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ABSTRACT Multimodal emotion recognition has gained traction in affective computing research commu-
nity to overcome the limitations posed by the processing a single form of data and to increase recognition
robustness. In this study, a novel emotion recognition system is introduced, which is based on multiple
modalities including facial expressions, galvanic skin response (GSR) and electroencephalogram (EEG).
This method follows a hybrid fusion strategy and yields a maximum one-subject-out accuracy of 81.2% and
a mean accuracy of 74.2% on our bespoke multimodal emotion dataset (LUMED-2) for 3 emotion classes:
sad, neutral and happy. Similarly, our approach yields a maximum one-subject-out accuracy of 91.5% and
a mean accuracy of 53.8% on the Database for Emotion Analysis using Physiological Signals (DEAP) for
varying numbers of emotion classes, 4 in average, including angry, disgust, afraid, happy, neutral, sad and
surprised. The presented model is particularly useful in determining the correct emotional state in the case
of natural deceptive facial expressions. In terms of emotion recognition accuracy, this study is superior to,
or on par with, the reference subject-independent multimodal emotion recognition studies introduced in the
literature.

INDEX TERMS Emotion recognition, multimodal emotion recognition, multimodal data fusion, convolu-
tional neural network, electroencephalogram, galvanic skin response.

I. INTRODUCTION
The study of emotion has a long history. Emotions have been
a subject of philosophy long before it was covered in other
disciplines [1]. Recognising emotions can help understand
and interpret human behaviours. The field of affective com-
puting emerged for emotion recognition using various data
sources and leveraging computer-based environments [2].
Affect recognition typically requires tracking and measuring
data sources and processing them for estimating emotions.
There are various emotion recognition studies published that
use multiple sources of data (modalities) [3]–[6].

The literature features different emotion models. Authors
in [7] outline a review of them considering nine differ-
ent studies and in total there are 65 different emotion
categories. Emotion can be represented by a continuous
4-D space of valence, arousal, dominance and liking [8].
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In many studies the 4-D space is reduced to a 2-D space
as valence and arousal [9] to represent emotions. The study
by Ekman et al. [10] yielded 6 basic emotions: anger, dis-
gust, fear, happiness, sadness, and surprise. These emotional
states are widely agreed to be universal across cultures and
races. Other emotions map on to different points on the
valence-arousal scale. A 2-D normalised emotional circum-
plex model introduced in [11] is shown in Figure 1. In [11],
the valence and arousal values were determined by analysing
a large number of blog posts. The basic emotion states are
highlighted on Figure 1.

Emotion recognition can be performed by analysing the
face, body language or speech, which are the common
modalities, although they are susceptible to deliberate decep-
tion. On the other hand, physiological signals originating
from internal bodily reactions are less affected by decep-
tions. Electroencephalogram (EEG) and FunctionalMagnetic
Resonance Imaging (fMRI), which measure brain electrical
or blood flow activity, are two examples. Other examples

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168865

https://orcid.org/0000-0002-3759-4629
https://orcid.org/0000-0001-5357-4436


Y. Cimtay et al.: Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion

FIGURE 1. 2-D valence-arousal circumplex model [11].

that can be measured using modern consumer-grade sen-
sors include heartbeat, galvanic skin response, blood volume
pulse, respiration and temperature.

Emotion classification techniques typically leverage
machine learning methods, such as Support Vector Machine
(SVM), linear and nonlinear regression, decision trees and
K-Nearest neighbour (KNN), which result in a range of
classification accuracies. More recently, deep learning mod-
els like Convolutional Neural Networks (CNN), Long-Short
Term Memory (LSTM) and Convolutional Long-Short Term
Memory (CLSTM) have been studied in emotion classifica-
tion [3], [6]. In deep learningmodels, unprocessed sensor data
can be used directly by the network without pre-extracting
features. Deep learning-based models can achieve high accu-
racy recognition rates especially if there is a high volume of
accurately labelled data.

Multimodal emotion recognition aims to combine the pre-
dictive capabilities of individual behavioural and biometric
traits for accurate classification. This bears a greater com-
plexity than unimodal emotion recognition systems due to
the need for jointly processing of multiple data source. Even
within multimodal approaches, there is a high degree of
variation in terms of prediction accuracy, which necessitates
the design of robust approaches. With this aim, in this paper
we propose a novel hybrid multimodal emotion recognition
model, utilising both soft- and hard-biometric data and test
its performance using existing datasets and also on a newly
created multimodal dataset.

The remainder of this paper is structured as follows:
Section II provides an overview of the relevant literature
in the area of multimodal emotion recognition. Section III
gives a detailed account of the proposed approach. Datasets
used in the process of training and testing are described
in Section IV and in Section V we provide the test results
with the discussions. Finally, Section VI concludes the
paper.

II. BACKGROUND AND LITERATURE REVIEW ON
MULTIMODAL EMOTION RECOGNITION
Several unimodal and multimodal emotion recognition stud-
ies have been reported in the literature [12]–[16]. Majority
of studies use non-physiological data, such as audio, video
and text [17]. One of the difficulties with non-physiological
modalities is that someone may disguise their actual emotion
and not reveal enough cues about their actual state. More
recently, researchers are showing an increasing interest in
brain signals and peripheral physiological signals due to their
nature of irrevocability [18]. However, these are prone to
measurement artefacts and noises. A multimodal emotion
recognition system reinforces the overall recognition robust-
ness, where temporary defects and problems in some modal-
ities are compensated for by other modalities.

The study in [19] proposes a fusion model based on
verbal and nonverbal information to increase the emotion
recognition capability of children companion robots. The
study in [20] created a multimodal emotion database that
includes the visual, audio, physiological, depth and pose data
of 60 participants. Researchers in [21] collected participants’
facial expressions, heart rate, pupil diameter and EEG data
by showing them specific visual stimuli. They reported that
the emotion recognition accuracy of models developed based
on multimodal features is superior to those based on single
modality.

In an application context, the study in [22] focused on
two sentiment types: semantic and contraption erudition.
Authors developed algorithms to contribute to the business
perception and consequences in product improvement. A sen-
timent analysis technique based on Convolutional Neural
Networks for imagery was introduced in [23]. This study
leverages transfer leaning and the developed model performs
reasonably well under scarce training data condition. The
study in [24] reviewed the sentiment analysis approaches like
dynamic dictionary handling, lexical variations, and sarcasm
sentiment analysis. In [25] researchers applied an end-to-end
deep neural network for learning with both text and image
demonstrations.

The study in [26] focuses on estimating the depression
levels. Authors use multitask modality encoders that get
individual modalities’ features as inputs and give modality
embeddings as outputs. An attention-based fusion network
is applied for the fusion of individual modalities. At the
final step, a deep network is applied. In [27], a multimodal
sentiment analysis by using textual, visual and audio fea-
tures was proposed. Authors used a CNN model to extract
textual features, and a 3D-CNN model to extract audio and
visual features. The features coming from each modality
are concatenated and for final classification, Support Vec-
tor Machine (SVM) is applied. The study in [28] describes
a generative Unigram Mixture Model (UMM). This model
provides learning a word-emotion society lexicon by using
input from a document corpus. They compare their pro-
posed and state-of-the-art baseline methods on word emo-
tion classification and document emotion ranking. In [29], a

168866 VOLUME 8, 2020



Y. Cimtay et al.: Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion

Multimodal Dictionary is presented to understand the rela-
tionship between the spoken words and facial gestures when
introducing sentiment. This approach improves the prediction
accuracies in speaker independent sentiment intensity analy-
sis. Multiple other recent studies under the topic of unimodal
and multimodal sentiment or emotion analysis are reported
in [30]–[41].

Data fusion is a critical step involved in multimodal
emotion recognition for producing the estimation. The
literature about emotional data fusion involves three
data fusion techniques, which are early fusion (feature
fusion) [42], [43], late fusion (decision fusion) [44]–[46] and
hybrid approaches [17], [47], [48].

In feature level fusion, features are extracted from each
modality and one feature set is created by combining all
modalities. This combined feature set is used for the training
of emotion recognition model. Some of the studies which
use feature fusion are [42], [43], [49]. In [42], EEG and
audio-visual feature sets are fused. It mentions that using
the fusion of full-band EEG power spectrum and video
audio-visual features achieves the best recognition accu-
racies. It reports 96.8% classification accuracy for pos-
itive/negative valence and 97.8% for High/Low arousal.
The study in [43] integrates low-level audio-visual features
extracted from videos and brain functional activity measured
by magnetic resonance imaging (fMRI). For classification
they use multimodal deep Boltzmann machine. In [49], the
researchers use Fisher Criterion Score and Davies-Bouldin
index feature selection methods in order to select significant
multimodal features from physiological data. They use HMM
(Hidden Markov Model) for the classification of valence and
arousal.

