (AR) [30], artificial neural networks [31], [32]
and recursive-least-squares predictor [26]. Sriraam et al. pre-
sented near-lossless predictor-based compression methods
using: Single layer perceptron (SLP), Multi-layer perceptron
(MLP), Elman network, Autoregressive model and Finite
impulse reponse (FIR) filter [31]. In each method, resid-
ual errors from a predictor were uniformly quantized, and
passed into an AC encoder. Among the examined methods,
one with SLP model achieved the best CR-PRD balance.
In other studies, the authors also examined the concept of
context-based bias cancellation error modelling (CBNLC) to
improve compression gains by removing the systematic bias
of residual errors after quantization [32], [33]. Among the five
predictor-based methods in [31], all achieved slightly higher
CR at given PRDs with bias cancellation.

Filter-based compression methods involve exploiting the
sparsity of signals in subbands by compressing localised
spectral content. Bazan-Prieto et al. [34] presented a method
in which EEG input was first decomposed into clin-
ically meaningful subbands with Nearly-Perfect Recon-
struction Cosine Modulated Filter Banks (N-PR CMFB).
Subband coefficients were then thresholded, uniformly quan-
tized and passed through RLC. This algorithm was further
refined in [35] with a retained energy based coding. Given
pre-defined PRDs, global thresholds were computed to trun-
cate subband samples until the retained energy in subbands
corresponded to the pre-defined PRD levels.

In order to compare their performance and impact, dif-
ferent compression methods from each of the three types
were selected in this paper. From existing literature on

the transform-based methods, it can be summarized that
QSPIHT, Lossy SPIHT and modified JPEG2000 EEG com-
pression algorithms with WPT and DWT pre-processing
achieve a desirable CR (a minimum of 5) at low levels of
signal distortion of around 7% − 10% PRD. Importantly,
SPIHT is a computationally simple embedded coder with
low processor load, and hence is suitable for implementa-
tion on low-powered wearable devices [22]. Predictor-based
techniques are generally more useful in the context of
near-lossless and lossless EEG compression. To study their
effects on compression and sleep staging accuracy, the algo-
rithm, described in [31], [32], using a single layer per-
ceptron (SLP) predictor followed by a uniform quantizer
and an arithmetic encoder was implemented. Finally, this
paper followed [34], [35] and implemented filter-based
compression with M-channel Nearly-Perfect Reconstruction
Cosine-Modulated Filter Banks (N-PR CMFB) to analyze its
performance in the context of automatic sleep staging for
long-term sleep monitoring.

III. MATERIAL AND METHODS
This section describes the EEG database used, the different
EEG compression methods that are being analyzed, the sleep
staging algorithm used as the reference to study the impact of
compression, and the metrics used to evaluate and compare
the performance of each compression algorithm.

A. DATABASE
In this paper, overnight EEG recordings from the DREAMS
Subjects Database [36] were used to study the effect of
compression on the reconstructed signal and its subsequent
impact on automatic sleep staging accuracy. The database
contains 20 whole-night polysomnography (PSG) recordings
from healthy subjects. These recordings were visually scored
by a sleep expert at 30-s epochs using the AASM criteria into
one of the five sleep stages (Wake, N1, N2, N3, REM) [6].
All of the analysis was performed using data from a single
EEG channel (FP1-A2), sampled at 200Hz. The use of this
frontal EEG channel for wearable automatic sleep staging has
been previously discussed in detail [12], [19].

B. WAVELET-BASED COMPRESSION
Wavelet transform allows multi-resolution analysis by pro-
viding both time and frequency localization of a signal.
The ability to compute time-frequency representation is use-
ful for analysis of non-stationary biomedical signals such
as the EEG. The wavelet-based EEG compression algo-
rithm in this paper follows the architecture of the modified
JPEG2000 Part 1 algorithm proposed in [25]. The core com-
ponents include segmentation, DWT pre-processing, uniform
quantization, thresholding and entropy encoding. Thresh-
olding retains the most significant wavelet coefficients rep-
resentative of higher energy components, and sets to zero
those coefficients with magnitude below the selected thresh-
old. Hence, the threshold level is the parameter that con-
trols the PRD and CR of each frame. Two variants of this
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algorithm were used, one involving the use of DWT (DWT-
based compression) and the other using WPT (WPT-based
compression) for pre-processing operations [28]. Both of
these pre-processing methods are briefly explained as
follows.

1) DISCRETE WAVELET TRANSFORM (DWT)
DWT decomposes a signal x(n) into a set of basis functions,
also known as wavelets. The wavelet family is constructed
from translation and scaling of a mother wavelet ψ , where
translation captures signal’s variability over time and scaling
extracts frequency information of the signal [37].

In the discrete domain, DWT is computed:

x(n) =
∑
i

∑
j

ci,j(ψ(2in− j)) i, j ∈ Z (1)

where ci,j are the wavelet coefficients, ψ the mother wavelet
and i,j are integer scale and shift parameters respectively.
DWT coefficients ci,j are computed through a subband

coding algorithm in which the signal x(n) is decomposed
into frequency subbands recursively using digital high-pass
g(n) and low-pass h(n) filters. The wavelet filter coefficients
are uniquely associated with a mother wavelet. At the first
level of the subband coding binary tree, x(n) is passed into
half-band g(n) and h(n), where high and low frequency com-
ponents are extracted respectively. Filtered signals are then
downsampled by two to follow Nyquist’s rule. Hence, fil-
tered signal after each level of decomposition is double the
frequency resolution and half the time resolution compared
to signal from a level above. High-pass filtered and low-pass
filtered samples are collected as detail coefficients (CDs)
and approximation coefficients (CAs) respectively [37]. The
same process is repeated recursively on the CAs in the next
level until the pre-defined decomposition level is reached.
Because the magnitude of DWT coefficients at each level
of decomposition are representative of the signal’s energy
at different subbands and time intervals, the DWT coeffi-
cients provide an alternative representation of the original
signal x(n), providing good localization of signal’s energy in
both time and frequency.

