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ABSTRACT This paper studies the finite-time incremental passivity of switched nonlinear systems. Then,
the established theory is applied to solve the finite-time output tracking control problem of switched
nonlinear systems. First, finite-time incremental passivity is firstly defined for switched nonlinear systems.
Each subsystem is finite-time incrementally passive during its active time interval. Unlike incremental
passivity, the state trajectories of finite-time incrementally passive system with no external supplied
energy can converge to each other in finite time. Second, the criterion of finite-time incremental passivity
is established. Third, finite-time incremental passivity is shown to be preserved under the feedback
interconnection. A composite switching law design method is provided. Under this switching law,
the interconnected switched systems can switch asynchronously. Finally, the finite-time output tracking
control problem was solved by the established finite-time incremental passivity theory of the switched
nonlinear systems, even if the finite-time output tracking control of individual subsytem is not solvable.
The effectiveness of the proposed method is verified by an example.

INDEX TERMS Switched nonlinear systems, Finite-time output tracking control, Finite-time incremental
passivity.

I. INTRODUCTION
In the past few years, the output tracking control for
nonlinear systems has been received increasing attention.
There have been many research results on output tracking
control [1], [2]. However, finite-time control can better meet
the practical requirements. Compared with the traditional
asymptotic control, the control precision, anti-interference
and robustness properties of finite-time control are better.
Hence, it is interesting to study the finite time output tracking
problem [3], [4].

The passivity concept proposed by Willems [5] can also
be useful for dealing with the output tracking control
problem [6], [7], because one can take the storage function
of a passive system as a Lyapunov function. Passivity was
firstly extended to incremental passivity from the perspective
of operator in [8]. For a system with an equilibrium
point or not, the incremental passivity in stae space form
was defined in [9]. Moreover, the incrementally passive
interconnected systems were shown to be incrementally
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passive. In general, the trajectories of an incrementally
passive nonlinear system without external supply of energy
can converge to one another. Therefore, incremental passivity
was often adopted to investigate the output tracking prob-
lems [9], [10]. The aforementioned control method can only
achieve infinite-time output tracking. Nevertheless, finite
time is a better performance indicator. In [11]–[13], a notion
of finite-time passivity was proposed for nonlinear systems.
Finite-time passivity was also applicated to synchroniza-
tion [13].

On the other hand, switched systems have been widely
studied in recent years because of thire great many applica-
tions in real world [14], [15].Methods commonly used to deal
with switched nonlinear systems include multiple Lyapunov
function method [16], average dwell time method [15]–[17].
Research on output tracking control is also of great signifi-
cance for switching nonlinear systems [17], [18]. However,
few results on finite-time output tracking control of switched
nonlinear systems have appeared [19], [20].

The passivity of switched nonlinear systems is also
worth studing like non-switched systems. There have been
many results on passivity of switched nonlinear systems
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reported [21]–[23]. In [23], passivity was applicated to
solve the output tracking problem of switched nonlinear
systems. Incremental passivity was expected to be helpful for
switched nonlinear systems. Therefore, [24]–[26] established
the incremental passivity theory of switched nonlinear
systems and solved the output tracking problem. All works
mentioned above studied passivity over infinite-time interval.
Subsequently, finite-time passivity of switched nonlinear
systems has been investigated in [27], [28]. So far, finite-time
incremental passivity and ouput tracking problem have been
not studied.

Motivated by the above disscusion, this paper will study
the finite-time incremental passivity and the output tracking
control for switched nonlinear systems. The contributions
of this paper are threefold. First, finite-time incremental
passivity concept is firstly defined. Unlike [24]–[26], the state
trajectories can converge each other in finite time if there
is no external supplied energy. Second, a state-dependent
switching law is designed to achieve finite-time incremental
passivity. In contrast to the well-known min-switching
law [24], by the designed switching law, any subsystem
corresponding to the smallest continuous function is actived
instead of the smallest Lyapunov function. This provides
more freedom for the design of the switching law. Finally,
finite-time incremental passivity is shown to be preserved
for the feedback interconnection system under a composite
state-dependent switching law, which allows the intercon-
nected switched system switch asynchronously.

