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ABSTRACT In this article, a comprehensive overview of the Crow Search Algorithm (CSA) is introduced
with detailed discussions, which is intended to keep researchers interested in swarm intelligence algorithms
and optimization problems. CSA is a new swarm intelligence algorithm recently developed, which simulates
crow behavior in storing excess food and retrieving it when needed. In the optimization theory, the crow is
the searcher, the surrounding environment is the search space, and randomly storing the location of food
is a feasible solution. Among all food locations, the location where the most food is stored is considered
to be the global optimal solution, and the objective function is the amount of food. By simulating the
intelligent behavior of crows, CSA tries to find optimal solutions to various optimization problems. It has
gained a considerable interest worldwide since its advantages like simple implementation, a few numbers
of parameters, flexibility, etc. This survey introduces a comprehensive variant of CSA, including hybrid,
modified, and multi-objective versions. Furthermore, based on the analyzed papers published in the literature
by some publishers such as IEEE, Elsevier, and Springer, the comprehensive application scenarios of CSA
such as power, computer science, machine learning, civil engineering have also been reviewed. Finally,
the advantages and disadvantages of CSA have been discussed by conducting some comparative experiments
with other similar published peers.

INDEX TERMS Crow search algorithm, CSA, swarm intelligence, meta-heuristics, optimization,
nature-inspired algorithms.

I. INTRODUCTION
Nowadays, optimization can be considered as one of the most
important and hottest research topics [1]–[9]. It is inside the
core processes of every aspect and can be found in almost
all fields such as engineering, science, energy, computer,
etc. [10]–[19]. Since the complexity increasing of the
real-world scientific and engineering problem, optimization
becomes a big challenge in soft computing. Traditional

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

methods of mathematics sometimes fail to solve and
address them [180], [184]. Metaheuristics Algorithm (MA)
is very good at solving these NP problems and finding
the optimal/near-optimal solution in real-time [185]. These
algorithms become very popular since their advantages like
easy in implementation, avoiding local optima, and flexible
and versatile [188]. They can be considered as a black box,
and can solve different problem types: single/multi-objective,
constrained or unconstrained, and continuous/discrete.

Generally speaking, MA can be categorized into two
major classes: single-based / individual-based algorithms
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TABLE 1. Examples of evolutionary algorithms.

and population-based. Examples of single-based algorithms
are Tabu Search (TS) [22], Guided Local Search (GLS),
and Pattern Search (PS) whereas Particle Swarm Optimiza-
tion (PSO) [23], Differential Search Algorithm (DSA) [24]
and Grey Wolf Optimizer (GWO) [36] are examples of
population-based algorithms.

Crow Search Algorithm (CSA) is a recent algorithm devel-
oped by Alireza Askarzadeh in 2016, which simulates the
crow behavior in storing their food and retrieving it when they
need it. Since its appearance, CSA has been widely used and
applied to different optimization problem such as chemical
engineering [83], medical [84], power energy [85], feature
selection [86], and image processing [87].

Reviews/survey papers are critical as they present and
discuss recent and up-to-date works. In literature, there are
enormous reviews that concern with MA such as Grey Wolf
Optimizer [88], Firefly Algorithm [89], Gravitational Search
Algorithm [90], Krill Herd Algorithm [90].

To the best of our knowledge, there is no study in lit-
erature covers or lists all CSA aspects, variants, and appli-
cations. This review article aims to carry a comprehensive
study for all CSA aspects, how scientists/researchers are
motivated to use this algorithm to solve different real-world
optimization problems. Also, This review collects and sum-
marizes all modifications and variants of CSA to overcome its
drawbacks.

The main contributions of this article can be listed below:
• A comprehensive review to CSA has been done.
• All modifications to the original CSA has been
highlighted.

• All applications and fields that employed CSA have
been summarized and presented.

• Advantages and disadvantages of CSA have been
discussed.

• Number of challenges/ideas as a future work have been
suggested.

