
SPECIAL SECTION ON EMERGING TRENDS OF ENERGY AND
SPECTRUM HARVESTING TECHNOLOGIES

Received August 16, 2020, accepted September 2, 2020, date of publication September 14, 2020,
date of current version September 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023654

Information Freshness-Guaranteed and
Energy-Efficient Data Generation Control System
in Energy Harvesting Internet of Things
HANEUL KO 1, (Member, IEEE), HOCHAN LEE 2, (Graduate Student Member, IEEE),
TAEYUN KIM2, AND SANGHEON PACK 2, (Senior Member, IEEE)
1Department of Computer Convergence Software, Korea University, Sejong 30019, South Korea
2School of Electrical Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Sangheon Pack (shpack@korea.ac.kr)

This work was supported by the National Research Foundation (NRF) of Korea funded by the Korean Government [Ministry of Science
and ICT (MSIT)] under Grant 2019R1C1C1004352 and Grant 2020R1A2C3006786.

ABSTRACT In energy harvesting Internet of Things (IoT) systems, the age of information (AoI) should
be maintained at a low level to guarantee the accuracy and reliability of derived decisions. In this
paper, we design an information freshness-guaranteed and energy-efficient data generation control system
(IFE-DGCS) where an IoT gateway with a directional antenna determines the polling frequency for each
sector by selecting a polling sector at periodic decision epochs. When polling data, the IoT gateway transfers
the RF energy to IoT devices in the polling sector by means of simultaneous wireless information and power
transfer (SWIPT). To minimize the energy outage probability while maintaining the AoI below a certain
level, a constrained Markov decision process (CMDP) is formulated and the optimal stochastic policy on the
polling sector is obtained by a linear programming (LP). To resolve the curse of the dimensionality problem
in CMDP, a greedy IFE-DGCS is developed and its performance is extensively studied. Evaluation results
demonstrate that IFE-DGCS with the optimal policy achieves a comparable energy outage probability to the
conventional energy-oriented scheme while guaranteeing a sufficiently low AoI.

INDEX TERMS Constrained Markov decision process, energy harvesting, the Internet of Things, age of
information, information freshness.

I. INTRODUCTION
Internet of Things (IoT) is rapidly flourishing across the
world and it has enabled ubiquitous connectivity among
billions of things, ranging from resource-constrained IoT
devices (e.g., sensors) to more powerful devices (e.g., smart-
phones, tablets, and vehicles). In various IoT systems, IoT
devices can interact with their environment and transmit a
significant quantity of valuable data to a server. For example,
in a temperature and humidity monitoring system of a smart
factory, IoT devices periodically sense the temperature and
humidity (i.e., interact with their environment) and transmit
the sensed values to a monitoring server. In these types of
IoT systems, outdated data degrade the accuracy and reliabil-
ity of the derived decisions, thereby causing vulnerabilities
related to the safety and security of the systems. In such
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cases, the age of information (AoI) [1], which quantifies the
freshness of information, can represent the performance of
IoT systems. To maintain the freshness at a high level, IoT
devices frequently transmit their data to a server. However,
the data transmission process consumes a significant amount
of energy, and the IoT devices have limited battery capac-
ity [2]; therefore, frequent data transmission can result in
energy depletion. Hence, there is a need to determine an
appropriate frequency of the data transmission.

In addition, to prevent energy depletion in IoT devices,
the energy harvesting technique [3] can be used.1 The radio
frequency (RF) energy harvesting technique, in particu-
lar, has garnered significant attention owing to its flexibil-
ity [4], [5]. RF energy harvesting can be performed based
on omni-directional and directional energy transmissions.

1Using the energy harvesting technique, the operators of IoT systems can
avoid replacing batteries of IoT devices, which may be impossible in haz-
ardous environments, thereby reducing the operating expenditure (OPEX).
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In omni-directional energy transmissions, simpler implemen-
tation and operations can be achieved. However, because
omni-directional transmissions have lower antenna gain, the
IoT devices may not harvest sufficient energy without exces-
sive power consumption of the IoT gateway. Therefore, in this
paper, it is assumed that the IoT gateway adopts direc-
tional energy transmissions to provide sufficient energy to
IoT devices even when they are located far from the IoT
gateway [6]. However, owing to the narrow beam of direc-
tional energy transmissions, their direction should be care-
fully determined.

To summarize, in energy harvesting IoT systems, how
to collect data (e.g., the frequency of data transmissions of
IoT devices)2 and how to provide the RF energy (e.g., the
RF energy transmission direction of the IoT gateway) are
important design factors. Accordingly, numerousworks in the
literature have investigated each factor [7]–[21]. For example,
Ko and Pack [16] determined the optimal direction of RF
energy transmission considering the number of IoT devices
in sectors. Abd-Elmagid et al. [12] obtained the optimal
frequency of data transmissions to minimize the weighted
sum of AoIs. However, these two design factors are related
to each other. For example, when providing RF energy to
the appropriate direction, IoT devices can transmit their data
more frequently. In addition, when the IoT devices transmit
their data infrequently due to a low data generation rate, they
do not consume a significant amount of energy; thus, frequent
RF energy provision is not required. Consequently, these two
design factors should be determined in conjunction. How-
ever, to the best of our knowledge, no previous studies have
investigated the joint optimization of the frequency of data
transmissions of IoT devices and the RF energy transmission
direction of the IoT gateway.