II. PRELIMINARIES AND PROBLEM FORMULATION
Consider a switched nonlinear system

ẋ = fσ (x, uσ ),

y = hσ (x), (1)

where x ∈ Rn is the state, a piecewise constant function
σ : [0,∞) → I = {1, 2, · · · ,M} is a switching signal, M
denotes the number of subsystems of system (1). ui ∈ Rm and
y ∈ Rm are the input and output vectors of the i-th subsystem,
respectively. fi, hi are assumed to be smooth with fi (0, 0) = 0
and hi (0) = 0. The switching time sequence is described by∑
={x0; (i0, t0), (i1, t1), . . . , (ik , tk ), . . . |ik ∈ I , k ∈ Z+},

(2)

in which x0 denotes the initial state at the initial time, t0
and Z+ denotes the set of non-negative integers, respectively.
(ik , tk ) means the ik -th subsystem is switching on at the k th
switching time tk . Namely, the switching signal is σ (t) = ik
during [tk , tk+1). In addition, we assume that the state of
system (1) does not jump at the switching instants. For any
j ∈ I , let tjk denote the k-th switching times of the j-th
subsystem when it is switched on and tjk+1 denote the k-th
switching times of the j-th subsystem, when it is switched
off.

The main control objective is to sove the finite-time
output tracking control problem for system (1) formulated as
follows:

Given a bounded reference signal y∗(t), design a switching
signal σ and controllers ui, i ∈ I for system (1) such that
(1) all the state trajectories of the closed-loop system (1)

are globally bounded.
(2) for every x (t0) ∈ Rn, lim

t→t0+T
‖y (t)− y∗ (t)‖ = 0, i.e.

∥∥y (t)− y∗ (t)∥∥ = 0, ∀t ≥ t0 + T (x0), (3)

where T > 0 is a settle time.
First, the assumption on the output tracking control is

introduced.
Assumption 1 [24]: y∗(t),∀t ≥ t0 is assumed to be a

bounded reference trajectory.
Next, we will review some definitions and lemmas that will

be used in the following.
Definition 1 [29]: A continuous function γ : [0, a)→ R ≥

0 is called a class K function if it is strictly increasing and
γ (0) = 0. If in addition, γ is unbounded, it is of class K∞
functions.
Lemma 1 [12]: Assume that γi : R≥0 → R≥0, i =

1, 2, · · · n are class K functions. If there exist εi ≥ 0, i =
1, 2, · · · , n such that

∫ εi
0

dz
γi(z)

< +∞ then

i) γ (z) = min
{
γi
( z
n

)
, i = 1, 2, · · · , n

}
, z ∈ R≥0 is a

class K function.

ii)
n∑
i=1
γi (zi) ≥ γ

(
n∑
i=1

zi

)
for any zi ∈ R≥0, i = 1, 2

...n.

iii)
∫ ε
0

dz
γ (z) < +∞, where ε = min {nεi, i = 1, 2 · · · n}.

Finite time convergence of switched nonlinear systems is
defined in the following.
Definition 2: System ẋ = fσ (x) is said to be globally

uniformly finite time convergent, if for any given switching
signal σ (t) and all x0 ∈ Rn, there exists an unique bounded
solution x∗ (t) on R and 0 ≤ T (x0) <∞ satisfying

lim
t→T (x0)

x (t) = x∗ (t).

III. FINITE TIME INCREMENTAL PASSIVITY
In this section, finite-time incremental passivity of switched
nonlinear systems theory will be established.

A. FINITE-TIME INCREMENTAL PASSIVITY DEFINITION
First, we define the finite-time incremental passivity of
system (1) as follows:
Definition 3: System (1) is said to be finite-time incremen-

tally passive, if for a given switching signal σ (t), there are
C1 (i.e. continuously differentiable) nonnegative continuous
functions Vi

(
x, x̂

)
: Rn×Rn→ R+, i ∈ I , called incremental

storage functions, and class K functions γi(∗): R ≥ 0 →
R ≥ 0, and some εi > 0, i ∈ I , such that the following
inequalities hold on [tk , tk+1) for any two inputs ui, ûi, any
two solutions of system (1) x, x̂ corresponding to these inputs,
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the respective outputs y = hi (x) and ŷ = hi
(
x̂
)

V̇ik (x(t), x̂(t)) ≤ −γik (Vik (x(t), x̂(t)))