Feature level fusion is an imitation of human mechanism
of emotion recognition, which is based on collecting all
sensory information from different modalities and combin-
ing them. There is no isolated emotion classification done
using any individual modality, and the classification is based
on a combined multimodal feature set. The limitation for
feature level fusion is that once a model is trained using a
specific combination of feature sets, all future test data should
have exact same feature structure with no tolerance to data
loss. Any missing modality or feature will result in a failed
classification. One possible solution is maintaining multiple
models trained using different combinations of features (or
modalities) to create backups and prevent failures resulting
from missing data. Or, missing data should be recovered
before creating test samples, as done in [6].

In [6], different missing data techniques were applied by
using early fusion with deep recurrent networks. The study
in [3] uses Deep Belief Networks (DBN) for doing a feature
level fusion of audio, face video, body video and physiolog-
ical data. Authors in [50] also apply feature level fusion of
face video and audio modalities and classify the emotional
state using a 2-Layer LSTM.

The study in [4] uses EEG and eye movement modalities
to implement a feature level fusion by using SVM and Deep

neural networks. It reports that the mean recognition accu-
racy is increased combining feature fusion and deep neural
network compared to combining feature fusion with SVM.
In [18], EEG and peripheral physiological signals were used
asmodalities. It applies feature fusionwith SVMand bimodal
LSTM classifiers. Comparing to feature fusion with SVM,
it reports that bimodal LSTM has achieved the maximum
recognition accuracy at 93.97% on Shanghai Jiao Tong Uni-
versity Emotion EEG Dataset (SEED) [46].

Decision level fusion combines the resulted emotion labels
coming from each classifier that use different modalities.
In this type of fusion, each modality leads to an indepen-
dent emotional output. These outputs can be used separately
or jointly through machine learning methods. Some studies
have implemented decision level fusion as reported in [44],
[45], [49], [52], [53].

The study in [44] a decision level fusion is applied for
audio and visual data to identify emotions. The proposed
method is applied on eNTERFACE’05 database [54]. The
study in [49] uses face, voice and head movement modalities
for emotion recognition. It conducts a late classification by
using a Bayesian framework. It reports that the decision level
fusion is successful especially for detecting happiness. The
fusion strategy increases the average accuracy, from 55% to
about 62% comparing to unimodal application.

In [52], the scientists propose a decision level multimodal
emotion recognition based on EGG and face modalities. They
use a stimulus which is based on a subset of clips that corre-
spond to four specific emotions: happiness, neutral, sadness,
and fear on the valance-arousal emotional space. For facial
expression recognition, these emotion states are detected
by a neural network classifier. For EEG data recognition,
four basic emotion states and three emotion intensity levels
(strong, ordinary, and weak) are detected by support vector
machines (SVM). They apply a sum and production rule for
fusion of the unimodal results. They report that the mean
recognition accuracy is 82% for multimodal method which
is higher than the accuracies of 74.38% and 66.88% of facial
expression and EEG modalities respectively.

The advantage of decision level fusion is that when any
of the modalities is missing, the decision can be made by
using the other modalities. However, this requires an intel-
ligent system, which can detect the missing modalities. One
of the earliest decision level fusion strategies uses a vot-
ing technique [55]. In this strategy, the classification state
reached by most of the modalities was ultimately agreed on
and adopted. The drawback of this strategy is the likely tie
situations. Another approach, which avoids possible ties and
increases the accuracy, is to use the prior knowledge about
each modality. The prior knowledge includes the classifica-
tion confusion matrix for each modality and for each method
used. According to the known prior classification accuracies,
for each emotional state, a weighted voting strategy can be
used. Voting weights can be calculated from the recognition
rate or error rates that each classifier has shown with the
training or test data [56].
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Beyond the use of voting schemes, the study in [57] uses
a lookup table during training to record the classification
combinations, classification output, correct labels and the
number of occurrences of combinations. The classification
confidence of combinations is measured with the number
of the occurrences. The outcome with the highest level of
confidence in the lookup table is chosen.

The study in [58] computes confidence for each modal-
ity and weights the unimodal decisions by the measured
quality of raw signals. This operation decreases the clas-
sification error rate and increases the quality of recogni-
tion [58]. In [59], Relevance Vector Machines (RVM), which
correspond to embedded SVMs are used. RVMs resemble
SVM but run in an embedded Bayesian frame. It calculates
the affiliation probabilities of each emotion category across
the classifiers. These probabilities are used as classification
weights for decision level fusion.

The study in [60] uses a decision fusion strategy, which
combines the emotion outputs of visual and audio paths using
KNN or Artificial Neural Networks (ANN). The study in [12]
is one of the first examples of approaches combining audio,
face and physiological data by applying decision level fusion.
It reports the Concordance Correlation Coefficient (CCC)
metric result for arousal and valence and concludes that mul-
timodality increases the emotion recognition accuracy.

In [52], a decision level fusion was applied to outcomes
from EEG and face modalities. It applied SVM classifica-
tion for EEG data and Neural Network for face data. The
emotional states are grouped according to the intensity levels.
According to the labels of training data (happiness, neutral,
sadness, fear) it tried to find the optimal weights of each
modality in obtaining the final decision.

Another fusion technique is called hybrid fusion, which
typically combines both the early- and late-fusion techniques.
For instance, one classifier may deploy a feature-level fusion
for the face and body gestures modalities, while another clas-
sifier may do so for physiological signals. Another decision
level classifier above these two classifiers can process the
results of two feature level classifiers to come up with the
final emotion label. Hence, such a system is called a hybrid
fusion system.

In [61], a simple hybrid fusion was employed where the
output of an early fusion classifier is feeding input to a
decision-level fusion system. A recent study in [48] uses a
latent space map for the fusion of audio and video modalities;
and then, by using a Dempster-Shafer (DS) theory-based
evidential fusion method, the projected features on the
cross-modal space are fused with the textual modality.

Multimodal techniques have also been applied in
cross-subject and subject-independent emotion recognition
studies. The study in [62] uses physiological signals with
feature level fusion. Authors trained a deep CNN model
and achieved 94% subject-independent average accuracy
on BP4D+ dataset [63] for 10 emotion classes. The study
in [64] uses speech and body motions modalities with two
stagesGaussianMixtureModel (GMM)mapping framework.

It achieves a maximum accuracy of 63%, 51%, 50% for
valence, arousal and dominance, respectively, on USC Cre-
ativeIT multimodal emotion database [65].

The study in [66] uses a decision fusion on physiological
data including photoplethysmography (PPG), a respiratory
belt (RB) and fingertip temperature (FTT) and conducts one-
subject-out test on the DEAP dataset. It achieves 72.18% and
73.08% mean accuracies on high-low valence and high-low
arousal, respectively. The study in [67] uses a three-stage
decision method for classifying four emotions on the DEAP
dataset. It achieves 77.57% average accuracy when classify-
ing the labels as high- and low- arousal, and 43.57% when
classifying as high- and low- valence.

A. LIMITATIONS OF THE REVIEWED MULTIMODAL
EMOTION RECOGNITION STUDIES
While the published studies report varying recognition and
classification accuracies under varying contexts, we noted
some common limitations applying to a multiple of these
studies. They are summarised below.

- Studies that exploit facial expression analysis for emo-
tion detection broadly assume that the participants do
not show deceptive expressions, while this is not always
the case. DEAP dataset is a good example for this.
Visual-based multimodal emotion recognition studies
tend to yield inferior accuracy results with this dataset.

- Multimodal emotion recognition studies generally do
not discriminate between the predictive capabilities of
individual modalities. For example, GSR is effective in
predicting the arousal, but not valence. Incorporating all
modalities equally in a model could reduce the recogni-
tion accuracy.

- The effects of emotion transitions are not reflected on
physiologic outputs with the same delay. Yet, many
reviewed studies jointly process multiple modalities
measured at co-located time windows that can limit the
achievable recognition accuracy.

B. CONTRIBUTIONS OF THIS WORK
- We employ subsets of modalities and features derived
from them, in association with the targeted dimension,
i.e., valence or arousal. Our decision to select the subsets
of modalities is informed by the former studies.

- The presented emotion recognitionmodel is made robust
against natural deceptive facial expressions by compar-
ing facial-expression based dominant emotions against
emotions inferred via other modalities.

- We adopt a hybrid approach composed of feature-
and decision-level fusion. Physiologic modalities mea-
sured at varying time instances are jointly processed for
improved accuracy.

- Our method is tested on multiple datasets, which include
instances of deceptive facial expressions.

- The feature extraction capability of a pretrained CNN
model (InceptionResnetV2 [61]) is utilised to eliminate
the need for manual feature extraction.
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FIGURE 2. Proposed hybrid multimodal emotion recognition method.

III. PROPOSED METHOD
In this study a newmultimodal emotion recognitionmethod is
introduced, which uses face, EEG and GSR data modalities.
The overall system diagram is shown in Figure 2, which
will be described later in detail. In this study, to detect the
emotional state, the valence probability array coming from
EEG modality at time t, the arousal probability array coming
from the combined data of EEG and GSR at time instant
t + T0 and, the discrete emotion probability array coming
from face modality (PF) at time t + T0 are used.