2) WAVELET PACKET TRANSFORM (WPT)
WPT decomposes a signal into finer equal width frequency
subbands via a full binary tree. Both CAs and CDs are
passed into the filter banks at the next level of decomposition.
Each wavelet packet orthonormal basis is formed by an arbi-
trary combination of bandpass filtering operations on CAs
and CDs, and each produces a different set of disjoint sub-
spaces that cover the signal’s frequency domain. Examples of
wavelet packets include Discrete Fourier Transform (DFT)
and Discrete Wavelet Transform (DWT). Hence, the DWT
basis is just one example of the wavelet packet that can be
formed from wavelet packet decomposition [38]. The flexi-
bility in multi-resolution analysis from WPT can be advan-
tageous in compression, because an optimal wavelet packet

(best basis) for compression may be found for each frame of
signal [39].

C. SPIHT-BASED COMPRESSION
Set Partitioning in Hierarchical Trees (SPIHT) were first
proposed by Said and Pearlman as an efficient encoder of
wavelet coefficients in image compression [40]. The SPIHT
algorithm first encodes the most significant bits of the most
significant wavelet coefficients, thus allowing direct control
of the compression ratio. If the signal encoding or transmis-
sion process is interrupted at any point, the signal can be
reconstructed to a level of fidelity appropriate to the number
of bits received. Briefly, SPIHT relies on the principles of (1)
set partitioning sorting algorithm and (2) ordered bit plane
transmission [41]. In the sorting pass, the sorting algorithm is
carried out to efficiently determine the significance of each
wavelet coefficient distributed in the temporal orientation
tree. The sorting algorithm follows a set partitioning rule
and significance checking is performed through magnitude
tests against a significance threshold 2n. Significant coeffi-
cients are selected after each sorting pass. Threshold values
in powers of 2 allow coefficients to be encoded as binary
numbers through progressive bit plane analysis. After each
sorting pass, the refinement pass is carried out where ordered
bit plane transmission is performed by transmitting the nth
most significant bit of significant coefficients found in the
previous pass. This ensures the most significant remaining
bits of significant coefficients are transmitted first. The pro-
cess repeats with n decremented by one and replicates until n
reaches 1. The same process and set partitioning rule run at
the decoder side [40], [41].

Based on existing literature [22], [25], [26], two variants
of SPIHT-based compression algorithms are implemented
in this paper: Lossy SPIHT and QSPIHT. Both techniques
consist of segmentation and DWT pre-processing stages, and
differ in methods of introducing loss.

1) LOSSY SPIHT
In this technique, CR and PRD are controlled by setting the
minimum significance threshold 2nmin in the SPIHT encoding
process. In lossless SPIHT, nmin = 1, and increasing nmin
is equivalent to terminating the encoding process early. The
number of quantization bits is set to the bit resolution of each
original wavelet coefficient.

2) QSPIHT
In this technique, SPIHT operates in losslessmode and is used
as an entropy encoder. CR and PRD are controlled by varying
the quantization levels during the uniform quantization of
wavelet coefficients.

D. PREDICTOR-BASED COMPRESSION
In predictor-based compression, a predictor model is used to
estimate the current signal sample value based on its past val-
ues. The number of past samples used for each estimation is
equivalent to the predictor order (p). The differences between
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the original and the predicted samples, also called the residues
and are generally of lower magnitudes than the original sam-
ples, are computed. These residues are then quantized and
subsequently encoded before transmission. Compression is
achieved when residues of lower magnitudes than the original
samples can be encoded with shorter bit strings [30]. Apart
from the encoded residues, a predictor’s parameter settings
and selected p number of samples are also transmitted. At the
receiver, an identical predictor is used to reconstruct the sig-
nal using the transmitted parameter settings. The prediction
procedure is repeated and transmitted residues are added
to predicted samples at the receiver to recover the original
samples with some loss from quantization.

This paper followed the algorithm described in [31], [32],
and implemented a predictor-based compression technique
that consists of a Single Layer Perceptron (SLP) predictor
followed by a uniform quantizer and an arithmetic encoder.
This is because [31], [32] concluded that compression with
SLP achieves superior CR-PRD balance and better preserves
EEG diagnostic information compared to compression tech-
niques using other predictors such as Multi-Layered Percep-
trons (MLP) and Autoregressive models (AR).

E. FILTER-BASED COMPRESSION
Information in EEG signals are often not well distributed
across the spectrum, and may be concentrated to specific
frequency subbands [42]. Hence, filter-based compression is
a less generalized technique for EEG compression compared
to wavelet and SPIHT-based compression methods. It can be
applied to decompose EEG signal into uniformly distributed
frequency bands, and subband coefficients of small ampli-
tudes that characterize clinically insignificant subbands can
be truncated for compression [34].