This article is organized as follows: Section 2 presents a
literature review to MA whereas Section 3 disuses inspira-
tion & mathematical model of CSA. Section 4 presents all
variants and modifications of CSA and Section 5 summarizes
and highlights all applications that use CSA. An assessment
and evaluation to CSA is presented in section 6 whereas
Section 7 concludes the paper and adds some suggestions that
can be handled in future work.

II. METAHEURISTICS
In literature, enormous types of optimization algorithms
has been proposed in the last decades such as Genetic
Algorithm (GA) [20], Simulated Annealing (SA) [21], Tabu
Search (TS) [22], Particle Swarm Optimization [23], Dif-
ferential Search Algorithm (DSA) [24], Harmony Search
(HS) [25], Cat Swarm Optimization (CSO) [26], Firefly
Algorithm (FA) [27], Cuckoo Search (CS) [28], Gravi-
tational Search Algorithm (GSA) [29], Virus Optimiza-
tion Algorithm (VOA) [30], Bat Algorithm (BA) [31],
Ant Colony Optimization (ACO) [32], Flower Pollination
Algorithm (FPA) [33], Krill Herd (KH) Algorithm [34],
Chicken Swarm Optimization (CSO) [35], Grey Wolf Opti-
mizer (GWO) [36], Social Spider Algorithm (SSA) [37],
Ant Lion Optimizer (ALO) [38], Moth-Flame Optimization
(MFO) [39], Elephant Herding (EH) Optimization [40],
Multi-Verse Optimizer (MVO) [41], Whale Optimization
Algorithm (WOA) [42], Dragonfly Algorithm (DA) [43],
Sine Cosine Algorithm (SCA) [44], Kidney-Inspired
Algorithm [45], Spotted Hyena Optimizer (SHO) [46],
Grasshopper Optimization Algorithm (GOA) [47], Salp
Swarm Algorithm (SSA) [48], Thermal Exchange Opti-
mization [56], Squirrel Search Algorithm [57], Henry
Gas Solubility Optimization (HGSO) [58], Harris Hawks
Optimization (HHO) [51], Nuclear Reaction Optimization
(NRO) [52].
In literature, there are many metaheuristics algorithms clas-
sification. For example, authors in [59] have divided MAs to
two categories (evolutionary & Swarm Intelligence) where
in [60] authors have divided them to three different classes
(Swarm Intelligence, Evolutionary Intelligence, and Phys-
ical & Chemical algorithm). In [58], Hashim et al. clas-
sified them in to four groups (Swarm Intelligence (SI),
Bio-Inspired Algorithms (BIAs), Natural Science-based
Algorithms (NSAs), and Natural Phenomena-based Algo-
rithm (NPAs)). No unique standard criterion is existed to
classify MA. Here, we classify them into the following four
categories:

• Evolutionary Algorithms: in this category, algorithms
are inspired by natural evolution; examples of this cate-
gory are shown in Table 1.

• Swarm Intelligence (SIs): these algorithms are inspired
by the behavior of insects, birds, animals, bacteria, and
fish as algorithms in Table 2.
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TABLE 2. Examples of sawarm intelligence algorithms.

TABLE 3. Examples of physics-based algorithms.

TABLE 4. Examples of human related algorithms.

• Physics-based algorithm: in this category, algorithms
inspired by physical laws or chemical phenomena.
Examples of these are given in Table 3.

• Human-Inspired algorithm: the last category con-
tains algorithms inspired by human being behavior as
in Table 4.

III. CROW SEARCH ALGORITHM
In this section, we discuss the mathematical model of CSA
and its research status/trend.

A. STANDARD CROW SEARCH ALGORITHM
A new population-based algorithm called Crow Search Algo-
rithm (CSA) was proposed by Askarzadeh, which simu-
lates the hiding of food behavior of crow [92]. Crow is an

intelligent bird that can remember faces and warn its species
in danger. One of the most evidence of their cleverness is
hiding food and remember its location. Moreover, the explo-
ration and exploitation of CSA can be learned from Figure 1.
Overall, the pseudocode of CSA can be modeled as shown in
Algorithm 1, Figure 2 is the flowchart of CSA, and its main
phases can be shown as follows:

1) Initializing crows swarm in d-dimensional randomly.
2) A fitness function is used to evaluate each crow, and

its value is put as an initial memory value. Each crow
stores its hiding place in its memory variable mi.