The reason we introduce a time delay T0 between EEG
sample and other modalities’ samples is due to the fact that
physically the emotion signal first emerges in the brain and
the brain sends the exciter signal to trigger other modalities
with some delay. T1 depends on the processing power of
used hardware. Empirically we have chosen T0 as 0.35 sec.
For prediction of arousal we use EEG and GSR raw data
together, and for valence we only use EEG data. There are
three separate InceptionResnetV2 CNN models for arousal,
valence and face-based discrete emotion, respectively.

A. FACIAL EXPRESSION ANALYSIS
The face data used in this study for training our multimodal
emotion recognition model is composed of well-known pub-
lic face imagery datasets including Cohn-Kanade+ face
dataset [69], Radboud Faces Database [70], FacesDB [71]
and AffectNet [72]. Since we get use of the spatial infor-
mation contained in the images, for the purpose of train-
ing, rather than video, static images are preferred. For each
of the datasets used, all the facial images were manually
double-checked to identify and leave out the samples where
we don’t have a consensus with the associated emotion
label. This filtering step is applied in our work to minimise
the influence of training samples with potentially wrong or
arguable labels on the classifier performance. Table 1 shows
the percentage of eliminated labelled facial image samples
from each dataset following the application of the filtering
step.

Following the filtering step, a final dataset is obtained by
combining all labelled samples from the four datasets. The
number of face images belonging to each emotion category
is given in Table 2.

TABLE 1. Percentage of eliminated images from each dataset.

TABLE 2. Number of labelled face images used in training.

It is important to note that this combined dataset features
labelled face image samples taken using different camera
settings (angle of shooting, camera zoom level, resolution,
average brightness) in order to handle different conditions.
We don’t use the face data of LUMED-2 [73] and DEAP [74]
dataset, since they are the test datasets for this study. Face
modality is used in the form of still images of faces. A pre-
trained state-of-the-art InceptionResnetV2 CNN model is
trained again using the previously discussed and refined face
datasets as input, and their associated discrete emotion labels
as output. The reason for choosing InceptionResnetV2 is due
to its proven capability of yielding one of the highest recog-
nition accuracies in the image classification context [75].
The initial network weights were adopted from ImageNet
training. Hence, it is called pre-trained. The parameters of
training are given in Table 3.

This CNN model is trained with 8898 face images (see
Table 2) in the emotion categories of angry, disgust, afraid,
happy, neutral, sad and surprised. Image data augmentation
and normalisation is applied on the training set prior to train-
ing in order to handle different shifting, zooming and lighting
conditions.

The outputs of trained model CNNF in Figure 3 are
the probability vectors of seven discrete emotion categories
(based on the Ekman’s model, and additionally the neutral
emotion state) and following the application of the argmax
function, the final emotion state is yielded. The diagram of
emotion classification based on the face data modality is
shown in Figure 3.

B. GALVANIC SKIN RESPONSE (GSR) ANALYSIS
Second modality used in the proposed hybrid multimodal
architecture is the GSR data. When humans are exposed to an
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TABLE 3. Training parameters of face network.

FIGURE 3. Face emotion recognition model.

event or stimuli, the emotion is triggered first in the brain [76].
The brain signals start to change and send exciter signals to
the other parts of the body.

For instance, face expression and voice tone change.
Another important change occurs in physiological signals.
One of them is GSR, which is a measure of change in the
electrical resistance of the skin. When one is emotionally
aroused, the electrical conductivity of the skin changes. GSR,
which is also known as EDA (Electrodermal activity) or SC
(Skin Conductance), is one the most important measures of
emotional arousal [77].

GSR measures the skin secretion that is an unconscious
process under the control of body’s sympathetic nervous
system and reflects the changes in arousal. When people are
aroused due to various effects like fear, joy or stress, skin
starts to sweat. GSR has been investigated in many studies
and it is still regarded as one of the most powerful methods
for understanding and measuring physiological arousal.

GSR has been used in a wide range of research activities,
which include but not limited to physiological research, clin-
ical research and psychotherapy, consumer neuroscience and

marketing, media and ad testing, usability testing and User
Experience (UX) design [78]. Under normal conditions, for a
healthy individual GSR is near stable. Once an individual is
exposed to some arousing stimuli, more frequent changes in
the GSR data start to be observed. Following to the transition
to a calmer state, GSR change activity decreases. Since GSR
is highly linked to one’s level of arousal, we use this modality
together with the EEG modality for predicting the arousal
level of individuals.

C. ELECTROENCEPHALOGRAM (EEG) ANALYSIS
One way of measuring the brain activities is using the EEG
technology. The change of the electric potential formed on the
skull is measured by using actual and reference electrodes.
Some commercially available EEG devices in the consumer
market include Emotiv, Neurosky, and Neuroelectrics [79].
These devices have various spatial and temporal resolutions.
Spatial resolution is related to number of electrodes placed
on the head and the temporal resolution is related to the
number of electric potential changes recorded in a second.
Generally, EEG has a low spatial, but a high temporal reso-
lution compared to other brain monitoring technologies such
as fMRI and functional near-infrared spectroscopy (fNIRS).
There are different electrode positioning standards for EEG,
such as 10-20, 10-10 and 10-5 that result in different spatial
resolutions [80].

EEG is preferred in this work due to its reliability and
portability compared to other brain monitoring technolo-
gies. Clinical applications have traditionally been one of the
application areas of EEG. EEG has been used to investigate
the signal patterns related to epilepsy [81] and sleep [82].
Detection of the hyperactivity and consciousness related dis-
orders [83], [84], measurement of mental workload [85], level
of attention [86]–[88], mood and emotions [89]–[91] have
been the other application areas of EEG.

Although EEG has gained popularity in the context of
emotion recognition studies due to its resistance to decep-
tive actions of humans, it exhibits varying distributions for
different people as well as for the same person at different
time instances [92], [93]. This is a problem, which decreases
the accuracy of emotion recognition for subject-independent
applications. One way of mitigating this kind of a problem
is decreasing the number of emotion classes by grouping
them and using complex techniques on feature extraction to
increase the accuracy [94]. In this study we leveraged the
research outputs of our previous study in [94]. Although the
subject-independent emotion recognition accuracy of EEG
is relatively low, when the number of emotion categories
is reduced to two (e.g., high and low valence/arousal), the
accuracy increases accordingly.

Our previous study on EEG-based emotion recogni-
tion [94] was a leave-one-subject-out cross-validated study.
This is depicted in Figure 4a, where the outputs of EEG-based
emotion recognition system are the probabilities of high- and
low- valence (PV−H and PV−L) considering two classes.
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FIGURE 4. (a) One-subject-out valence recognition model,
(b) One-subject-out arousal recognition model.

TABLE 4. Training parameters of EEG and GSR+EEG network.

In order to increase the overall accuracy, in the proposed
method, we do a pre-grouping on the valence and arousal
labels in order to reduce the total number of output classes.
We group valence as high- /low- valence and arousal as high-
/low- arousal. In this study, for estimation of arousal, we have
combined the prediction capabilities of both the GSR and
EEG modalities.

The outputs of the network that relies on the early fusion
of raw GSR and EEG are the probabilities of high- and low-
arousal (PA−H and PA−L), as shown in Figure 4b. The training
parameters of EEG network in Figure 4a, and the network
combining both EEG and GSR modalities in Figure 4b are
given in Table 4. The parameters used are the same. Note that,
like in the case of the face modality, for the physiological
signals we also used the InceptionResnetV2 Convolutional
Neural Network as the underlying network architecture.

The outputs of CNNA in Figure 3, are the probability
vectors of high- and low- arousal. Similarly, the outputs

of CNNV are the probability vectors of high- and low-
valence. The outputs of CNNV and CNNA are fed into a
weighting unit. This unit calculates the weighted sums of
valence and arousal, respectively. Weighted valence VW and
weighted arousal AW are then sent to the distance calcu-
lator. Distance calculator calculates the emotional distance
from the weighted valence-arousal to actual valence-arousal
pairs, which correspond to the seven discrete emotion states.
Emotional distances are fed to the final decision tree system.
The output of CNNF is fed to decision tree system at this
stage too.

The decision tree system, which is explained in more detail
below, outputs the final computed emotional state at time
t+T1. Distance calculator calculates the emotional distance
from the weighted valence-arousal to actual valence-arousal
pairs, which correspond to the seven discrete emotion states.
Emotional distances are fed to the final decision tree system.
The output ofCNNF is fed to decision tree system at this stage
too. The decision tree system, which is explained in more
detail below, outputs the final computed emotional state at
time t +T1. The reason we put a time delay T0 between EEG
sample and other modalities’ samples is due to the fact that
physically the emotion signal first emerges in the brain and
the brain sends the exciter signal to trigger other modalities
with a of delay.