+

(
yT − ŷT

) (
uik − ûik

)
, (4)

Vik (x(tk ), x̂(tk )) ≤ Vik−1 (x(tk ), x̂(tk )), ik ∈ I , (5)∫ εi

0

dz
γi(z)

< +∞. (6)

Remark 2: (4) means that finite-time incremental passivity
inequality only holds on the corresponding active time
interval [tk , tk+1). Thus, (4) and (5) implies the dissipated
energy in the whole switched systems is no more than
the supplied energy outside. Hence, Definition 3 is a
generalization of conventional incremental passivity in [9].
Remrk 3: For system (1) with equilibrium (0, 0), finite-

time incrementally passive systemmust be finite-time passive
by setting x̂ = 0, ûi = 0 [27], while finite time passive system
may be not finite time incrementally passive. Compared
with [24], the energy at each switching time is allowed to
decrease. If there exists the common storage functionVi = V ,
then system (1) is finite-time incrementally passive under
arbitrary switching signal.

B. SUFFICIENT CONDITIONS OF FINITE-TIME
INCREMENTAL PASSIVITY
We will provide some conditions of finite-time incremental
passivity for system (1) and a state-dependent switching law
design method.
Theorem 1: Assume that there exist continuous functions

Si
(
x, x̂

)
, βij

(
x, x̂

)
≤ 0, ηij

(
x, x̂

)
6= 0, nonnegative smooth

functions Vi
(
x, x̂

)
, classK functions γi(∗): R ≥ 0→ R ≥ 0,

and constants εi > 0, i, j ∈ I such that (6) and

∂Vi
∂x

fi (x, ui)+
∂Vi
∂ x̂

fi
(
x̂, ûi

)
+

M∑
j=1

βij
(
x, x̂

) (
Si
(
x, x̂

)
− Sj

(
x, x̂

))
≤ −γi(Vi(x, x̂))++(yT − ŷT )(ui − ûi) (7)

Si
(
x, x̂

)
− Sj

(
x, x̂

)
= ηij

(
x, x̂

) (
Vi
(
x, x̂

)
− Vj

(
x, x̂

))
(8)

hold. Then, system (1) is finite time incrementally passive
under the switching law

σ (t) = argmin
i∈I

{
Si
(
x, x̂

)}
. (9)

Proof:According to the switching law (9), the switching
sequence can be described as (2). When t ∈ [tk , tk+1), the ik -
th subsystem is active, Thus, we can obtain

Sik+1
(
x (tk+1), x̂ (tk+1)

)
= Sik

(
x (tk+1), x̂ (tk+1)

)
. (10)

From (8), we have

Vik+1
(
x (tk+1), x̂ (tk+1)

)
= Vik

(
x (tk+1), x̂ (tk+1)

)
. (11)

(7) implies

V̇ik ≤ −γik (Vik (x, x̂))+ (yT − ŷT )(uik − ûik ). (12)

Therefore, system (1) is finite-time incrementally passive.
Now, consider a swiched affine nonlinear systems:

ẋ = fσ (x)+ gσ (x) uσ ,

y = hσ (x), (13)

where fi(x), gi(x) and hi(x) are smooth with fi (0) = 0 and
hi (0) = 0.

Theorem 2:Assume that there exist nonnegative smooth
functions Vi(x, x̂), continuous functions Si

(
x, x̂

)
, βij

(
x, x̂

)
≤

0, ηij
(
x, x̂

)
6= 0, and class K functions γi(∗): R ≥ 0→ R ≥

0, and some εi > 0, i, j ∈ I such that (6) and

∂Vi
∂x

fi(x)+
∂Vi
∂ x̂

fi(x̂)

+

M∑
j=1

βij(x, x̂)(Si(x, x̂)− Sj(x, x̂))≤−γi(Vi(x, x̂)), (14)

∂Vi
∂x

gi(x)− (hTi (x)− h
T
i (x̂)) = 0,

∂Vi
∂ x̂

gi(x̂)− (hTi
(
x̂
)
− hTi (x)) = 0 (15)

hold. Then, system (13) is finite-time incrementally passive
under switching law (9).