3) Crow updates its position by selecting a random
another crow, i.e xj and generating a random value.
if this value is greater than Awareness Probability ‘AP’,
then crow xi will follow xj to know mj
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FIGURE 1. Exploration and exploitation of CSA.

Algorithm 1 CSA: Crow Search Algorithm
Input: n Number of crows in the population.
itermax Maximum number of iteration.
Output: Optimal crow position
Initialize position of crows.
Initialize crows’ memory
while iter < itermax do

for crowibelong to crows do
choose a random crow.
determine a value of awareness probability AP
Update xi,iter+1 using Eq.(1)

end for
Check solution boundaries.
Calculate the fitness of each crow
Update crows’ memory using Eq.(2)

end while

4) Crow updates its position by selecting a random other
crow i.e xj and following it to know mj. Then new xj is
calculated as follows:

xi,iter+1 =



xi,iter + ri×
fli,iter×
(mj,iter − xi,iter ) rj ≥ APj,iter

a random position otherwise

(1)

where APj,iter refers to crow j awareness probability,
iter refers to iteration number, ri, rj refers to random
numbers, fli,iter is the crow i flight length to denote
crow j memory.

5) Updating memory

mi,iter+1 =


xi,iter+1 f (xi,iter+1) ≤ f (mi,iter )

mi,iter otherwise

(2)

B. CROW SEARCH ALGORITHM RESEARCH TRENDS
CSA has gained huge attention from all researchers and
scientists all over the world. According to Google Scholar1

558 times (accessed in 23rd May 2020): 375 in journals,
138 in conferences, 38 in book chapters, and 4 in review
papers.Table 5 shows the top 10 journals with the highest
paper numbers dealing with CSA. Also, Figure 3 shows
the number of publications per different publisher such as
Elsevier, Springer, IEEE, and others, whereas Figure 4 shows
the number of publications per year.

IV. DIFFERENT METHODS OF CROW
SEARCH ALGORITHM
In the section, CSA variants have been divided to 3 classes:
modified CSA, hybrid CSA, and multi-objective CSA.

A. MODIFIED CSA
I this section, we discuss all modified versions of CSA such
as binary version, Opposition-based learning-based, Levy
flight-based, etc.

1) BINARY CSA
De Souza et al. [93] proposed a binary version of CSA
called BCSA in which a V-shape transfer function was

1(https://scholar.google.co.uk/scholar?hl=en&as_sdt=0%2C5&q=A+
novel+metaheuristic+method+for+solving+constrained+engineering+
optimization+problems%3A+Crow+search+algorithm&btnG=)

VOLUME 8, 2020 173551



A. G. Hussien et al.: CSA: Theory, Recent Advances, and Applications

FIGURE 2. Flowchart of CSA.

TABLE 5. The top 10 journals with the largest number of the papers on CSA.

used to convert the continuous values to discrete ones.
Laabadi et al. [161] did another work. They developed a
binary version of CSA to solve the 2D bin packing problem.

2) MODIFIED CSA
In [94], Coelho et al. [95] tried to propose a modified CSA
by using Gaussian distribution and diversity information of
the population. Also, Gupta et al. tried to extract usabil-
ity features by proposing a novel approach of CSA called
modified CSA (MCSA) in which a particular selected fea-
ture number is generated and applied to the life cycle
of software development by using usability factors hier-
archical model. Mohammadi and Abdi in [96] enhanced
the classical version of CSA by performing two modifica-
tions 1) Introducing a priority-based technique which shows
how each crow will choose another crow to move towards

its position. 2) Introducing a method to determine the suffi-
cient flight length amount. The authors applied it to economic
load dispatch. Likewise, another enhancement to CSA has
done by Cuevas et al. [97] by modifying two CSA param-
eters, namely: awareness probability and random perturba-
tion. They argued that these modifications would affect the
diversity of the population and also improve the convergence
speed. In [98], authors added local search and niching meth-
ods to enhance the searching capabilities of CSA.