D. DECISION TREE
At the core of the proposed method lies the function of a deci-
sion tree. Here we put the emphasis first on the probability
vector of the face modality-based emotion detection system.
We consider not only the dominant emotion (i.e., the one
with the maximum probability), but also the emotion with the
second highest probability. This is because individuals may
hide their actual emotion and the likelihood of the second
most probable emotion state being the actual emotion state
increases. Also, face modality-based emotion systems may
sometimes lead to false detections in terms of the emotional
states in the case of confusing gestures. At this point, the other
physiological modalities (i.e., GSR and EEG) help detect the
emotional state with better accuracy.

EEG is a nonstationary signal and shows different dis-
tributions from subject to subject. Therefore, it is not very
successful in terms of predicting the discrete emotional state
or the valence and arousal when subject-independency is
sought [92], and especially when the number of output classes
is relatively high. GSR on the other hand is mostly a measure-
ment of arousal and doesn’t give useful information about the
valence dimension.

We set the normalised centre values of high and low
as -0.75 and 0.75, respectively. These centre values for
low and high can change according to the choice of
low and high intervals. In our case, the resulted valence
value is the average of valence vector [PV ] and arousal
is the average of arousal vector [PA]. We also use the
associated (mapped) valence and arousal values of the
used seven discrete emotion states, shown in Figure 1.
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These are empirical values previously introduced in [11].
These values ([valence, arousal]) include: [0,0], [0.89,0.17],
[−0.81,−0.40], [−0.68,0.49], [−0.40,0.79], [−0.12,0.79],
[0.42,0.88] for emotion states ’Neutral’, ’Happy’, ’Sad’, ’Dis-
gust’, ’Angry’, ’Afraid’, and ’Surprised’, respectively.

In the decision tree, if the maximum probability in [PF ]
vector coming from face modality based network is over a
pre-defined threshold that is empirically set to 0.9, we take
the final emotion state as the one discrete emotion with
maximum probability value in [PF ]. If the maximum prob-
ability is below the threshold, then we use the distances from
the weighted valence-arousal to each valence-arousal pair of
discrete emotion states (i.e., output of distance calculator).
We compare the emotional distances of the emotion states
with the highest and second highest probabilities in the [PF ]
vector. We check whether the emotional distance of the emo-
tion state with second highest probability in [PF ] is higher
than the one with highest probability. If it is higher, then
we take the one with second highest probability in [PF ] as
the final emotional state. Otherwise, we assign the discrete
emotional state with the highest probability in [PF ] as the
final emotional state output.

E. THE OVERALL HYBRID FUSION WORKFLOW
The proposed method is suitable for real-time operation.
To summarise the overall hybrid fusion based multimodal
emotion recognition technique, which uses face data, GSR
and EEG inputs, a pseudocode is provided below. In the pseu-
docode,GT V andGT A represent the ground truth valence and
arousal pairs taken from valence-arousal circumplex model
shown in [11], andMSE stands for Mean-Square Error. Other
symbols in the pseudocode are as defined in the previous
sub-sections of Section III.

def DiffCalculator (VW , AW , [GT V ,GT A])
[dE ] =MSE (VW , AW , [GT V ,GT A])
return dE

def DecisionTree ([PF ], [dE ],Th)
if max ([PF ]) > Th

emotionstate = argmax ([PF ])

else
if dE (argsecondmax ([PF ])) < dE (argmax ([PF ]))
emotionstate = argsecondmax ([PF ]))

else
emotionstate = argmax ([PF ])

return emotionstate

//Main hybrid fusion-based emotion recognition cycle

load CNNV , load CNNA, load CNNF , load [GT V ,GT A]
Th = some value between [0.7,1]
[WV ] = first element is between [−1, -0.5], second ele-

ment is between [0.5,1]→the center value of high and low
valence

[WA] = first element is between [−1, −0.5], second
element is between [0.5,1] →the center value of high and
low arousal

while True
EEG = readEEGData ()→ at time T

sleep for T0→ T0 is chosen as empirically,
optimally set to 0.35 sec.

GSR = readGSRData ()
Face = readFaceData ()
EEG_GSR = concatenate (EEG,GSR)
PV = CNNV (EEG)
PA = CNNA(EEG_GSR)
[PF ] = CNNF (Face)
VW = sum (PV ∗ [WV ]),AW = sum (PA∗[WA])
dE = DiffCalculator (VW , AW , [GT V ,GT A])
FinalState = DecisionTree ([PF ] , [dE ], Th)

IV. DATASETS
The multimodal datasets used in the proposed emotion recog-
nition system include LUMED-2 [73] and DEAP [74] mul-
timodal emotional databases. These two datasets are open to
public access.

A. OVERVIEW OF DEAP DATASET
As explained in [8], DEAP is a multimodal emotion dataset
which includes peripheral physiological signals and the EEG
of 32 participants. Frontal face video of 22 participants was
also additionally recorded. To elicit emotions in the partic-
ipants, one-minute long video clips (music) were shown,
and the data was recorded in real-time. Each participant
watched 40 separate videos. Participants rated the videos in
terms of levels of arousal, valence, like or dislike, domi-
nance, and familiarity along a number scale between 1 and 9.
A 32-channel EEG device was used. The raw EEG data
was down sampled to 128 Hz. The EOG artefacts were
removed and a bandpass filter was applied whose cut-off
frequencies are 4.0 Hz and 45.0 Hz. The data was segmented
into 60-second intervals and a 3 second baseline data was
removed. Face videos are also set to 60-second long segments
at 50 fps and 720× 576 resolution.

B. OVERVIEW OF LUMED-2 DATASET
Loughborough University Multimodal Emotion Database-2
(LUMED-2) is a new multimodal emotion dataset that was
created by the researchers of Loughborough University, UK,
and Hacettepe University, Turkey, by collecting simultaneous
multimodal data from 13 participants (6 females and 7 males)
by showing audio-visual stimuli [73]. The total duration of all
stimuli is 8 minutes and 50 seconds, which consist of short
video clips selected from the web to elicit specific emotions.
Between each video clip, in order to let participants, have a
rest, a 20-second grey screen was showed.
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FIGURE 5. LUMED-2 data collection setup.

Although it is anticipated that each video clip elicits a
distinct emotional state and thus can determine the label of the
resulting emotion, in reality the same content might trigger
differing emotions for different participants. Therefore, after
each session, the participants were additionally asked to label
the clips with the felt emotional state while watching them.
Three different emotions were resulted from labelling: sad,
neutral and happy. The facial expressions of the participants
were captured using a webcam at a resolution of 640 × 480
and at 30 fps.

Participants’ EEG data was captured using an ENOBIO
8-channels wireless EEG device, which has a temporal res-
olution of 500 Hz [70]. We filtered EEG data for the fre-
quency range [0, 75Hz] and applied baseline subtraction
for each window. As for the peripheral physiological data,
an EMPATICA E4 Wristband [95], powered by Bluetooth,
was used to record participants’ GSR. A screenshot of the
data capturing system is shown in Figure 5. We prepared
a fully wireless setup, which facilitates a more comfortable
experience for the participants while watching the stimuli,
reducing the inherent distress induced by wired devices sur-
rounding their body. This is one of the important advantages
of our multimodal data collection setup.

V. RESULTS AND DISCUSSION
In this work, leave-one-subject-out cross-validated classi-
fication tests were conducted on two different multimodal
emotion datasets: DEAP and LUMED-2. For DEAP dataset,
we first generated the discrete emotion labels using the partic-
ipants’ rating of valence and arousal (already existing in the
dataset). We extracted the central valence and arousal values
of seven discrete emotion states from the 2-D emotional
circumplex model shown in Figure 1. Then the Least Mean
Squares (LMS) distance between each emotional state and the
participant ratings were calculated. The emotion state, which
gives the minimum distance and has a maximum normalised
distance of 0.2, was assigned as the discrete emotional label

FIGURE 6. An example face imagery of emotion ‘‘Angry’’ from DEAP
dataset.

for the corresponding samples in the dataset. For LUMED-2,
the discrete emotion labels are given as ‘‘sad’’, ‘‘neutral’’ and
‘‘happy’’, i.e., three classes of emotions.

We classified the emotions under three test conditions:
using (a) face modality only, (b) physiological modalities
only, and (c) face and physiological modalities together. For
DEAP dataset’s physiological (EEG+GSR) data, we have
achieved an average cross-subject high-low valence clas-
sification accuracy of 86.6% and an average high-low
arousal classification accuracy of 84.7%. In these two-class
classifications, we defined the interval between 7 and 9
on the valence/arousal scale as ‘‘High’’, and the interval
between 1 and 3 as ‘‘Low’’. Note that these are not the
classification accuracies obtained for discrete emotion states.

Table 5 shows the classification accuracy results for the
three test conditions using the DEAP dataset and for 10 ran-
domly selected participants who had their face video also
taken. The number of unique emotion states are also given
in the table. It can be seen from the table that using EEG and
GSR modalities with face modality increases the recognition
accuracy in comparison to using only the facemodality and/or
only the physiological modalities, for all selected partici-
pants. The mean accuracy is increased by approximately 10%
compared to using only the face modality.