Based on [34], [35], this paper implemented a M-channel
Nearly-Perfect Reconstruction Cosine-Modulated Filter Ban-
ks (N-PRCMFB)-based compression technique. The pipeline
of this compression method is identical to that of the modi-
fied JPEG2000 Part 1 algorithm proposed in [25]. The core
components of the pipeline are signal segmentation, sig-
nal decomposition, uniform quantization, thresholding and
entropy encoding. The only difference is that the input signal
segments are decomposed through N-PR CMFB instead of
wavelet transforms.

F. SLEEP STAGING ALGORITHM
The automatic sleep staging algorithm presented in [12],
[19] is being used to study the impact of compression on
automatic sleep staging. This algorithm, shown in Fig. 1,
works by extracting several spectral features and uses a set
of contextually-drive decision trees to classify a 30-s epoch
into one of five sleep stages (Wake, N1, N2, N3 and REM).
It uses data from one EEG channel (Fp1-A2), and extracts
different spectral features including the relative power, power
ratios, and spectral edge frequencies in various frequency
bands. The classification stage takes into account the last
sleep stage and uses two kinds of tests (core and peripheral)

FIGURE 1. An overview of the automatic sleep staging algorithm where
Core Test is a one-vs-all decision tree and Peripheral Test is one-vs-one
decision tree [12].

to determine the next sleep stage. The core test consists of
a one-vs-all decision tree that is used to determine whether
a state transition is required. Only if it is required, a series
of one-vs-one decision trees are used to determine the next
sleep stage. As an example, if the last classified sleep stage
is Wake then a Wake-vs-Others core test is used to establish
whether the current epoch under analysis is still Wake or one
of the other sleep stages. If it is deemed to be Wake, no fur-
ther computations are required. If however, a state transition
is needed then Wake-vs-N1, Wake-vs-N2, Wake-vs-N3, and
Wake-vs-REM peripheral tests are used to find the new sleep
stage. This approach of using a combination of small decision
trees in a contextual manner based on the last sleep stage is
highly beneficial for use in wearable systems where comput-
ing resources are severely constrained and has been validated
with an ultra-low power integrated system presented in [12].

G. PERFORMANCE METRICS
In order to evaluate the compression performance, recon-
struction accuracy of signal after compression, and the sleep
staging accuracy after compression, several different metrics
have been used.

1) COMPRESSION RATIO
Compression Ratio (CR) measures the efficiency of the com-
pression process, and is computed as the ratio of the original
data size with respect to the compression data size.

CR =
Original data size

Compressed data size

=
Lo × r
bc

(2)

where Lo is the length of the input EEG signal into the
compression algorithm in samples, r the bit resolution of
each original sample, and bc the number of transmitted bits to
represent the compressed signal. The larger the CR the larger
the compression gains. To compute the CRs for different
compression methods, the CR for each EEG signal frame
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was determined, and the average CR for each subject and the
entire database was computed.

2) PERCENTAGE ROOT-MEAN SQUARED DISTORTION
Percentage Root-mean squared Distortion (PRD) is a stan-
dard measure of average signal distortion between two sig-
nals, and is defined as follows.

PRD =

√√√√∑N
k=1(xk − x̄k )∑N
k=1(xk )2

× 100% (3)

where xk and x̄k are the kth sample of the original and recon-
structed signal respectively, andN is the length of the window
over which PRD is calculated. As a measure of loss of signal
fidelity, the lower the PRD, the higher the reconstruction
accuracy. Similar to CR, PRD for each frame was computed
and the average PRD was determined for the whole database.
The CR-PRD tradeoff was then studied by examining the
PRDs of reconstructed signals at given CRs.

3) SLEEP STAGING PERFORMANCE
The performance of the algorithm for classifying different
sleep stages with the reconstructed signal is evaluated using
the metrics recommended in [43].

Sleep Staging Accuracy (SSA) measures the overall frac-
tion of epochs with true detections across all sleep stages.

Accuracy =
No. of true detections in stage X
Total no. of epochs in stage X

(4)

Sensitivity (SEN) measures the fraction of epochs that are
correctly classified in each specific sleep stageX . It addresses
the variability of detection performances between sleep
stages, and can be calculated as:

Sensitivity =
No. of true detections in stage X
Total no. of epochs in stage X

=
TP

TP+ FN
(5)

Selectivity (SEL) measures the fraction of correct detec-
tions of any sleep stage X with respect to the total number of
automatic detections of that stage.

Selectivity =
No. of true detections in stage X
Total no. of detections of stage X

=
TP

TP+ FP
(6)

An epoch is labelled as true positive (TP) if it is correctly
identified by the algorithm in a given stage, false positive (FP)
if it is incorrectly identified as the stage of interest and False
Negative (FN) if incorrectly rejected as the stage of interest.

IV. COMPRESSION RESULTS
A. COMPRESSION PARAMETERS
The performance of compression algorithms is greatly
influenced by different compression parameters that need
to be optimised for a given application. These parame-
ters include segment length (N ), mother wavelet function,

wavelet decomposition level (L), thresholding technique and
encoder choice, etc. These must be selected carefully for the
optimal CR-PRD balance on the test database, the DREAMS
Subjects database [28]. In this section, the effects of each of
these parameters on CR and PRD are analyzed both theoret-
ically and empirically to inform design choices. This section
also compares the runtime of studied compression algorithms
and briefly describes how these algorithms perform on noisy
EEG signals.

1) SEGMENT LENGTH
Segment (frame) length (N ) selection presents a trade-off
between CR and computational complexity [8]. Larger N
increases CR at the expense of compression operations
over a larger number of samples, which increases compu-
tational power to compress each frame of data. Nonethe-
less, higher CR means lower number of bits which, in turn,
results in lower power required to store or transmit the
compressed signal. In line with results reported in other
papers [8], [25], [28], as well as experimenting with different
values of N , it was empirically determined that N = 1024
results in the most optimal CR-PRD balance.