Proof: Consider an augumented system

ẋ = fσ (x)+ gσ (x) uσ ,
˙̂x = fσ

(
x̂
)
+ gσ

(
x̂
)
ûσ ,

y = hσ (x), ŷ = hσ
(
x̂
)
. (16)

Since (14), (15) and (16) hold, the derivative of Vi(x, x̂) is

V̇i =
∂Vi
∂x

fi(x)+
∂Vi
∂ x̂

fi(x̂)+
∂Vi
∂x

gi(x)ui +
∂Vi
∂ x̂

gi(x̂)ûi

≤
∂Vi
∂x

fi(x)+
∂Vi
∂ x̂

fi(x̂)+ (hTi (x)− h
T
i (x̂))ui

+ (hTi (x̂)− h
T
i (x))ûi

≤ −γi(Vi(x, x̂))+ (yT − ŷT )(ui − ûi)

−

M∑
j=1

βij(x, x̂)(Si(x, x̂)− Sj(x, x̂)). (17)

According to Theorem 1, Theorem 2 holds.
Remark 4: Theorem 1 tells us that a switched system is

finite-time incrementally passive by the design of switching
law, even if each subsystem is non-finite-time incrementally
passive. If (14) and (15) hold with βij = 0, then each
subsystem is finite time incrementallly passive. Since the
switching law (9) can degenerate into the well-known ‘‘min-
switching’’ law in [24] by setting Vi = Si.

C. FEEDBACK INTERCONNECTION
This section will analyze the invariance properties of the
finite-time incremental passivity of the feedback intercon-
nected switched nonlinear systems.

Consider a feedback interconnection system H formed by
the feedback interconnection of two switched systems H1

168528 VOLUME 8, 2020
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FIGURE 1. Feedback interconnection system.

and H2 depicted in Fig. 1

H1 : ẋ1 = f 1σ1

(
x1, u1σ1

)
,

y1 = h1σ1

(
x1
)
, (18)

where the state is x1 ∈ Rn1 , σ1 (t) : [0,∞) → I1 =
{1, 2, · · ·M1} is the switching signal with the switching
sequence

61 = {(i10, t
1
0 ), (i

1
1, t

1
1 ), . . . (i

1
j1 , t

1
j1 ), . . .

∣∣∣i1j1 ∈ I1 , j1 ∈ N }
and

H2 : ẋ2 = f 2σ2

(
x2, u2σ2

)
,

y2 = h2σ2

(
x2
)

(19)

where the state is x2 ∈ Rn2 , σ2 (t) : [0,∞) → I2 =
{1, 2, · · ·M2} is the switching signal with the switching
sequence

62 = {(i20, t
2
0 ), (i

2
1, t

2
1 ), . . . , (i

2
j2 , t

2
j2 ), . . .

∣∣i2j2 ∈ I2, j2 ∈ N }.
Seen from Figure 1, u1σ1 = r1σ1 − y2, u2σ2 = r2σ2 +

y1. dim r2σ2 = dim h1σ1 = dim u2σ2 and dim r1σ1 = dim h2σ2 =

dim u1σ1. The input of system H is uσ =
(
r1σ1
r2σ2

)
and the

output of system H is y =
(
y1

y2

)
. By the merging switching

signal technique, the switching signal is defined as σ =(
σ1
σ2

)
: [0,∞)→ I = I1 × I2 with the switching sequence

described as
6 =

{
(i0, t0), (i1, t1), · · ·

(
ij, tj

)
, · · ·

∣∣ij ∈ I , j ∈ N }, (20)

where t0 = t10 = t20 , ij =
(
σ1
(
tj
)
, σ2

(
tj
))
=

(
i1
j1
, i2
j2

)
.

Now, we study invariance properties of the finite-time
incremental passivity for system H .
Theorem 3: Assume that there exist nonnegative smooth

functions V 1
i1
(
x1, x̂1

)
and V 2

i2
(
x2, x̂2

)
, continuous functions

S1
i1
(
x1, x̂1

)
and S2

i2
(
x2, x̂2

)
, functions β1

i1j1
(
x1, x̂1

)
≤ 0,

β2
i2j2
(
x2, x̂2

)
≤ 0, η1

i1j1
(
x1, x̂1

)
6= 0, η2

i2j2
(
x2, x̂2

)
6= 0, class

K functions γ 1
i1
(∗), γ 2

i2
(∗) and constants ε1

i1
> 0, ε2

i2
> 0 such

that for iq, jq ∈ Iq, q = 1, 2

∂V 1
i

∂x1
f 1i1
(
x1, u1i1

)
+
∂V 1

i

∂ x̂1
f 1i1
(
x̂1, û1i1

)
+

M1∑
j1=1

β1i1j1

(
S1i1
(
x1, x̂1

)
− S1j1

(
x1, x̂1

))