The proposed hybrid multimodal emotion recognition
method also increases the accuracy compared to using phys-
iological modalities only. It increases the mean accuracy by
approximately 13%. An important point to note is that the
average emotion recognition accuracies are relatively low
for the DEAP dataset. This is mainly because the partici-
pants’ faces are covered by multiple Electromyogram (EMG)
electrodes and connectors. EMG setup acts as a hindrance
that prevents participants from showing facial expressions
freely. This is regarded as deceptive facial actions in terms
of our study, which may lead to a higher percentage of false
classifications for the face modality.

An example face imagery from the DEAP dataset is shown
in Figure 6. A face-based emotion classifier yields for this
specific face image a 93% probability of ‘‘happy’’ state and
a 4% probability of ‘‘neutral’’ state. On the other hand, the
generated emotion label based on the valence and arousal
values is ‘‘Angry’’. It is also difficult to recognise the actual
emotion state with the proposed multimodal method when
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TABLE 5. One-subject-out’’ prediction accuracies (%) For DEAP dataset.

FIGURE 7. Emotion recognition accuracy with respect to the Time delay
between the considered modalities.

the dominant emotion probability is over a high threshold.
We have set the threshold probability as 0.9. When the par-
ticipant starts to show the actual emotion naturally, meaning
that the maximum value of probability vector produced by
face modality drops under 0.9 and even if it is in the second
place in the face recognition probability order, our proposed
method mostly catches the actual emotion by use of EEG and
GSR. These results can be observed from Table 5 and 6.

Table 6 shows the accuracy results for the LUMED-2
dataset for three discrete emotion states: sad, neutral and
happy. As shown in the table, face and physiological modal-
ities establishes superiority to each other for different users,
however using all modalities together with proposed method
improves the accuracy for all users. The average accuracy is
52% better than using face only case and 42.3% better than
using physiological modality. Standard deviation is reduced
by 75% and 50% compared to face only and physiological
only cases respectively.

The inter time-delay has been chosen empirically. It is one
of the core parameters that impacts the recognition accuracy.
We employ different time delay values from 0 to 1 sec. and

TABLE 6. One-subject-out’’ prediction accuracies (%) For LUMED-2
dataset.

observe the changing in the accuracies. Figure 7 shows the
accuracy change for the DEAP and LUMED-2 datasets as the
introduced time delay changes between 0 to 1s. The optimal
value for both datasets is around 0.35. So, we set the time
delay as 0.35 sec. Figure 7 shows how the value of time delay
affects the mean recognition accuracy. This proves that the
bio-signals do not react simultaneously and there is a time
lag between brain response and other bio-signals. This is due
to the time it takes to transmit biochemicals to other parts of
the body, after being initiated inside the brain.

The proposed method has also been compared to other
cross-subject unimodal and multimodal emotion recognition
studies in the literature. There are not many multimodal
emotion recognition studies that do classification on discrete
emotion states basis. Most of the multimodal emotion recog-
nition studies implement emotion recognition on the scales of
valence and arousal.

Therefore, to be able to make a comparison, we will
regard the high/low valence and high/low arousal classifi-
cation methods as they implement 2 emotion states classi-
fication. Table 7 shows the accuracy comparison between
the proposed method and 15 other multimodal and unimodal
emotion recognition studies. The number of output emotion
classes is an important aspect, which determines the mean
classification accuracy. Note that the left-hand side of the
‘/’ symbol stands for the high-low arousal accuracy and the
right-hand side of it stands for the high-low valence accuracy.
If there is no ‘/’ symbol, then the comparison is done based
on either valence or arousal with maximum accuracy.

Proposed method provides the accuracy results based on
discrete emotional states. The proposed method performs the
best in terms of 2-states, although it implements a 4-state clas-
sification. For a fair comparison, we have calculated the mean
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TABLE 7. Benchmark for ‘‘One-subject-out’’ Mean prediction accuracies
(%) on the DEAP Dataset.

accuracy of the classification results of users who have 2 and
3 emotion states.We put these results in Table 7 too. Based on
that, when the number of states is equal to 2, proposed study
yields better mean accuracy compared to others on the DEAP
dataset.

We could find only one study which reports the accu-
racy based on face modality, on DEAP. However, this
study updates the recognition model parameters according
to dataset and, they use some of the users’ face data to train
their model. However, we report the face-based subject inde-
pendent accuracy without using any users’ data from DEAP
dataset. Therefore, we foresee that if we use some users’ data
to train our model in terms of face modality, the face-based
recognition accuracy would improve.

Since Lumed-2 is a new multimodal dataset, we have
been unable to reproduce the respective methods in other
studies. It needs to be emphasized that the accuracy fig-
ures we report here are one-subject-out figures (subject-
independent results). This should not be confused with the
subject-dependent accuracy results, which are reported in
most studies in the literature and tend to be much higher than
one-subject-out results.

VI. CONCLUSION
The objective of this paper is to classify emotional states by
using a multimodal approach. We use a hybrid fusion of face,
EEG and GSR modalities. We use feature fusion on EEG and

GSRmodalities for estimating the level of arousal. In the final
step we use late fusion of EEG, GSR and face modalities.
Our proposed model has the capability of detecting the actual
emotional state when it is dominant, or it is hidden due to
natural deceptive face actions.

We present a subject independent emotion recognition
system that is suitable for real time operations, since it will
not require feature extraction. Hence, this brings flexibility
and reduces the overall processing load. Although subject-
independent recognition accuracy of EEG modality is rela-
tively low due to its nonstationary properties, it is effective if
the number of output classes is limited. Therefore, we limited
the number of classes to two (high and low states for valence
and arousal) to make use of its success when detecting the
actual emotional state.

Future studies should focus on subject-independent
emotion recognition for person-independent applicabil-
ity and concentrate on reducing the number of modali-
ties for practicality. Reported user-based emotion recogni-
tion accuracies are higher compared to cross-subject and
subject-independent emotion recognition, but these are less
practical. In addition, since the comfort of use and non-
intrusiveness is important for end users, significant effort
should be made towards reducing the weight and form factor
of sensor devices.

ACKNOWLEDGMENT
The authors would like to thank the creators of DEAP
dataset for openly sharing the dataset and the wider research
community. The authors would also like to thank all vol-
unteering staff and students with Loughborough Univer-
sity London and Hacettepe University for participating the
recording sessions to generate the LUMED-2 dataset and
Perihan TEKELI, Hacettepe University, for the excellent
coordination activities.

REFERENCES
[1] A. Dąbrowski, ‘‘Emotions in philosophy. A short introduction,’’ Studia

Humana, vol. 5, no. 3, pp. 8–20, 2016.
[2] R. W. Picard, Affective Computing. Cambridge, MA, USA: MIT Press,

1995.
[3] H. Ranganathan, S. Chakraborty, and S. Panchanathan, ‘‘Multimodal

emotion recognition using deep learning architectures,’’ in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2016, pp. 1–9.

[4] W.-L. Zheng, W. Liu, Y. Lu, B.-L. Lu, and A. Cichocki, ‘‘EmotionMeter:
A multimodal framework for recognizing human emotions,’’ IEEE Trans.
Cybern., vol. 49, no. 3, pp. 1110–1122, Mar. 2019.

[5] K. Bahreini, R. Nadolski, and W. Westera, ‘‘Data fusion for real-time
multimodal emotion recognition through webcams and microphones in
E-Learning,’’ Int. J. Hum.–Comput. Interact., vol. 32, no. 5, pp. 415–430,
May 2016.

[6] B. Bucur, I. Şomfelean, A. Ghiuruţan, C. Lemnaru, and M. Dînşoreanu,
‘‘An early fusion approach for multimodal emotion recognition using
deep recurrent networks,’’ in Proc. IEEE 14th Int. Conf. Intell. Comput.
Commun. Process. (ICCP), Sep. 2018, pp. 71–78.

[7] Z. Wang, S.-B. Ho, and E. Cambria, ‘‘A review of emotion sens-
ing: Categorization models and algorithms,’’ Multimedia Tools Appl.,
pp. 1–30, Jan. 2020, doi: 10.1007/s11042-019-08328-z.

[8] S. Koelstra, C. Mueh, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Patras, ‘‘DEAP: A database for emotion anal-
ysis;using physiological signals,’’ IEEE Trans. Affect. Comput., vol. 3,
no. 1, pp. 18–31, Jan./Mar. 2012.

VOLUME 8, 2020 168875

http://dx.doi.org/10.1007/s11042-019-08328-z


Y. Cimtay et al.: Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion

[9] J. A. Russell, ‘‘A circumplex model of affect,’’ J. Personality Social
Psychol., vol. 39, no. 6, pp. 1161–1178, 1980.

[10] P. Ekman, W. V. Friesen, M. O’Sullivan, A. I. Chan,
T. Diacoyanni, K. Heider, R. Krause, W. A. LeCompte, T. Pitcairn, and
P. E. Ricci-Bitti, ‘‘Universals and cultural differences in the judgments
of facial expressions of emotion,’’ J. Personality Social Psychol., vol. 53,
no. 4, pp. 712–717, 1987.