2) MOTHER WAVELET FUNCTION
Since basis functions from different wavelet families will
capture the different characteristics of a signal’s features,
compression using different mother wavelets result in dif-
ferent reconstruction errors at a given CR [44]. Several dif-
ferent mother wavelets have been successfully used for EEG
compression and de-noising. The most common ones include
Cohen-Daubechies-Feauveau 9/7 (CDF9/7) [25], [26], Sym-
let 9 (Sym9) [45], and Daubechie 8 (Db8) [46]. Hence,
the DWT-based compression was implemented with these
three mother wavelets. To select the optimal wavelet function
for compression on the test database, the compression perfor-
mances with these wavelets are compared in Fig. 2. As shown
in the figure, at a given decomposition level (L), the CRs
are very similar at both low and high PRD values across the
examined wavelet functions. Compression with CDF9/7 and
Sym9 very slightly outperform other methods.

3) WAVELET DECOMPOSITION LEVELS
Selection of wavelet decomposition levels (L) is dependent
on segment length (N ), mother wavelet function and desired
resolution at subbands. Since frequency resolution increases
with L, L should be selected to provide sufficient frequency
resolution required in the subbands of interests. A mathemat-
ical relationship can be established between the bandwidth
of each frequency subband and each level l of the wavelet
decomposition tree, given the Fs of the input EEG signal:

FA,l = [0,
Fs
2l+1

]

FD,l = [
Fs
2l+1

,
Fs
2l

] (7)

where FA,l is the bandwidth covered by CAl , and FD,l the
bandwidth covered by CDl at level l [47]. Given Fs = 200Hz
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FIGURE 2. (a) CR versus PRD for DWT-based compression using different
wavelet functions and number of decomposition levels; (b) Zoomed
in figure at higher PRD. DWT-based compression was implemented with a
hard thresholding method, 9 bit uniform quantizer and an arithmetic
coder (AC).

of the DREAMS Subjects database, at L = 6 frequency
subbands CA6 and CD6 have enough frequency resolution
to capture low-frequency and low-bandwidth features used
in [19]. Though frequency resolution increases with L, L is
constrained by the boundary effects in DWT that arise from
convolution on finite length signals. For each of the selected
wavelet function, compression was carried out at L = 4, 5, 6
to study the effects of L on compression performances. The
wavelet decomposition levels that result in optimal CR-PRD
trade-offs can be identified in Fig. 2. The optimal CR-PRD
trade-off here gives the maximum CR w.r.t a PRD. It should
be noted that compression performances improve with L.
At fixed PRDs above 30%, CRs at L = 4 are 10% lower
compared to that of compression at L = 5, 6 for all wavelets
tested.

4) THRESHOLDING TYPE
Thresholding is the main source of compression in wavelet-
based compression. The energy compaction property of DWT

suggests that wavelet coefficients of high absolute magni-
tudes are most representative of signal features. These coeffi-
cients should be retained, whereas low amplitude coefficients
are less relevant and can be discarded. The threshold T con-
trols the CR-PRD trade-off. In this paper, T is defined as:

T = min(abs(ai))× P (8)

where P is the parameter adaptively set across each iteration
to control the threshold and ensure target CR is achieved.

Two common modes of thresholding are hard and soft
thresholding. In hard thresholding, the ith wavelet coefficient
ai is computed as follows:

ai =

{
ai, if |ai| ≥ T
0, if |ai| < T

(9)

Soft thresholding, on the other hand, zeros coefficients
with absolute value below threshold, but additionally the
remaining non-zero coefficients are shifted towards zero.
The wavelet coefficients with this method are computed as
follows.

ai =

{
sign(ai)× (|ai| − T ), if |ai| ≥ T
0, if |ai| < T

(10)

Fig. 3 compares compression performances of hard and
soft thresholding. It can be seen from the figure that the keep
or kill wavelet shrinkage approach from hard thresholding
generates significantly higher CRs at given PRDs.

FIGURE 3. CR versus PRD for DWT-based compression using different
thresholding types. Compression was implemented at 5 levels of
decomposition with CDF9/7 wavelet, uniform quantizer at 9 bits, and an
AC encoding.

5) ENCODER TYPE
Selection of the right type of encoder is essential to optimise
the CR-PRD trade-off. Encoders should take advantage of
the sparsity introduced in the wavelet domain from the pre-
ceding thresholding stages. Of the many different encoders
cited in literature [23], [25], [28], [31], [34], [35], [48], three
common ones have been selected to compare the perfor-
mance of wavelet-based compression techniques with dif-
ferent encoders. These include (1) arithmetic coder (AC),
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(2) huffman coder (HC), and (3) a modified run length coder
(RLC).

The HC assigns variable codeword lengths so that more
probable symbols are represented by shorter codewords.
The AC encodes a sequence of symbols into a single
floating-point number between zero and one, given the Prob-
ability Density Function (PDF) of the input sequence. Finally,
the RLC replaces runs of the same symbol by the symbol
followed by the length of the run. The RLC is less efficient
in EEG compression compared to its use in applications
involving ECG compression [23]. Compared to ECG signal
in which signal energy is concentrated in low frequencies,
the signal energy in EEG is distributed across different sub-
bands. Hence, thresholding in the wavelet domain is less
likely to introduce long strings of consecutive zeros, which
reduces RLC’s compression gains. Hence, in this paper,
the conventional RLC was modified by adding an extra RLC
stage to the sequence of repetition counts.