≤ −γ 1
i1

(
V 1
i1

(
x1, x̂1

))
+

(
u1i1 − û

1
i1

)T (
y1 − ŷ1

)
, (21)

∂V 2
i2

∂x2
f 2i2
(
x2, u2i2

)
+
∂V 2

i2

∂ x̂2
f 2i2
(
x̂2, û2i2

)
+

M2∑
j2=1

β2i2j2

(
S2i2
(
x2, x̂2

)
− S2j2

(
x2, x̂2

))
≤ −γ 2

i2

(
V 2
i2

(
x2, x̂2

))
+

(
u2i2 − û

2
i2

)T (
y2 − ŷ2

)
, (22)

V 1
i1

(
x1, x̂1

)
− V 1

j1

(
x1, x̂1

)
= η1i1j1

(
S1i1
(
x1, x̂1

)
− S1j1

(
x1, x̂1

))
,

V 2
i2

(
x2, x̂2

)
− V 2

j2

(
x2, x̂2

)
= η2i2j2

(
S2i2
(
x2, x̂2

)
− S2j2

(
x2, x̂2

))
(23)∫ ε1i

0

dz

γ 1
i (z)

< +∞,

∫ ε2
i2

0

dz

γ 2
i2 (z)

< +∞ (24)

hold. Design the composite state-dependent switching law as

σ (t) = (σ1 (t), σ2 (t)), (25)

where

σ1

(
x1, x̂1

)
= argmin

i∈I1

{
S1i
(
x1, x̂1

)}
,

σ2

(
x2, x̂2

)
= argmin

î∈I2

{
S2i2
(
x2, x̂2

)}
Then, systemH is finite time incrementally passive under the
switching law (24).

Proof: Define the storage function of system H as

V(i1,i2)
(
x1, x̂1, x2, x̂2

)
= V 1

i1

(
x1, x̂1

)
+ V 2

i2

(
x2, x̂2

)
,
(
i1, i2

)
∈ I .

The derivative of V(i1,i2)
(
x1, x̂1, x2, x̂2

)
is

V̇(i1,i2) =
∂V 1

i1

∂x1
f 1i1
(
x1, u1i1

)
+
∂V 1

i1

∂ x̂1
f 1i1
(
x̂1, û1i1

)
+
∂V 2

i2

∂x2
f 2i2
(
x2, u2i2

)
+
∂V 2

i2

∂ x̂2
f 2i2
(
x̂2, û2i2

)
≤ −

M1∑
j1=1

β1i1j1

(
S1i1
(
x1, x̂1

)
− S1j1

(
x1, x̂1

))

−

M2∑
j2=1

β2i2j2

(
S2i2
(
x2, x̂2

)
− S2j2

(
x2, x̂2

))
− γ 1

i1

(
V 1
i1

(
x1, x̂1

))
+

(
u1i1 − û

1
i1

)T (
y1 − ŷ1

)
− γ 2

i2

(
V 2
i2

(
x2, x̂2

))
+

(
u2i2 − û

2
i2

)T (
y2 − ŷ2

)
,

(26)
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Let γi1i2 (z) = min
{
γ 1
i (z/2), γ

2
i2 (z/2)

}
. By Lemma 1,

we obtain that

γi1i2

(
V 1
i1 + V

2
i2

)
≤ γ 1

i1

(
V 1
i1

)
+ γ 2

i2

(
V 2
i2

)
. (27)

By substituting u1
i1
= r1

i1
− y2, u2

i2
= r2

i2
+ y1 into (26)

together with (27), we have

V̇(i1,i2) ≤ −γi1i2
(
V 1
i + V

2
i2

)
+ (r − r̂)T (y− ŷ)T

−

M1∑
j1=1

β1i1j1

(
S1i1
(
x1, x̂1

)
− S1j1

(
x1, x̂1

))

−

M2∑
j2=1

β2i2j2

(
S2i2
(
x2, x̂2

)
− S2j2

(
x2, x̂2

))

with r =
(
r1
i1
, r2
i2

)T
, y =

(
y1, y2

)
.