3) LÉVY FLIGHT AND OPPOSITION-BASED CSA
Wu et al. [99] introduced a novel approach of CSA named
CCSA, inwhich an Lévy flight was used. The novel algorithm
was tested on two different models: a simple structure (beam)
and a complex structure. In [100], Majhi et al. tried to
prevent SCA from getting trapped into local optima by
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FIGURE 3. Number of publications of CSA per publisher.

FIGURE 4. Number of publications of CSA per Year.

developing another enhanced version of CSA with the
use of opposition learning strategy and mutation operator.
They tested their algorithm which named OBL-SCA-MO
by using CEC2017 and used it to design fractional order
PID (FOPID). Another enhancement called CCSA was pro-
posed in [101] by Zamani et al. by using three strategies,
namely:neighborhood-based local search, non-neighborhood
based search, and wandering around search.

4) ENHANCED CSA
A new version called ECSA was developed by
Javidi et al. [102]. In this version, the authors tried to improve
the performance of the original CSA in handling prob-
lems of structural optimization by adding three enhance-
ments: 1) replacing each variable of violated decision with
its corresponding variable. 2) suggesting a free-fly mech-
anism. 3) introducing the upper bound strategy. Likewise,

Bhullar et al. [103] proposed another version of CSA by
1) adding an archive component to use crow experience.
2) formulating a non-hideout position. 3) exploiting the
1/5th of exploitation by using awareness probability. In [104],
the authors proposed a version called ICSA by restructuring
two properties of CSA: awareness probability and a random
perturbation and adding a dynamic probability.

5) IMPROVED CSA
Another effort to enhance the original CSA to be able
to solve high dimensional optimization tasks is shown
in [105] where three operators have been added to a bal-
ance between exploration and exploitation. These factors
are Lévy flight, experience factor, and adaptive adjustment
factor. In [106], Zhang and Huang added an inertia weight
factor and used the Roulette wheel as a selection scheme.
Likewise, Díaz et al. [107] developed another improvement
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TABLE 6. Summary of literature review on variants and modified CSA algorithms.

to CSA and applied the new version to solve energy opti-
mization problems. Also, in [108], Gupta et al. introduced
an improved CSA version called optimized CSA (OCSA).
They tested their novel algorithm using 20 datasets and
compared OCSA with the original CSA and chaotic CSA.
Moghaddam et al. [109] used GA operators: crossover and
mutation and employed it in CSA to increase its performance
and prevent it from getting stuck into sub-optimal regions.
Fallah et al. [110] introduced an improved CSA (ICSA) in
which each crow must choose a random crow as a leader.
In [111], Sahoo and Padhy replaced random movement and
‘AP’ with Lévy flight and Dynamic AP (DAP). Likewise,
Anter et al. [86] used CSA with a fast fuzzy c-mean to iden-
tify crops. CSA also has been improved by Han et al. [160]
by using a spiral search mechanism. Their new algorithm,
which called ISCSA, is enhanced using weight coefficient,
optimal guidance position, spiral search, Gaussian variation,
and random perturbation. They tested their algorithm using
23 benchmark functions and four different engineering prob-
lems. Rizk-Allah et al. [173] has designed another chaotic
CSA for the fractional optimization problem. Likewise,
the Space Transform Search (STS) method has been com-
bined with CSA to improve the performance of the original
algorithm [174]. The authors used the CEC 2017 benchmark
to test their method. To solve truss sizing optimization,

Ozbasaran and Yildirim developed modified CSA called
CSAM [175]. Overall, literature reviews on variants and mod-
ified CSA algorithms can be summarized in Table 6.