[11] G. Paltoglou and M. Thelwall, ‘‘Seeing stars of valence and arousal in
blog posts,’’ IEEE Trans. Affect. Comput., vol. 4, no. 1, pp. 116–123,
Jan. 2013.

[12] R. Fabien, S. Björn, V. Michel, J. Shashank, M. Erik, L. Denis,
C. Roddy, and P. Maja, ‘‘AV+EC 2015: The first affect recognition
challenge bridging across audio, video, and physiological data,’’ in Proc.
5th Int. Workshop Audio/Vis. Emotion Challenge, 2015, pp. 3–8.

[13] A. Kapoor, W. Burleson, and R. W. Picard, ‘‘Automatic prediction of
frustration,’’ Int. J. Hum.-Comput. Stud., vol. 65, no. 8, pp. 724–736,
Aug. 2007.

[14] H. Zhang, A. Jolfaei, andM. Alazab, ‘‘A face emotion recognitionmethod
using convolutional neural network and image edge computing,’’ IEEE
Access, vol. 7, pp. 159081–159089, 2019.

[15] J. Deng, S. Frühholz, Z. Zhang, and B. Schuller, ‘‘Recognizing emotions
fromwhispered speech based on acoustic feature transfer learning,’’ IEEE
Access, vol. 5, pp. 5235–5246, 2017.

[16] C. Qing, R. Qiao, X. Xu, and Y. Cheng, ‘‘Interpretable emotion recogni-
tion using EEG signals,’’ IEEE Access, vol. 7, pp. 94160–94170, 2019.

[17] H. A. Osman and T. H. Falk, Multimodal Affect Recognition: Current
Approaches and Challenges. Rijeka, Croatia: IntechOpen, 2016.

[18] T. Hao, L. Wei, Z. Wei-Long, L. Bao-Liang, L. Derong, X. Shengli,
L. Yuanqing, Z. Dongbin, and E. El-Sayed, ‘‘Multimodal emotion recog-
nition using deep neural networks,’’ in Proc. Int. Conf. Neural Inf. Pro-
cess., 2017, pp. 811–819.

[19] J. Chen, Y. She, M. Zheng, Y. Shu, Y. Wang, and Y. Xu, ‘‘A multimodal
affective computing approach for children companion robots,’’ in Proc.
7th Int. Symp. Chin. CHI, 2019, pp. 57–64.

[20] D. Hazer-Rau, S. Meudt, A. Daucher, J. Spohrs, H. Hoffmann,
F. Schwenker, and H. Traue, ‘‘The uulmMAC database—A multimodal
affective corpus for affective computing in human-computer interaction,’’
Sensors, vol. 20, no. 8, p. 2308, 2020.

[21] K. Masui, T. Nagasawa, H. Doi, N. Tsumura, ‘‘Continuous estimation
of emotional change using multimodal affective responses,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR) Workshops,
Jun. 2020, pp. 290–291.

[22] B. Singh, N. Kushwaha, and O. P. Vyas, ‘‘An interpretation of senti-
ment analysis for enrichment of Business Intelligence,’’ in Proc. IEEE
Region 10 Conf. (TENCON), Nov. 2016, pp. 18–23.

[23] J. Islam and Y. Zhang, ‘‘Visual sentiment analysis for social images using
transfer learning approach,’’ in Proc. IEEE Int. Conferences Big Data
Cloud Comput. (BDCloud), Social Comput. Netw. (SocialCom), Sustain.
Comput. Commun. (SustainCom) (BDCloud-SocialCom-SustainCom),
Oct. 2016, pp. 124–130.

[24] P. Yadav and D. Pandya, ‘‘SentiReview: Sentiment analysis based on text
and emoticons,’’ in Proc. Int. Conf. Innov. Mech. Ind. Appl. (ICIMIA),
Feb. 2017, pp. 467–472.

[25] N. Xu and W. Mao, ‘‘A residual merged neutral network for multi-
modal sentiment analysis,’’ in Proc. IEEE 2nd Int. Conf. Big Data Anal.
(ICBDA), Mar. 2017, pp. 6–10, doi: 10.1109/icbda.2017.8078794.

[26] S. A. Qureshi, S. Saha, M. Hasanuzzaman, G. Dias, and E. Cambria,
‘‘Multitask representation learning for multimodal estimation of depres-
sion level,’’ IEEE Intell. Syst., vol. 34, no. 5, pp. 45–52, Sep. 2019.

[27] S. Poria, N. Majumder, D. Hazarika, E. Cambria, A. Gelbukh, and
A. Hussain, ‘‘Multimodal sentiment analysis: Addressing key issues and
setting up the baselines,’’ IEEE Intell. Syst., vol. 33, no. 6, pp. 17–25,
Nov./Dec. 2018.

[28] A. Bandhakavi, N.Wiratunga, S.Massie, andD. Padmanabhan, ‘‘Lexicon
generation for emotion detection from text,’’ IEEE Intell. Syst., vol. 32,
no. 1, pp. 102–108, Jan./Feb. 2017.

[29] A. Zadeh, R. Zellers, E. Pincus, and L.-P. Morency, ‘‘Multimodal senti-
ment intensity analysis in videos: Facial gestures and verbal messages,’’
IEEE Intell. Syst., vol. 31, no. 6, pp. 82–88, Nov. 2016.

[30] E. Cambria, ‘‘Affective computing and sentiment analysis,’’ IEEE Intell.
Syst., vol. 31, no. 2, pp. 102–107, Mar. 2016.

[31] A. Esuli, A. Moreo, F. Sebastiani, and E. Cambria, ‘‘Cross-lingual sen-
timent quantification,’’ IEEE Intell. Syst., vol. 35, no. 3, pp. 106–114,
May 2020.

[32] J. Schuurmans, F. Frasincar, and E. Cambria, ‘‘Intent classification
for dialogue utterances,’’ IEEE Intell. Syst., vol. 35, no. 1, pp. 82–88,
Jan. 2020.

[33] N. Majumder, S. Poria, H. Peng, N. Chhaya, E. Cambria, A. Gelbukh,
and E. Cambria, ‘‘Sentiment and sarcasm classification with multitask
learning,’’ IEEE Intell. Syst., vol. 34, no. 3, pp. 38–43, May 2019.

[34] Q. Yang, Y. Rao, H. Xie, J. Wang, F. L. Wang, W. H. Chan, and
E. Cambria, ‘‘Segment-level joint topic-sentiment model for online
review analysis,’’ IEEE Intell. Syst., vol. 34, no. 1, pp. 43–50, Jan. 2019.

[35] M. Dragoni, S. Poria, and E. Cambria, ‘‘OntoSenticNet: A common-
sense ontology for sentiment analysis,’’ IEEE Intell. Syst., vol. 33, no. 3,
pp. 77–85, May 2018.

[36] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall, ‘‘Sentiment analysis
is a big suitcase,’’ IEEE Intell. Syst., vol. 32, no. 6, pp. 74–80, Nov. 2017.

[37] M. Ebrahimi, A. H. Yazdavar, and A. Sheth, ‘‘Challenges of sentiment
analysis for dynamic events,’’ IEEE Intell. Syst., vol. 32, no. 5, pp. 70–75,
Sep. 2017.

[38] A. Weichselbraun, S. Gindl, F. Fischer, S. Vakulenko, and A. Scharl,
‘‘Aspect-based extraction and analysis of affective knowledge from social
media streams,’’ IEEE Intell. Syst., vol. 32, no. 3, pp. 80–88, May 2017.

[39] N Majumder, ‘‘Deep learning-based document modeling for personal-
ity detection from text,’’ IEEE Intell. Syst., vol. 32, no. 2, pp. 74–79,
Mar./Apr. 2017.

[40] E. Cambria, N. Howard, J. Hsu, and A. Hussain, ‘‘Sentic blending: Scal-
able multimodal fusion for the continuous interpretation of semantics and
sentics,’’ in Proc. IEEE Symp. Comput. Intell. Hum.-Like Intell. (CIHLI),
Singapore, Apr. 2013, pp. 108–117, doi: 10.1109/CIHLI.2013.6613272.

[41] S. Poria, E. Cambria, N. Howard, G.-B. Huang, and A. Hussain, ‘‘Fusing
audio, visual and textual clues for sentiment analysis from multimodal
content,’’ Neurocomputing, vol. 174, pp. 50–59, Jan. 2016.

[42] B. Xing, H. Zhang, K. Zhang, L. Zhang, X. Wu, and X. Shi, ‘‘Exploiting
EEG signals and audiovisual feature fusion for video emotion recogni-
tion,’’ IEEE Access, vol. 7, pp. 59844–59861, 2019.

[43] J. Han, X. Ji, X. Hu, L. Guo, and T. Liu, ‘‘Arousal recognition using
audio-visual features and FMRI-based brain response,’’ IEEE Trans.
Affect. Comput., vol. 6, no. 4, pp. 337–347, Oct. 2015.