The switching law (25) implies the following equation

Vσ(t)
(
x1 (t), x2 (t)

)
≤ −rσ(t)

(
Vσ(t)

(
x1 (t), x2 (t)

))
+ (r − r̂)T(y− ŷ)T.

and

Vσ(tk )
(
x1 (tk), x2 (tk), x̂1 (tk), x̂2 (tk)

)
= V 1

i1
k

(
x1 (tk), x̂1 (tk)

)
+ V 2

i2
k

(
x2 (tk), x̂2 (tk)

)
= V 1

i1
k−1

(
x1 (tk), x̂1 (tk)

)
+ V 2

i2
k−1

(
x2 (tk), x̂2 (tk)

)
= Vσ(tk−1)

(
x1 (tk), x2 (tk), x̂1 (tk), x̂2 (tk)

)
(28)

Let εi1i2 = min
{
2ε1

i1
, 2ε2

i2

}
. It follows from Lemma 1 and

(24) that∫ εiî

0

dz
γi1i2 (z)

≤

∫ εi1i2

0

(
1

γ 1
i1 (z)

+
1

γ 2
î2
(z)

)
dz

≤

∫ 2ε1
i1

0

dz

γ 1
i1 (z)

+

∫ 2ε2
i2

0

dz

γ 2
î2
(z)

< +∞ (29)

Hence, system H is finite time incrementally passive.

IV. FINITE-TIME OUTPUT TRACKING CONTROL
This sectionwill solve the finite-time output tracking problem
using the established finite-time incremental passivity theory.
Theorem 4: Consider a finite-time incrementally passive

system (1) with storage functions Vi(x, x̂) under a switching
signal σ (t). Suppose that for bounded inputs ui = ūi (t), there
exists a bounded solution x̄ (t), t ≥ t0 of system (1) satisfying
hσ (x̄ (t)) = y∗ (t), t ≥ t0. If in addition, α1

(∥∥x − x̂∥∥) ≤
Vi(x, x̂) ≤ α2

(∥∥x − x̂∥∥) holds with class K∞ functions
α1 (·), α2 (·), then there exists controllers ui = ūi−Ki(y−y∗)
with positive definite matrices Ki, i ∈ I such that the finite
time output tracking problem is solvable

Proof: For t0 < t < ∞, we can find k ∈ N satisfying
t ∈ [tk , tk+1). Since system (1) is finite-time incrementally
passive, for t ∈ [tk , tk+1), we have

V̇ik (x(t), x̂(t)) ≤ −γik (Vik (x(t), x̂(t)))+
(
uTik − ûik

) (
y− ŷ

)
.

(30)

Substituting x̄(t), y∗(t), ūi for x̂, ŷ, ûi into the above
inequality gives

V̇ik (x(t), x̄(t))≤−γik (Vik (x(t), x̄(t)))+
(
uTik − ūik

) (
y−y∗

)
.

(31)

Designing the controllers as ui = ūi − Ki(y− y∗) yields

V̇ik (x(t), x̄(t)) ≤ −γik (Vik (x(t), x̄(t))) < 0. (32)

From (32), we have

Vik (x(tk ), x̄(tk )) ≤ Vik−1 (x(tk ), x̄(tk )), ik ∈ I . (33)

Since (32) and (33) hold, we can obtain that

Vik (x(t), x̄(t))− Vi0 (x(t0), x̄(t0))

= Vik (t)− Vik (tk )

+

k∑
p=1

Vip (tp)− Vip−1 (tp−1)+
k∑

p=1

Vik (tp)− Vik−1 (tp)

≤ −

∫ t

t0
γ
σ(τ)

(Vσ(τ)(x(τ ), x̄(τ )))dτ . (34)

Therefore,

Vik (x(t), x̄(t)) ≤ Vi0 (x(t0), x̄(t0)).