B. HYBRID CSA
In literature, CSA has been hybridized with many other
MA and machine learning to combine and benefit from
the strength of both. In [112], a novel hybrid algorithm
called GWOCSA, which combined GWO with CSA. To test
the hybrid algorithm, the authors used 23 benchmark func-
tions, and the results were compared with GWO, augmented
GWO (AGWO), and Enhanced GWO (EGWO). GWOCSA
was also applied to solve the feature selection problem.
Davoodkhani et al. also hybridized GWO and CSA [113]
in which the hybrid algorithm (hGWO-CSA) was used to
maximize photovoltaic power point tracking. Another hybrid
algorithm was proposed by Pratiwi [114], which combined
cat swarm optimization with CSA. The novel algorithm was
applied to the vehicle routing problem. The same hybrid
algorithm was done by Kumar [115] and was applied to
the economic emission dispatch problem. Javaid et al. [116]
has combined the BA and CSA. The proposed algorithm,
which is called BCSA, was employed in smart grid applica-
tions. Likewise, Wu et al. [117] tried to solve the flow shop
scheduling problem using a novel algorithm named CPO,
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TABLE 7. Summary of literature review on hybrid CSA algorithms.

which is a hybridization between CSA and PSO. Another
CSA version was employed in the vehicle routing problem
in which CSA has been hybridized with ACO [118]. Also,
Mahesh and Vijayachitra in [119] proposed a new version of
CSA called DECSA in which dolphin echolocation and CSA
were hybridized together to classify energy-aware routing.
Pasandideh and Khalilpourazari in [120], [121] developed
a hybrid algorithm SCCSA in which SCA was combined
with CSA. Their novel algorithm was compared with origi-
nal SCA, DA, GSA, CS, and PSOGSO. Allaoui et al. [122],
combined CSA with a local search method to accelerate the
searching process to solve the fragment assembly of DNA
problems that follow theOLCmodel. Likewise, Anter andAli
integrated the CSA with the Fuzzy C-means algorithm and
chaos theory and applied it to medical problems [123]. Also,
Nawaz–Enscore–Ham (NEH) strategy was used to generate
CSA population [124]. Also, in [169] the authors developed
a hybrid algorithm that combined WOA with CSA called
CrowWhale to solve energy trust routing (ETR). In [170],
Farh et al. introduced (CSA-PSO), which hybridized CSA
with PSO. The authors tried to find the optimal size and
allocation of distributed generation. Another version called
Crow Search Mating - based Lion Algorithm (CSM-LA)
was developed by Gaddala and Raju [171] to solve unified
power quality conditions (UPQC). Another hybrid version
between the CSA, lion algorithm, and AFL called crow-FAL
was developed by Ganeshan and Rodrigues [172] and was
applied to intrusion detection. In [176], Huang et al. devel-
oped a hybrid version of CSA called HCSA in which CSA

was integrated with Nawaz-Enscore-Ham (NEH). The novel
algorithm has been applied to the flow shop scheduling prob-
lem. And, literature reviews on hybrid CSA algorithms can
be shown in Table 7.

C. MULTI-OBJECTIVE CSA
In many areas, the process starts with the modeling and
design of objective functions for searching for feasible solu-
tions, which cannot necessarily be an optimal value [179],
[181]–[183]. One of the most challenging characteristics in
solving the real-world problem is the multi-objective fit-
ness function. Many variants of multi-objective CSA have
been developed in the literature. Nobahari and Bighashdel
in [126] developed a multi-objective version called MOCSA.
They also added a chasing operator to improve the con-
vergence speed. They compared their results with ten
multi-objective algorithms using 13 unconstrained func-
tions. Also, in [127], Hinojosa et al. proposed another
multi-objective CSA version hybridized with chaos the-
ory. The authors tested MOCCSA using different datasets,
and they argued that the proposed algorithm achieved
better results than the Multi-Objective Dragonfly Algo-
rithm (MODA) and Multi-Objective Particle Swarm Opti-
mization (MOPSO). Likewise, a multi-objective crow and
fruit fly optimization algorithm has been developed by Ram-
gouda and Chandraprakash [128]. Rizk-Allah et al. [129]
developed an orthogonal opposition-based version of CSA
known as M2O-CSA. In their algorithm, two crows selected
randomly to undergo crossover. Then, the orthogonal
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TABLE 8. Summary of literature review on variants and modified Multi-Objective CSA algorithms.