Fig. 4 shows that the best CR-PRD balance using the three
encoders on the test dataset with DWT-based compression is
obtained by using the AC encoder, closely followed by the
RLC encoder. Further, at low CR of < 6, compression with
HC results in≈ 30% higher PRD compared to that of AC and
RLC, increasing to ≈ 60% at higher CR of > 10.

FIGURE 4. CR versus PRD for DWT-based compression on the test
database using different encoder types. Compression was implemented
at 5 levels of decomposition with CDF9/7 wavelet, hard thresholding, and
uniform quantizer at 9 bits.

6) BEST BASIS APPROACH FOR WPT-BASED COMPRESSION
As discussed earlier, DWTandWPT are different in thatWPT
constructs a time-frequency representation of a signal through
a complete subband tree decomposition. The rich variety
of orthornomal bases offered in WPT provides flexibility
in multi-resolution analysis, which may be an advantage in
compression applications. Specifically, the wavelet transform
basis may not provide the optimal time-frequency represen-
tation of signals for compression. To address this, an opti-
mal wavelet packet or a best basis decomposition can be
selected for each frame of EEG data w.r.t a cost function. This
best basis representation may better capture time-frequency

characteristics of each input EEG frame, and hence improve
compression performances [39].

In this paper, the best basis was found for each input frame
w.r.t the Shannon entropy cost function commonly adopted
in EEG signal processing [49], [50]. Fig. 5 examines the
effects of the best basis approach on the CR-PRD balance of
WPT-based EEG compression using data from Subject 1 of
the DREAMS Subjects Database. It is shown that at set
PRDs, WPT based compression with best basis search gen-
erates a slightly higher CR than a WPT based compression
with a full binary tree decomposition. The theoretical advan-
tages of WPT in compression is not substantial in empirical
results. This may be because of the approximate nature of
the Shannon entropy cost function to compute the best basis,
which does not accurately predict the actual cost of encoding
a particular decomposition tree [39].

FIGURE 5. CR versus PRD for WPT-based compression with and without
best basis search. Compression was implemented on the first 100 frames
(102400 samples) of the test database, at 5 levels of decomposition with
Db8 wavelet, hard thresholding, uniform quantizer at 9 bits and an AC
encoding.

7) PREDICTOR ORDER FOR PREDICTOR-BASED
COMPRESSION
For the predictor-based algorithm with a SLP model, the pre-
dictor order (p) is equivalent to the number of neurons in the
input layer of the SLP. This model consisted of a linear acti-
vation function and was trained with a Levenberg-Marquart
learning algorithm [31], [32]. The CR and PRD can be con-
trolled by varying the number of quantization bits during the
uniform quantization of the residues. Fig. 6 shows that the
CR-PRD balances for the compression technique are very
similar across the predictor orders p = 2−5. It also shows that
compression at p = 3, 5 achieves the highest CRs at given
PRDs.

8) CHANNEL COUNT FOR FILTER-BASED COMPRESSION
Channel count (M ) of the N-PR CMFB governs the band-
width of the subband outputs from the filter banks. Given
Fs = 200Hz of the DREAMS Subjects database, the CMFB
with M = 32, 16 decompose input EEG into subbands
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TABLE 1. Optimal compression parameters.

FIGURE 6. CR versus PRD for predictor-based compression using
different predictor orders (p). Compression was implemented with a SLP
model, uniform quantizer and AC encoding. The SLP model consisted of a
linear output layer and was trained with the Levenberg-Marquart learning
algorithm.

FIGURE 7. CR versus PRD for filter-based compression using a N-PR CMFB
at different channel counts (M). Compression was implemented with
hard thresholding, uniform quantizer at 10 bits and a RLC for encoding.

of≈ 3Hz and≈ 6Hz bandwidth respectively. Signal decom-
position into theses subbands may help retain the EEG’s char-
acteristics after compression, because many meaningful EEG
waveforms have disjoint spectral contents that lie in roughly
4Hz-wide bands [51]. As shown in Fig. 7, compression per-
formances improve with M . Though the CR-PRD balance at
M = 32 clearly outperforms that at M = 2, 4, the com-
pression performances at M = 8, 16, 32 are similar. Further,
an increase in M scales up the computational complexity of
the compression algorithm as a result of the increase in filter-
ing operations. The average runtime of compressing a signal
segment increases by 300%whenM is increased from 8 to 32,

despite little compression gains. Hence, in this paper,M = 8
is used as the optimal value for the filter-based compression
technique.

The pipeline of the algorithm also consists of hard thresh-
olding and scalar uniform quantization after signal decom-
position. Instead of coding the subband coefficients with
arithmetic coder (AC), this paper follows [34], [35], which
employs a run length encoder (RLC) to efficiently code the
large number of zero-valued coefficients that remain after
hard thresholding.