Since α1
(∥∥x − x̂∥∥) ≤ Vi(x, x̂) ≤ α2

(∥∥x − x̂∥∥) holds,
we have

α1(‖x(t)− x̄(t)‖) ≤ Vik (x(t), x̄(t))

≤ Vi0 (x(t0), x̄(t0)) ≤ α2(‖x(t0)− x̄(t0)‖). (35)

Since x̄ (t) is bounded, (35) implies that x (t) is also
bounded. Thus, ẋ (t), ˙̄x (t) is bounded, because the input
signal ūi are bounded and fi and gi are continuous.
Hence, the boundeness and uniform continuous property
of ‖x (t)− x̄ (t)‖ is obtained for t ≥ t0. Let γ (z) =
min
i∈I
{γi (z)}. Therefore, γ (α1 (·)) is positive definite and

uniformly continuous, which implies γ (α1 (‖x (t)− x̄ (t)‖))
is uniformly continuous.

From (32), we have∫ t

t0
γ (α1(‖x(τ )− x̄(τ ))‖)dτ

≤

∫ t

t0
γ
σ(τ)

(Vσ(τ)(x(τ ), x̄(τ )))dτ <∞. (36)

According to Barbalat’s lemma, we have
lim
t→∞

γ (α1(‖x(t)− x̄(t)‖)) = 0. Thus, lim
t→∞
‖x(t)−

x̄(t)‖ = 0.
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Next, we will verify that there exists a settling time 0 <
T <∞ such that lim

t→t0+T
‖x (t)− x̄ (t)‖ = 0,T > t0, i.e.

‖x (t)− x̄ (t)‖ = 0, t ≥ t0 + T .

We only need to verify that

Vik (x (t), x̄ (t)) = 0, t ≥ t0 + T .

The transformation of variables:

[t0, t0 + T ]→
[
Vi0 (x (t0), x̄ (t0)), 0

]
was given by z = Vσ (x (t), x̄ (t)). From (32) and (33),
we have

T =
∫ t1

t0
dτ+

∫ t2

t1
dτ + · · ·

∫ tk+T

tk
dτ

≤

∫ t1

t0

V̇i0
−γi0 (Vi0 )

dτ +
∫ t2

t1

V̇i1
−γi1 (Vi1 )

dτ + · · ·

+

∫ t0+T

tk

V̇ik
−γik (Vik )

dτ

=

∫ Vi0 (t1)

Vi0 (t0)

dVi0
−γi0 (Vi0 )

+

∫ Vi1 (t2)

Vi1 (t1)

dVi1
−γi1 (Vi1 )

+ · · ·

+

∫ Vik (t0+T )

Vik (tk )

dVik
−γik (Vik )

=

∫ Vi0 (t1)

Vi0 (t0)

dz
−γi0 (z)

+

∫ Vi1 (t2)

Vi1 (t1)

dVi1
−γi1 (z)

+ · · ·

+

∫ Vik (t0+T )

Vik (tk )

dz
−γik (z)

=

∫ Vi0 (t0)

Vi0 (t1)

dz
γi0 (z)

+

∫ Vi1 (t1)

Vi1 (t2)

dVi1
γi1 (z)

+ · · ·+

∫ Vik (tk )

Vik (t0+T )

dz
γik (z)

≤

∫ Vi0 (t0)

Vik (t0+T )

dz
γ (z)
=

∫ Vi0 (t0)

0

dz
γ (z)

.

Since
∫ εi
0

dz
γi(z)

<∞ holds for some εi > 0, i ∈ I , we have∫ ε

0

dz
γ (z)

≤

M∑
i=1

∫ εi

0

dz
γi (z)

<∞,

where ε = min
i∈I
{εi} . Therefore, when Vi0 (x (t0), x̄ (t0)) ≤ ε,

it holds that T < ∞. Therefore, all solutions of system (1)
convergent to x̄ (t) in finite time, which implies

lim
t→t0+T

∥∥y (t)− y∗ (t)∥∥ = 0.