[44] S. Sahoo and A. Routray, ‘‘Emotion recognition from audio-visual data
using rule based decision level fusion,’’ in Proc. IEEE Students’ Technol.
Symp. (TechSym), Sep. 2016, pp. 7–12.

[45] K.-S. Song, Y.-H. Nho, J.-H. Seo, and D.-S. Kwon, ‘‘Decision-level
fusion method for emotion recognition using multimodal emotion recog-
nition information,’’ in Proc. 15th Int. Conf. Ubiquitous Robots (UR),
Jun. 2018, pp. 472–476.

[46] A. Metallinou, S. Lee, and S. Narayanan, ‘‘Decision level combina-
tion of multiple modalities for recognition and analysis of emotional
expression,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
Mar. 2010, pp. 2462–2465.

[47] M. Mansoorizadeh and N. M. Charkari, ‘‘Hybrid feature and decision
level fusion of face and speech information for bimodal emotion recog-
nition,’’ in Proc. 14th Int. CSI Comput. Conf., Oct. 2009, pp. 652–657.

[48] S. Nemati, R. Rohani, M. E. Basiri, M. Abdar, N. Y. Yen, and
V.Makarenkov, ‘‘A hybrid latent space data fusionmethod formultimodal
emotion recognition,’’ IEEE Access, vol. 7, pp. 172948–172964, 2019.

[49] J. Chen, B. Hu, L. Xu, P. Moore, and Y. Su, ‘‘Feature-level fusion of
multimodal physiological signals for emotion recognition,’’ inProc. IEEE
Int. Conf. Bioinf. Biomed. (BIBM), Nov. 2015, pp. 395–399.

[50] P. Tzirakis, G. Trigeorgis, M. A. Nicolaou, B. W. Schuller, and
S. Zafeiriou, ‘‘End-to-End multimodal emotion recognition using deep
neural networks,’’ IEEE J. Sel. Topics Signal Process., vol. 11, no. 8,
pp. 1301–1309, Dec. 2017.

[51] SEED Dataset. Accessed: Apr. 19, 2020. [Online]. Available:
http://bcmi.sjtu.edu.cn/~seed/

[52] Y. Huang, J. Yang, P. Liao, and J. Pan, ‘‘Fusion of facial expressions
and EEG formultimodal emotion recognition,’’Comput. Intell. Neurosci.,
vol. 2017, pp. 1–8, 2017.

[53] B. Reuderink, M. Poel, K. Truong, R. Poppe, and M. Pantic, ‘‘Decision-
level fusion for audio-visual laughter detection,’’ inMachine Learning for
Multimodal Interaction (MLMI) (Lecture Notes in Computer Science),
vol. 5237, 2008, pp. 137–148.

[54] O. Martin, I. Kotsia, B. Macq, and I. Pitas, ‘‘The eNTERFACE’05
audio-visual emotion database,’’ in Proc. 22nd Int. Conf. Data
Eng. Workshops (ICDEW), Atlanta, GA, USA, Apr. 2006, p. 8,
doi: 10.1109/ICDEW.2006.145.

168876 VOLUME 8, 2020

http://dx.doi.org/10.1109/icbda.2017.8078794
http://dx.doi.org/10.1109/CIHLI.2013.6613272
http://dx.doi.org/10.1109/ICDEW.2006.145


Y. Cimtay et al.: Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion

[55] C. Y. Suen and L. Lam, ‘‘Multiple classifier combination methodologies
for different output levels,’’ inMultiple Classifier Systems. MCS (Lecture
Notes in Computer Science), vol. 1857. Berlin, Germany: Springer, 2000,
doi: 10.1007/3-540-45014-9_5.

[56] F. Lingenfelser, J. Wagner, and E. André, ‘‘A systematic discussion of
fusion techniques for multi-modal affect recognition tasks,’’ in Proc. 13th
Int. Conf. Multimodal Interfaces (ICMI), 2011, pp. 19–26.

[57] Y. S. Huang and C. Y. Suen, ‘‘The behavior-knowledge space method for
combination of multiple classifiers,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 1993, p. 347.

[58] R. Gupta, M. Khomami Abadi, J. A. Cárdenes Cabré, F. Morreale,
T. H. Falk, andN. Sebs, ‘‘A quality adaptivemultimodal affect recognition
system for user-centric multimedia indexing,’’ in Proc. ACM Int. Conf.
Multimedia Retr. (ICMR), 2016, pp. 317–320.

[59] M. E. Tipping, ‘‘Sparse Bayesian learning and the relevance vector
machine,’’ J. Mach. Learn. Res., vol. 1, pp. 211–244, Jun. 2001.

[60] H. Miao, Y. Zhang, W. Li, H. Zhang, D. Wang, and S. Feng, ‘‘Chinese
multimodal emotion recognition in deep and traditional machine leaming
approaches,’’ in Proc. 1st Asian Conf. Affect. Comput. Intell. Interact.
(ACII Asia), May 2018, pp. 1–6.

[61] J. Kim, E. André, M. Rehm, T. Vogt, and J. Wagner, ‘‘Integrating
information from speech and physiological signals to achieve emotional
sensitivity’’ in Proc. Interspeech, 2005, pp. 809–812.

[62] A. Sharma and S. Canavan, ‘‘Multimodal physiological-based emotion
recognition,’’ Univ. South Florida, Tampa, FL, USA, Tech. Rep., 2019.
[Online]. Available: https://www.semanticscholar.org/paper/Multimodal-
Physiological-based-Emotion-Recognition-Sharma-Canavan/4ab5469bf
1f0690956aeb1271831c23a46b2bbd4

[63] Z. Zhang, J. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci, S. Canavan,
M. Reale, A. Horowitz, H. Yang, J. Cohn, Q. Ji, and L. Yin, ‘‘Multimodal
spontaneous emotion corpus for human behavior analysis,’’ inProc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3438–3446.

[64] F. Syeda and E. Engin, ‘‘Cross-subject continuous emotion recognition
using speech and body motion in dyadic interactions,’’ in Proc. Inter-
speech, 2017, pp. 1731–1735.

[65] A. Metallinou, Z. Yang, C.-C. Lee, C. Busso, S. Carnicke, and
S. Narayanan, ‘‘The USC CreativeIT database of multimodal dyadic
interactions: From speech and full body motion capture to continuous
emotional annotations,’’ Lang. Resour. Eval., vol. 50, no. 3, pp. 497–521,
Sep. 2016.

[66] D. Ayata, Y. Yaslan, and M. E. Kamasak, ‘‘Emotion recognition from
multimodal physiological signals for emotion aware healthcare systems,’’
J. Med. Biol. Eng., vol. 40, no. 2, pp. 149–157, Apr. 2020.

[67] J. Chen, B. Hu, Y. Wang, P. Moore, Y. Dai, L. Feng, and Z. Ding,
‘‘Subject-independent emotion recognition based on physiological sig-
nals: A three-stage decision method,’’ BMC Med. Informat. Decis. Mak-
ing, vol. 17, no. S3, Dec. 2017.

[68] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, ‘‘Inception-v4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. AAAI, vol. 4, 2017, p. 1.

[69] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
‘‘The extended cohn-kanade dataset (CK+): A complete dataset for
action unit and emotion-specified expression,’’ in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit. (Workshops), Jun. 2010,
pp. 94–101.

[70] O. Langner, R. Dotsch, G. Bijlstra, D. H. J. Wigboldus, S. T. Hawk, and
A. van Knippenberg, ‘‘Presentation and validation of the radboud faces
database,’’ Cognition Emotion, vol. 24, no. 8, pp. 1377–1388, Dec. 2010.

[71] FacesDB. Accessed: Apr. 10, 2020. [Online]. Available: http://app.
visgraf.impa.br/database/faces/

[72] A. Mollahosseini, B. Hasani, and M. H. Mahoor, ‘‘AffectNet: A database
for facial expression, valence, and arousal computing in the wild,’’ IEEE
Trans. Affect. Comput., vol. 10, no. 1, pp. 18–31, Jan./Mar. 2019.

[73] LUMED-2 Dataset. Accessed: Jul. 3, 2020. [Online]. Available: https://
figshare.com/articles/dataset/Loughborough_University_Multimodal_
Emotion_Dataset_-_2/12644033

[74] DEAP Dataset. Accessed: Apr. 21, 2020. [Online]. Available:
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/

[75] Pretrained Deep Neural Networks. Accessed: Mar. 1, 2020. [Online].
Available: https://uk.mathworks.com/help/deeplearning/ug/pretrained-
convolutional-neural-networks.html

[76] K. A. Lindquist, T. D. Wager, H. Kober, E. Bliss-Moreau, and
L. F. Barrett, ‘‘The brain basis of emotion: A meta-analytic review,’’
Behav. Brain Sci., vol. 35, no. 3, pp. 121–143, 2012.

[77] M. Benedek and C. Kaernbach, ‘‘A continuous measure of phasic elec-
trodermal activity,’’ J. Neurosci. Methods, vol. 190, no. 1, pp. 80–91,
Jun. 2010.