array was founded to have nine solutions (individuals).
John and Rodrigues [130] developed a version called
MOTCO, which refers to the Multi-objective Taylor Crow
Optimization algorithm. They used it in clustering aware
wireless sensor network. Totally, some summary of literature
review on variants and modified Multi-objective CSA algo-
rithms are displayed in Table 8.

V. APPLICATION(OPTIMIZATION AND ENGINEERING)
CSA has been successfully applied to different application
domains, as shown in Figure 5.

A. POWER ENGINEERING
In this subsection, all CSA applications related to power
engineering have been discussed.

1) OPTIMAL POWER FLOW
In [85], Saha et al. used CSA to solve the optimal power flow
problem. Authors used IEEE 30 bus to validate the effective-
ness of CSA and compared it with DSA [131],MOHS [132],
TLBO [133], QoTLBO [133]. Also, Fathy and Abde-
laziz [134] tried to solve single-objective OPF for electric
power. They argued that the results obtained from CSA are
significant when applied to the IEEE 30-bus system and IEEE
118 bus system. Similar work was done in [135] by Naresh,
Reddy, and Reddy.

2) LOAD DISPATCH AND UNIT COMMITMENT
Economic Load Dispatch Problem (ELDP) is the problem of
finding the minimum scheduling outputs of the generating
units’ outputs. In [96],Mohammadi andAbdi used amodified
version of CSA to solve ELDP. To proof the applicability
of their novel algorithm, they used five different test sys-
tems. Also, Kumar et al. [136] used CSA to solve constrained
nonconvex ELDP with prohibited operation zones. Sheta has
done similar works in [137] and Spea in [138]. In [139],

Habachi et al. tried to solve unit commitment problems and
economic dispatch using CSA based on the eagle strategy.

B. COMPUTER SCIENCE
In this subsection, all CSA applications related to computer
science have been discussed.

1) FEATURE SELECTION
Feature selection (FS) can be defined as the process of
selecting the most critical dataset and removing irrelevant
ones [140], [141]. If it is a wrapper method, it is often related
to the neural networks in its application part [186], [187].
In [93], Souza et al. used a binary version of CSA called
BCSA, which has the V-shape to solve the FS problem. The
authors used six different datasets and compared their results
with BBA, BPSO, SFS, and SBS. Also, Allahverdipoor and
Gharehchopogh in [142] combined K-nearest neighbor with
CSA to solve the FS problem in classifying text documents.
Likewise, Anter and Ali [123] hybridized CSA with chaos
theory and c-means to solve medical diagnosis problems.
Sayed et al. [143] used CSA with chaos theory to solve the
FS problem.

2) IMAGE PROCESSING
In [87], the authors used CSA to estimate multilevel thresh-
old optimal values of image based on Kapur’s entropy.
They tested their model on different values of thresholds
(2, 4, 8, 16, and 32). They argued that CSA achieved bet-
ter results than PSO, DE, GWO, MFO, and CS in terms
of PSNR, SSIM, and FSIM metrics. Oliva et al. [144] used
CSA to find the optimal cost of cross-entropy in image
segmentation. They tested their model in multi-dimensional
spaces. Thomas and Rangachar [145] used CSA to recognize
faces in low-resolution images by combining Gabor filter +
wavelet + texture (GWTM). Fred et al. [84] proposed the
fuzzy-CSA algorithm and applied it to the segmentation of
medical images. They compared it with ABC, FA, and SA.
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FIGURE 5. Distribution of CSA related papers in many application, as reported by Scopus.