B. OPTIMAL COMPRESSION PARAMETERS
Based on empirical results that examine the effects of differ-
ent compression parameters on EEG compression methods,
several optimal compression parameters were selected in
an effort to maximise compression performances (Table 1).
As compression performances vary with the data to be
compressed, these parameters were selected strictly for
the DREAMS Subjects Database. Compression with the
different mother wavelet functions used do not result in
clear differences in compression performances. However,
wavelet decomposition levels (L) can be set to 5 or 6 to
improve CR-PRD balance, though larger decomposition lev-
els increase computational complexity. It is also clear that
hard thresholding method outperforms the soft method in
compression. Further, among the different encoders tested,
compression with arithmetic coder (AC) shows clear advan-
tages over other encoders. In WPT-based compression,
the best basis approach does not clearly improve the CR-PRD
balance compared to a standard WPT (full binary tree)
approach. In predictor-based compression, though CR-PRD
balances are similar across different predictor orders (p),
a lower p is desired to reduce computational complexity.
In filter-based method, channel count M = 8 is selected,
which has shown to optimize the tradeoff between compres-
sion performance and complexity. Note that the selection of
thresholding and encoder type does not apply to Lossy SPIHT
and QSPIHT compression methods, which encode coeffi-
cients with the SPIHT method and introduce loss through
SPIHT’s thresholding and lossy quantization respectively.

Fig. 8 compares the CR versus PRD for compressing
EEG signals using wavelet, SPIHT, filter and predictor-based
methods on the test dataset. All of these compressionmethods
used optimal parameters selected from Table 1. The class of
SPIHT-based methods presents a clear advantage in compres-
sion performances compared to the other methods. At set CRs
from 5 to 15, SPIHT-based methods consistently achieve at
least 50% lower PRD than wavelet-based algorithms, 65%
lower PRD than filter-based algorithms. The CR-PRD bal-
ance for Lossy SPIHT and QSPIHT compression are similar
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FIGURE 8. Comparison of CR versus PRD performances between
wavelet-based, SPIHT-based, filter-based and predictor-based EEG
compression methods.

with the Lossy SPIHT slightly outperforming the QSPIHT
method. Also shown in Fig. 8, at fixed CR ≥ 10, WPT-based
compression with full binary tree generates slightly lower
PRDs than DWT-based method. However, it is important to
note that the time complexity of WPT-based compression is
higher than that of DWT-based methods due to an increase in
filtering operations from computing a complete subband tree
decomposition. Predictor and filter-based techniques show
the worst CR-PRD balances, with the predictor-basedmethod
outperforming the other at CR < 8 and underperforming at
CR ≥ 10.

TABLE 2. Runtime comparison of compression algorithms.

C. RUNTIME COMPARISON
This section provides a runtime comparison between the EEG
compression algorithms studied in this paper. The algorithms
were implemented inMATLABR2018b and run on a 2.3GHz
Intel Core i7 processor. Table 2 compares the average runtime
for compression and de-compression of one data segment
(1024 samples) from the database. It can be seen that the
predictor-based compression andQSPIHT algorithms require
the least runtime, followed by Lossy SPIHT and filter-based
algorithm. WPT and DWT-based algorithms are the slowest
amongst examined compression techniques.

The compression algorithms with thresholding stages
(DWT, WPT and filter-based algorithms and Lossy SPIHT)
require longer runtimes, as these algorithms generally need
several iterations of threshold adjustments to reach the

pre-defined CRs. For example, if an algorithm completes
compression at a CR higher than the pre-defined CR, it will
automatically repeat the compression again at a lower thresh-
old and so on until the desired CR is reached, thereby increas-
ing the algorithm runtime.

Further, the runtime of WPT-based compression is higher
than that of DWT-based methods, due to the increase in
filtering operations from computing a complete subband
tree decomposition. The average time complexity of DWT
is O(N ) compared to O(Nlog(N )) for WPT [39]. In [52],
Blanco-Velasco et al. suggested that signal decorrelation
and reconstruction via CMFB carry lower computational
costs than WPT, even after the WPT is pruned from best
basis search. CMFB can be efficiently implemented through
polyphase structures that further improve computational
efficiencies [35]. The lower computational complexity of
RLC compared to AC encoding also contributes to the lower
runtime of filter-based compression technique compared to
wavelet-based techniques.

D. COMPRESSION OF NOISY EEG SIGNALS
EEG signal artefacts often stem from physiological and non-
physiological-related sources [53], [54]. Physiological activ-
ities such as blinking, eye movements, perspiration and
respiration-related movements can produce low frequency
EEG artefacts on EEG signals. Muscle activities (e.g. jaw
clenching) and non-physiological activities such as abrupt
body movements, cable movements and AC electrical inter-
ference can lead to high frequency artefacts. These artefacts
are undesirable and often require pre-processing stages for
their removal. If raw EEG is compressed without being pre-
processed, these artefacts will be compressed as well, having
an impact on the compression algorithm performance.

Wavelet-based EEG de-noising methods are popularly
used to preserve the signal characteristics whilst discarding
noise or artefacts [55]–[57]. The pipeline of this technique
is similar to that of wavelet-based EEG compression: input
signal is decomposed through wavelet transform, and low
amplitude wavelet coefficients that identify noise affected
frequency bands are discarded via thresholding. This means
that compression algorithms with wavelet decomposition
(DWT, WPT-based techniques, Lossy SPIHT and QSPIHT)
may, to a certain extent, have a de-noising effect on the input
EEG signal. Filter-based compression may also elicit this
de-noising effect. EEG characteristics are often located at
specific frequency subbandswithin 0−60Hz range and higher
frequencies are often characterized as noise or artefacts [42].
Low magnitude subband coefficients in insignificant, high
frequency subbands that contain artefacts may be thresholded
during compression. In comparison to compression of EEG
signals with less artefacts, PRDs at given CRs on noisy EEG
signals will be higher as a result of poor reconstruction of the
noisy parts of the signal.