[78] Imotions. Accessed: Jun. 27, 2020. [Online]. Available: https://imotions.
com/blog/gsr-why-5-application-trends-biometric-research/

[79] Top 14 EEG Hardware Companies. Accessed: Apr. 5, 2020. [Online].
Available: https://imotions.com/blog/top-14-eeg-hardware-companies-
ranked/

[80] V. Jurcak, D. Tsuzuki, and I. Dan, ‘‘10/20, 10/10, and 10/5 systems revis-
ited: Their validity as relative head-surface-based positioning systems,’’
NeuroImage, vol. 34, no. 4, pp. 1600–1611, Feb. 2007.

[81] U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis, and J. S. Suri,
‘‘Automated EEG analysis of epilepsy: A review,’’ Knowl.-Based Syst.,
vol. 45, pp. 147–165, Jun. 2013.

[82] K. Aboalayon, M. Faezipour, W. Almuhammadi, and S. Moslehpour,
‘‘Sleep stage classification using EEG signal analysis: A comprehensive
survey and new investigation,’’ Entropy, vol. 18, no. 9, p. 272, Aug. 2016.

[83] D. A. Engemann, ‘‘Robust EEG-based cross-site and cross-protocol
classification of states of consciousness,’’ Brain, vol. 141, no. 11,
pp. 3179–3192, 2018.

[84] M. Arns, C. K. Conners, and H. C. Kraemer, ‘‘A decade of EEG theta/beta
ratio research in ADHD: A meta-analysis,’’ Journal of Attention Disor-
ders, vol. 17, no. 5, pp. 374–383, 2013.

[85] W. K. Y. So, S. W. H. Wong, J. N. Mak, and R. H. M. Chan, ‘‘An
evaluation of mental workload with frontal EEG,’’ PLoS ONE, vol. 12,
no. 4, Apr. 2017, Art. no. e0174949.

[86] N.-H. Liu, C.-Y. Chiang, and H.-C. Chu, ‘‘Recognizing the degree of
human attention using EEG signals from mobile sensors,’’ Sensors,
vol. 13, no. 8, pp. 10273–10286, Aug. 2013.

[87] A. Y. Shestyuk, K. Kasinathan, V. Karapoondinott, R. T. Knight, and
R. Gurumoorthy, ‘‘Individual EEG measures of attention, memory, and
motivation predict population level TV viewership and Twitter engage-
ment,’’ PLoS ONE, vol. 14, no. 3, Mar. 2019, Art. no. e0214507.

[88] M. Mohammadpour and S. Mozaffari, ‘‘Classification of EEG-based
attention for brain computer interface,’’ in Proc. 3rd Iranian Conf. Intell.
Syst. Signal Process. (ICSPIS), Dec. 2017, pp. 34–37.

[89] S. Thejaswini, K. M. Ravikumar, L. Jhenkar, N. Aditya, and
K. K. Abhay, ‘‘Analysis of EEG based emotion detection of DEAP
and SEED-IV databases using SVM,’’ Int. J. Recent Technol. Eng.
(IJRTE), vol. 8, pp. 207–211, May 2019.

[90] J. Liu, H. Meng, A. Nandi, and M. Li, ‘‘Emotion detection from EEG
recordings,’’ in Proc. 12th Int. Conf. Natural Comput., Fuzzy Syst. Knowl.
Discovery (ICNC-FSKD), Aug. 2016, pp. 1722–1727.

[91] A. Gómez, L. Quintero, N. López, and J. Castro, ‘‘An approach to emotion
recognition in single-channel EEG signals: A mother child interaction,’’
in Proc. J. Phys., Conf., vol. 705, 2016, Art. no. 012051.

[92] W. Zhang, F. Wang, Y. Jiang, Z. Xu, S. Wu, and Y. Zhang, ‘‘Cross-subject
EEG-based emotion recognition with deep domain confusion,’’ in Intel-
ligent Robotics and Applications (ICIRA) (Lecture Notes in Computer
Science), vol. 11740. Cham, Switzerland: Springer, 2019, pp. 558–570.

[93] Z. Yin, Y. Wang, L. Liu, W. Zhang, and J. Zhang, ‘‘Cross-subject
EEG feature selection for emotion recognition using transfer recursive
feature elimination,’’ Frontiers Neurorobot., vol. 11, p. 19, Apr. 2017,
doi: 10.3389/fnbot.2017.00019.

[94] Y. Cimtay and E. Ekmekcioglu, ‘‘Investigating the use of pretrained
convolutional neural network on cross-subject and cross-dataset EEG
emotion recognition,’’ Sensors, vol. 20, no. 7, p. 2034, Apr. 2020.

[95] Empatica E4. Accessed: Apr. 9, 2020. [Online]. Available:
https://www.empatica.com/en-int/research/e4/

[96] V. Gupta, M. D. Chopda, and R. B. Pachori, ‘‘Cross-subject emotion
recognition using flexible analytic wavelet transform from EEG signals,’’
IEEE Sensors J., vol. 19, no. 6, pp. 2266–2274, Mar. 2019.

[97] Z. Yin, Y. Wang, L. Liu, W. Zhang, and J. Zhang, ‘‘Cross-subject EEG
feature selection for emotion recognition using transfer recursive feature
elimination,’’ Frontiers Neurorobot., vol. 11, p. 200, Apr. 2017.

[98] F. Yang, X. Zhao, W. Jiang, P. Gao, and G. Liu, ‘‘Multi-method fusion
of cross-subject emotion recognition based on high-dimensional EEG
features,’’ Frontiers Comput. Neurosci., vol. 13, p. 53, Aug. 2019.

[99] P. Pandey and K. R. Seeja, ‘‘Subject independent emotion recog-
nition from EEG using VMD and deep learning,’’ J. King Saud
Univ.-Comput. Inf. Sci., pp. 53–58, Nov. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319157819309991

VOLUME 8, 2020 168877

http://dx.doi.org/10.1007/3-540-45014-9_5
http://dx.doi.org/10.3389/fnbot.2017.00019


Y. Cimtay et al.: Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion

[100] K. Yan, L. Kou, and D. Zhang, ‘‘Learning domain-invariant subspace
using domain features and independence maximization,’’ IEEE Trans.
Cybern., vol. 48, no. 1, pp. 288–299, Jan. 2018.

[101] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, ‘‘Domain adaptation via
transfer component analysis,’’ IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199–210, Feb. 2011.

[102] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, ‘‘Unsupervised
visual domain adaptation using subspace alignment,’’ in Proc. IEEE Int.
Conf. Comput. Vis., Dec. 2013, pp. 2960–2967.

[103] Y. Shi and F. Sha, ‘‘Information-theoretical learning of discriminative
clusters for unsupervised domain adaptation,’’ in Proc. 2012 Int. Conf.
Mach. Learn. (ICML), Edinburgh, U.K., Jun./Jul. 2012, pp. 1275–1282.

[104] B. Gong, Y. Shi, F. Sha, and K. Grauman, ‘‘Geodesic flow kernel for
unsupervised domain adaptation,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Providence, RI, USA, Jun. 2012, pp. 2066–2073.

[105] B. Schölkopf, A. Smola, and K.-R. Müller, ‘‘Nonlinear component anal-
ysis as a kernel eigenvalue problem,’’ Neural Comput., vol. 10, no. 5,
pp. 1299–1319, Jul. 1998.

[106] Y. Huang, J. Yang, S. Liu, and J. Pan, ‘‘Combining facial expressions
and electroencephalography to enhance emotion recognition,’’ Future
Internet, vol. 11, no. 5, p. 105, May 2019.

[107] V. Rozgic, S. N. Vitaladevuni, and R. Prasad, ‘‘Robust EEG emotion clas-
sification using segment level decision fusion,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., Vancouver, BC, Canada, May 2013,
pp. 1286–1290.

YUCEL CIMTAY received the Ph.D. degree in
electrical and electronics engineering fromAnkara
University, Turkey. He is currently a Postdoctoral
Research Associate with the Institute for Digital
Technologies, Loughborough University London.
His research interests include signal and image
processing, data science, and machine learning.

ERHAN EKMEKCIOGLU received the Ph.D.
degree from the University of Surrey, U.K.,
in 2010. He was a Postdoctoral Researcher in
2014. Since 2014, he has been with the Institute
for Digital Technologies, Loughborough Univer-
sity London, U.K., where he is currently a Senior
Lecturer and the Chief Director with the Post-
graduate Taught Program. His current research
interests include affective computing, immer-
sive media, multimedia processing, and applied

machine learning. He serves as a Guest Editor for the IEEE Multimedia
Communications Technical Committee publications and a Regular Reviewer
for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,
Journal of Multimedia, and Journal on Image Processing.

SEYMA CAGLAR-OZHAN received the mas-
ter’s degree from Hacettepe University, Turkey,
in 2017, where she is currently pursuing the
Ph.D. degree in education with the Computer
Education and Instructional Technology Depart-
ment. Her research interests include cognitive
and emotional processes in e-learning environ-
ments, human-computer interaction, and cognitive
science.

168878 VOLUME 8, 2020