3) NEURAL NETWORK AND SUPPORT VECTOR MACHINE
Chithra and Jagatheeswari [146] Combined CSA with Sup-
port Vector Machine (SVM), neural network, and fraction
theory to classify tuberculosis patients. They mentioned that
their combination increased the speed of computation and
decreased time and cost spent on test samples. Also, in [147],
Chakravarthy and Rajaguru integrated their modified version
of CSAwith a neural network to detect lung cancer. Likewise,
More and Ingle [148] introduced a dragonfly-crow algorithm
called D-Crow hybridized with Support Vector Regression
(SVR). They applied it toVirtualMachineMigration (VMM).

4) CLOUD
Satpathy et al. [149] usedCSA in order to propose a resource-
aware to consolidate a substantial Virtual Machine (VM)
numbers on minimal in the cloud data center. They pro-
posed two different technique CSA-based travel salesman
problem (TSPCS) and Greedy Crow Search (GCS). The
same problem has been handled by Satpathy et al. [150]
where a 2-tier VM placement algorithm has been proposed.
First, a queuing structure to schedule VMs, whereas the sec-
ond (CSAVMP) CSA-based VM problem was developed
to reduce the consumption of power at data centers. Like-
wise, In [151], authors enhanced cloud task scheduling by
using CSA. They proved that the CSA-based system has
better results than Min-Min and an ant algorithm. In [152],

George and Sumathi proposed the Crow Lion Algorithm
(C-lion) and applied it in privacy protection on the cloud using
the dyadic product. Also, Firefly Crow Search Algorithm
(FF-CSA) is developed in [153] by Malleswaran and
Kasireddi to produce efficient task scheduling in the cloud
environment. Another attempt has been made by Kumar
and Vimala [154], which combined an integrated Fractional
Dragonfly Algorithm (C-FDLA) to achieve load balance in
cloud environments. The latter approach was performed by
Makhdoomi and Askarzadeh [155], which tried to optimize
the photovoltaic / diesel generator operation with pumped
hydro storage by a modified version of CSA.

C. CIVIL ENGINEERING
Recently, many works have been proposed to solve structural
optimization problems using different MAs. In [102], authors
employed their new version of CSA in finding the design of
the optimum structure. Also, Lin et al. [156] used modified
CSA with a fuzzy concept to control adjacent connected
building by magnetorheological dampers concerning soil–
structure interaction.

D. CHEMICAL ENGINEERING AND QSAR
Abdallh and Algmal [83] used an improved binary version of
CSA in order to classify skin sensitization potential based on
quantitative structure-activity relationship (QSAR) model.
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TABLE 9. The average results for solving benchmark functions.

FIGURE 6. The average ranking results of the CSA and other peers.

E. CONTROL ENGINEERING
Kumar et al. [157] used CSA to find the static VAR com-
pensator (SVC) optimal dynamic control assisted Single

Machine Infinite Bus (SMIB). Also, in [158], authors applied
the island-based CSA in solving optimal control prob-
lems: parallel reaction, continuous stirred tank reactor, batch
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FIGURE 7. Convergence curves of the CSA and other peers.

reactor consecutive reaction, nonlinear constrained mathe-
matical system, nonlinear continuous stirred tank reactor, and
nonlinear crane container problems. In [159], the hybrid CSA
with a pattern search algorithm has been applied in studies of
a multi-area LFC system using the FOPID-PDN controller.
Likewise,Majhi et al. [100] applied their improved version of
CSA, which called OBL-CSA-MO in the FOPID controller
design.

F. OTHER APPLICATIONS
1) WATER MANAGEMENT
Optimal management in water and energy is needed as many
countries suffering from a lack of water & energy resources.
Banadkooki et al. [162] employed CSA to optimize the

operation of the reservoir and minimize water in irrigation.
They compared their results with PSO, Shark Algo-
rithm (SA), GA, and Weed Algorithm (WA).