The compression performance of predictor-based algo-
rithms relies heavily on the predictor’s accuracy. Higher pre-
diction accuracy translates to residues of lower magnitudes,
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which can be encoded with shorter bit strings. This hence
increases compression gains. When compressing noisy EEG
data, predictor’s accuracy may drop as a result of high fre-
quency and spontaneous artefacts. This increases the magni-
tudes of residues and reduces the compression performances.

FIGURE 9. An overview of the approach used to study the impact of
compression on the output of the sleep staging algorithm.

V. SLEEP STAGING RESULTS
The specific effects of lossiness in the reconstructed EEG sig-
nals, as a result of lossy compression at different compression
ratios, were analyzed by performing the steps shown in Fig. 9.
EEG signals were first compressed and decompressed using
the six compression methods to obtain different compression
ratios. The decompressed signals were passed on to the sleep
staging algorithm and its performance compared to the case
where no compression was performed. It should be noted
that the staging algorithm performance is used strictly to
assess the change due to compression and not to study the
algorithm on its own. Hence, the sleep staging performance
with uncompressed data with SSA = 74.75%, is used as the
reference point.

FIGURE 10. Change in sleep staging accuracy (SSA) with increasing
compression ratio (CR) using different compression methods.

Fig. 10 shows the change in sleep staging accuracy (SSA)
of the staging algorithm with the increase in compression

ratio (CR) using the different compression methods. It can
be seen that for all the compression methods, a minimum
CR ≈ 4 can be achieved, whilst limiting a decrease in SSA
of less than 2% compared to that of the reference point.
Applying the QSPIHT compression, a peak CR of 65.28 is
achieved with ≈ 10% decrease in SSA.

Fig. 11 show the SSA against PRD for the six studied com-
pression methods. As expected, distortions on discriminative
features for sleep staging increase with PRD, which result
in lower SSA. For all compression methods studied, SSA
degrades by< 5% from reference point as PRD reaches 10%
and by ≤ 10% as PRD reaches ≈ 20%.

FIGURE 11. Change in sleep staging accuracy (SSA) vs average PRD using
different compression methods.

It is important to compare the performances of different
compression methods in the context of automatic sleep stag-
ing. As shown in Fig. 8, the class of SPIHT-based algorithms
presents a clear advantage in CR versus PRD. This is reflected
in Fig. 10, where it is observed that SPIHT-based algorithms
outperformwavelet and filter-basedmethods, and higher CRs
are achieved at set SSA values. This advantage becomes
more apparent at lower SSA values < 70%. Given a cut-off
limit in SSA at 65%, QSPIHT and Lossy SPIHT techniques
achieve CR ≈ 65 and ≈ 32 respectively, compared to
CR ≈ 11 for DWT, WPT-based techniques and CR ≈ 6 for
filter-based technique. Among all compression techniques,
the QSPIHT algorithm achieves the best trade-off in CR
versus SSA. At set CR values > 40, QSPIHT compression
can achieve 12% higher SSA compared to Lossy SPIHT.
Surprisingly, sleep staging remains very robust against signal
distortion from compression when using the predictor-based
technique. Even when significant signal distortion is shown
at PRD > 50%, SSA only degrades by < 2%. At similar
PRDs, the predictor-based method achieves the highest SSA
amongst all studied methods.

Compression gains in QSPIHT and predictor-based algo-
rithms are controlled by the number of quantization bits rather
than thresholding. This results in less precise and less direct
control over CR and PRD. The predictor-basedmethod is also
constrained to achieve high CRs, reaching peak CR = 10.3

168496 VOLUME 8, 2020



D. H. Liu, S. A. Imtiaz: Studying the Effects of Compression in EEG-Based Wearable Sleep Monitoring Systems

TABLE 3. Detailed sleep staging results at different CRs with DWT-based compression.

TABLE 4. Detailed sleep staging results at different CRs with WPT-based compression.

at 2 bit quantization. It is hence difficult to study sleep staging
performanceswith this compression technique at higher CRs.

While the overall accuracy of the staging algorithm
decreases at different rates with increasing compression
across all compression methods, it is useful to study which
sleep stages are significantly impacted due to the loss in
signal introduced by compression. Table 3 shows the sensitiv-
ity (SEN) and selectivity (SEL) across different sleep stages
using DWT-based compression. It can be seen that SEN in
N1 and REM stages degrade by a larger percentage com-
pared to that in Wake and N3. Especially in the REM stage,
it reduces significantly by 63.78% as CR reaches 21.37.
Interestingly, SEN rises with CR in the N2 stage, however
the reduction in SEL suggests several false positives being
detected. Further, both the SEN and SEL remain relatively
stable in N3 and Wake stages with increasing compression.
Since WPT and DWT-based compression essentially follow
the same compression architecture, similar trends in SEN and
SEL are observed across the different sleep stages as shown in
Table 4. The degradation in performance across sleep stages

is also similar in the Lossy SPIHT compression method,
as shown in Table 5, where SEN degrades in Wake, N1,
N3 and REMwith CR, and increases in the N2 stage. Finally,
the results for QSPIHT compression is shown in Table 6,
where it can be observed that the reduction in SEN and SEL
is not as sharp as those observed in the other compression
methods across all sleep stages.