This completes proof.
Combining Theorem 1 with Theorem 4 gives as follows:
Theorem 5: Suppose that there exist C1 nonnegative

functions Vi(x, x̂), continuous functions Si
(
x, x̂

)
, functions

βij
(
x, x̂

)
≤ 0, ηij

(
x, x̂

)
6= 0, and class K∞ functions γi(∗):

R ≥ 0 → R ≥ 0, α1 (·), α2 (·) and constants εi > 0, i, j ∈ I
such that α1

(∥∥x − x̂∥∥) ≤ Vi(x, x̂) ≤ α2
(∥∥x − x̂∥∥) and (6)-

(8) hold. If in addition,

y∗ (t)− hi (x̄ (t))+max
j∈I

{
Vi (x, x̄)− Vj (x, x̄)

}
= 0 (37)

holds for all i, j ∈ I , where for t ≥ t0, x̄ (t) is a
bounded solution of system (1) with the bounded inputs ui =
ūi (t), then the finite time output tracking control problem of
system (1) is solvable by ui = ūi − Ki(y − y∗) under the
switching law (9) with x2 = x̄, where Ki, i ∈ I are positive
definite matrices.

Proof: Theorem 1 implies that system (1) is finite
time incrementally passive. On the other hand, from (37),
there exists a bounded solution x̄ (t) of system (1) such
that hσ (x̄ (t)) = y∗ (t) for t ≥ t0. Based on Theorem 4,
the finite time output tracking control problem of system (1)
is solvable.

V. EXAMPLE
This section will verify the effectiveness of the results by a
numerical example.

Consider system (1) described by

ẋ1 = −x31 − 4x1 +
1
2
x2 + 5− x

3
5
1 + u1,

subsystem1:

ẋ2 =
1
2
x1 + x2 − 2.5+ 3

4
5 .2

3
5 − 3

4
5 x

3
5
2 +

1
3
u1.

ẋ1 = x1 + x2 − 3+ 2−
1
5 +

1
2
u2 − 2−

1
5 x

3
5
1 ,

Subsystem 2:

ẋ2 = 2x1 − 10x2 + 18−
1
2
x
3
5
2 + u2 + 2−

2
5 (38)

with the outputs y1 = x1 + x2, y2 = 2x2 − x1. The reference
signal is given as y∗ = 3.
First, we select the storage functions as

V1(x, x̂) =
1
2
(x − x̂)TP1(x − x̂)

and

V2(x1, x2) =
1
2
(x1 − x2)TP2(x1 − x2),

where P1 =
[
1 0
0 3

]
and P2 =

[
2 0
0 1

]
. Differentiating Vi

gives that

V̇1 ≤ −β12 (V1 − V2)− 1.2 (V1)0.8 +
(
u1 − û1

) (
y1 − ŷ1

)
,

V̇2 ≤ −β21 (V2 − V1)− 0.6V2 +
(
u2 − û2

) (
y1 − ŷ1

)
.

where β12 = −3.5, β21 = −7.
By Theorem 1, system (38) is finite-time incrementally

passive under switching law (9).
There is a bounded solution x̄(t) = [2, 1]T of closed-loop

system (23) with input ui = 0 and y = hi (x̄) = y∗, i = 1, 2.
Design the feedback controllers as

u1 = −(y1 − 3), u2 = −2(y2 − 3). (39)

According to Theorem 3, the finite-time output tracking
problem for closed-loop system (38) is solvable under the
switching law σ (t) = argmin

i∈I
{Vi (x, x̄)}.
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FIGURE 2. The stored energy of the switched system (23).

FIGURE 3. State response of the switched system.

FIGURE 4. Outputs of the switched system.

The simulation was performed with the initial state x (0) =
(4.3, 53.4). The simulation results are presented in Figs. 1-4.
Figure 1 describes the stored energy of system (38) with the
controllers (39) under the switching law as shown in Figure 4.
In Figure 1, since the energy is descreasing and degenerate
into zero in finite time and the energy drops at each switching

FIGURE 5. Switching law.

timet, this verifies finite time incremental passivity definition.
The state response of the switched system convergent into
bounded solution x̄ in finite time as shown in Figure 2.
Thus, the state is bounded. In Figure 3, the outputs of the
switched system (38) track the reference signal in finite time.
Therefore, the finite time output tracking control problem of
system (38) is solvable. The simulation results well verified
the effectiveness of the proposed approach.

VI. CONCLUSION
This paper has studied finite-time incremental passivity for
switched nonlinesr systems. Then, the established finite-
time incremental passivity theory was applied to solve the
finite-time output tracking problem of switched nonlinear
systems. A more general switching law design method was
proposed. There are some interesting problems that need to
be addressed. One of the problems is to study the relationship
between finite time incremental passivity and finite time
incremental stabilityswitched nonlinear systems.
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