2) AIRCRAFT MAINTENANCE CHECK
Siswanto et al. [163] used CSA in order to check aircraft
maintenance and airworthiness program. To validate their
model, they compared CSA with PSO and hybrid PSO with
a greedy randomized adaptive search (PSO-GRASP).

3) WIRELESS SENSOR NETWORK
Gupta et al. [164] used CSA to detect fault that may accrue
in the wireless sensor network, which may lead to system
failure.
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4) PRIVACY PRESERVATION IN HEALTH CARE
Health care information privacy and security is one of the
most critical requirements for pharmacological or health
practitioners [165]. Mandala and Rao [166] used CSA with
the probability of adaptive awareness to improve the preser-
vation of medical data in the health care sector. Their
improved CSA (AAP-CSA) was compared with PSO, GA,
DE, and original CSA.

5) TRAVELLING SALESMAN PROBLEM
Azezan et al. [167] tried to solve the common Traveling
Salesman Problem (TSP) using the CSA. They used ten
datasets fromTSPLIB and compared themwithACO and SA.
They argued that CSA’s performance is the best.

6) STOCK INDEX PRICE MOVEMENT PREDICTION
Future prediction of stock index price is critical for investors
who plan to increase profit and researchers who wish to
extract complex stock market data over time series data.
Dash et al. [168] used TOPSIS and CSA to predict stock
index price movement.

VI. ASSESSMENT AND EVALUATION OF CSA
In this section, CSA analysis and evaluation has been dis-
cussed first, then a comparison between CSA and other meta-
heurstics algorithm have been performed and discussed.

A. CSA EVALUATION AND ANALYSIS
CSA has many advantages: easy in implementation and sim-
ple inspiration.Moreover, CSA has a fewer number of param-
eters. However, CSA has many drawbacks like all other MA,
as according to No Free Lunch (NFL), CSA has not the ability
to solve all optimization problems. Furthermore, CSA does
not perform well in high dimensional & complex problems.
Furthermore, the ability to control the parameters of CSA is
deficient.

B. RESULTS AND COMPARISONS
To show the effectiveness and the power of CSA. A compar-
ison among many MA has been made including Grey Wolf
Optimization, Particle Swarm Optimization, Sine Cosine
Algorithm, Bat Algorithm, Firefly Algorithm, Moth-Flame
Optimization,WhaleOptimizationAlgorithm, InvasiveWeed
Optimization (IWO) [177], and Electromagnetism likeMech-
anism Algorithm (EM) [178]. As seen in Table 9, CSA has
achieved promising and better results in approximately all
functions. As shown in Figure 6, a statistical test called the
Friedman test is used to assess and evaluate CSA results.
As shown, we can observe that CSA has ranked first. Figure 7
shows the convergence curves for some representative func-
tions in which we can observe the dominant speed of CSA
convergence.

VII. CONCLUSION AND FUTURE WORK
Crow Search Algorithm (CSA) is a recently developed
algorithm that simulates the behavior of crows in storing

and retrieving food. Researchers have given great interest
and attention to CSA due to its excellent characteristics.
This article introduces a comprehensive review of the CSA.
About 135 papers have been collected and summarized. All
CSA modifications have been highlighted and categorized
into three classes: variants, hybrid, and multi-objective. The
limitations and strengths of CSA have been discussed in
details. A comprehensive set of applications has been studied.
Although, the success and popularity of CSA, many areas and
challenges need to be addressed in the future. Several areas
that may be handled in the future is list below:
• No work in the literature studied the tuning parameters
of CSA.

• No work in the literature has been introduced to adapt
CSA to work in dynamic & Multi-objective dynamic
problems.

• CSA can be hybridized with many other algorithms.
• No work in the literature has been introduced to adapt
CSA to work in a noisy optimization problem.

• CSA needs more theoretical studies.
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