Interestingly, filter-based compression has a more negative
effect on the REM stage’s classification in comparison to
other algorithms. Shown in Table 7, both SEN and SEL of the
REM stage drop to 0% at CR ≥ 5.62 and PRD ≥ 17.23%.
This may be because many REM epochs are wrongfully
identified as the N2 stage, hence explaining the sharp drop
in SEL in N2 as a result of the rise in false positives of N2.
In predictor-based compression, the SEN and SEL across
CRs at different sleep stages in Table 8 also share some
similar trends observed in Table 3. Unlike staging results of
other algorithms, the Wake, N2 and N3 stages are not hugely
affected across increasing PRDs and since they constitute for
≈ 70− 80% of the total data, the SSA remains stable too.
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TABLE 5. Detailed sleep staging results at different CRs with Lossy SPIHT compression.

TABLE 6. Detailed sleep staging results at different CRs with QSPIHT compression.

TABLE 7. Detailed sleep staging results at different CRs with Filter-based compression.

Across all studied compression methods apart from
predictor-based technique, it can be summarized that at PRDs
from 0% to 35%, the sharpest percentage decrease in SEN

with CR is observed in the REM stage, followed by Wake
and N1 stages. In the predictor-based technique, the sharpest
decrease in SEN is observed in N1, followed byN2 and REM.

168498 VOLUME 8, 2020



D. H. Liu, S. A. Imtiaz: Studying the Effects of Compression in EEG-Based Wearable Sleep Monitoring Systems

TABLE 8. Detailed sleep staging results at different CRs with Predictor-based compression.

In DWT, WPT, filter-based compression methods and Lossy
SPIHT, the N3 stage is comparatively more robust to com-
pression, and experiences slowest percentage decrease in
SEN. In these methods, compression gains and loss are intro-
duced through some form of thresholding on wavelet coef-
ficients. Loss of detail coefficients (CDs) from thresholding
may lead to a smoothing effect that smoothes out high fre-
quency components and noise. Compared to the N3 stage that
mainly consists of low frequency spectral features, N1 and
Wake stages are characterized by a mix of high and lower fre-
quency components. As CR rises, the increase in distortions
of high frequency features as a result of a loss of finer detail
coefficients may increase the number of false negatives in
N1 andWake stages. This may explain the sharper percentage
decrease in SEN in Wake and N1 stages compared to that
of N3.

VI. DISCUSSION
In this paper, we examined and compared the effects of
lossy EEG compression on automatic sleep stages classifica-
tion. State-of-the-art lossy EEG compression techniqueswere
first reviewed based on compression ratio, reconstruction
accuracy and computational complexity. Six different EEG
compression methods: DWT, WPT, filter-based, predictor-
based, Lossy SPIHT and QSPIHT, were selected and imple-
mented to compress and decompress full EEG recordings
of 20 overnight sleep recordings. The decompressed record-
ings were passed through an automatic sleep staging algo-
rithm and its accuracy studied for different compression
methods at various compression ratios.

Among the six studied lossy EEG compression techniques,
it was found that the QSPIHT algorithm, which uniformly
quantizes wavelet coefficients before lossless SPIHT encod-
ing, achieved the maximum CR at set sleep staging accu-
racies (SSA). Data could be compressed to CR ≈ 8 with
a degradation of 0.1% in SSA compared to the reference
point and CR > 65 with a degradation of 10%. QSPIHT

also demonstrates highest computational efficiency, shown in
lowest algorithm runtime at given CRs. Overall, SPIHT-based
compression methods clearly outperformed wavelet and
filter-based techniques in achieving better trade-offs between
CR and SSA of automatic sleep staging. Amongst studied
algorithms, the predictor-based technique sustains better SSA
at higher rates of PRD. SSA only deteriorates by 0.5% at
PRD = 24.92% and by ≈ 1.5% at PRD = 53.79%. The
practical limitations of the different compression algorithms
in the context of sleep staging are briefly summarized in
Table 9. These limitations can be helpful in selecting the best
algorithm for long-term sleep staging. For example, if Lossy
SPIHT is to be used then the longer average runtime can
be offset by using a faster processor or by using a faster
algorithm such as the QSPIHT or predictor-based method.

To the best of the authors’ knowledge, this study is the
first work to examine and compare the effects of different
single channel EEG compression methods in the context
of automatic sleep staging. This is important particularly
for long-term sleep monitoring systems that are required to
capture EEG recordings across several hours for multiple
nights. Further, while the results in this paper are presented
using a specific sleep staging algorithm, the insight gained
could be applicable to other sleep algorithms as well as
other EEG-based systems. For example, brain monitoring
systems for epilepsy monitoring can be used to collect data
for sleep analysis as well if the right compression meth-
ods are being applied. However it should be noted that
only single channel EEG compression methods are ana-
lyzed in this paper since the focus of this work is on their
application in single channel EEG-based sleep monitoring.
In multi-channel systems, the correlation between the dif-
ferent channels needs to be exploited in order to achieve
better compression performance [58], [59]. Though requiring
higher computational resources, multi-channel systems can
result in higher sleep staging accuracy for given compression
ratios, since more information will be available during sleep
staging.
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TABLE 9. Compression algorithms and their limitations.

Overall, this paper demonstrates the huge potential of
EEG compression in expanding the end-user acceptance
of wearable EEG systems in long-term sleep monitoring.
If compression techniques such as QSPIHT can be efficiently
implemented for low-resource devices, the consequent gains
due to EEG compression would improve battery perfor-
mance, storage capacities and reduce battery size of these
wearable EEG systems, with minimal impact on sleep stag-
ing performances. The subsequent improvement in end-user
acceptance of wearable EEG systems would significantly
improve the diagnosis and treatment of sleep disorders that
require long-term monitoring.
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