In this paper, we design an information freshness-
guaranteed and energy-efficient data generation control
system (IFE-DGCS). In IFE-DGCS, the IoT gateway with
directional antenna determines the polling frequency for
each sector (i.e., the frequency of data transmissions of IoT
devices) by selecting a polling sector at periodic decision
epochs, and IoT devices in the polling sector report their
data. When polling the data, the IoT gateway transfers the RF
energy to IoT devices in the polling sector via simultaneous
wireless information and power transfer (SWIPT). The IoT
gateway maintains information such as the estimated energy
level and the data generation frequency of IoT devices. Based
on this information, it determines the polling sector to mini-
mize the energy outage probability while maintaining the AoI
below a certain level. To achieve the optimal performance of
IFE-DGCS, a constrained Markov decision process (CMDP)
is formulated and the optimal stochastic policy of the polling
sector is obtained by linear programming (LP). To resolve
the curse of dimensionality problem in the CMDP, a greedy
IFE-DGCS is developed. Evaluation results demonstrate that

2The frequency of data transmissions means the number of transmissions
per unit time.

the greedy IFE-DGCS can achieve comparable performance
to IFE-DGCS with the optimal policy. Moreover, it was
observed that IFE-DGCS operates adaptively according to the
operating environment (e.g., data occurrence rate and energy
harvesting probability).

The main contributions of this paper are twofold: 1) we
design a polling-based data generation control system called
IFE-DGCS while jointly optimizing the frequency of data
transmissions of IoT devices and the direction of RF energy
transmission of the IoT gateway via CMDP formulation; and
2) we analyze and present extensive evaluation results in
various environments that can help provide useful guidelines
for the design of energy harvesting IoT systems.

The remainder of this paper is organized as fol-
lows. Related works are summarized in Section II. Then,
IFE-DGCS is presented in Section III. Next, the CMDP
model is formulated in Section IV. The greedy heuristic algo-
rithm is proposed in V. The evaluation results are discussed
in Section VI, and followed by the concluding remarks in
Section VII.

II. RELATED WORK
In energy harvesting IoT systems, how to collect data (e.g.,
the frequency of data transmissions) and how to provide
RF energy (e.g., the direction of RF energy transmission
when using directional antenna) are important design factors.
Correspondingly, several studies in the literature have investi-
gated these factors [7]–[21]. These works can be categorized
into: 1) how to collect data [7]–[15]; and 2) how to provide
RF energy [16]–[21].

Oh and Shin [7] proposed a simplified data transmission
scheme wherein the IoT devices transmit a data without
conducting the connection setup for the radio resource.
Fathy et al. [8] proposed data reduction method where IoT
devices only transmit their sensed data that deviate signif-
icantly from the predicted data. Jarwan et al. [9] designed
a data reduction framework and presented dual prediction
and data compression schemes to reduce the number of
data transmissions. Stojkoska and Nikolovski [10] developed
a new coding scheme to compress temporally correlated
data and save energy in IoT systems. Mahapatra et al. [11]
introduced an energy-efficient error detection and correction
scheme to reduce the transmission delay and packet loss
rate in large IoT systems. Abd-Elmagid et al. [12] designed
an optimal sampling policy to minimize the weighted sum
of AoIs in environments where the IoT devices can receive
energy from the central node. Zhou and Saad [13] designed
an optimal IoT device scheduling policy for minimizing the
average AoI of IoT devices considering their data collection
capability. Abd-Elmagid et al. [14] formulated a long-term
AoI minimization problem and proposed a feasible AoI opti-
mization sampling strategy for real-time monitoring systems.
Chi et al. [15] formulated the optimal time allocation prob-
lem as a nonlinear optimization problem and suggested an
efficient algorithm to minimize the transmission completion
time.
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Ko and Pack [16] proposed a directional energy transmis-
sion algorithm in which the IoT gateway observes the number
of IoT devices in sectors and provides RF energy to the sector
where many IoT devices exist. Lu et al. [17] formulated a
CMDP for mobile devices to determine whether to request
RF energy or transmit a packet. Zhang et al. [18] proposed
a concept of mobile energy gateway that can move near
IoT devices and transmit RF energy; further, they optimized
the operation of the gateway based on an Markov decision
process (MDP). Joo and Kang [19] proposed a greedy joint
scheduling scheme for the transmission of data and RF energy
in multi-channel environments. Ko and Pack [20] proposed
an energy transmission algorithm for multiple IoT gateways
with directional antenna, in which the direction and initial
phase for RF energy transmission in IoT gateways are deter-
mined to maximize the efficiency of RF energy transmission.
Wu et al. [21] formulated a joint optimization problem on
relay selection and power control to maximize the throughput
with constrained data and energy storage.

FIGURE 1. System model.

III. INFORMATION FRESHNESS-GUARANTEED AND
ENERGY-EFFICIENT DATA GENERATION CONTROL
SYSTEM
Figure 1 illustrates the system model for energy harvesting
IoT systems. In general, energy harvesting IoT systems con-
sist of two major components: 1) IoT gateway and 2) IoT
device.

The IoT gateway selects a polling sector at each decision
epoch, and then transmits a polling message to that sector by
using the directional antenna. At the same time, via SWIPT,
the IoT gateway provides the RF energy to IoT devices in
the polling sector. According to the beamwidth and direction
of the antenna, the geographical region can be divided into
several sectors. Figure 1 illustrates an example of an IoT
gateway with a directional antenna at an angle of 45◦ and
eight sectors.

We assume that there are N IoT devices and they generate
data (e.g., sense the temperature, monitor the vibration, and
etc.) at specific sectors. Meanwhile, IoT devices have the
capability of RF energy harvesting, and thus, they can charge
their batteries from the transmission of the RF energy at the
IoT gateway. Specifically, for SWIPT, it is assumed that IoT

devices have power splitting antennas.3 Therefore, they can
split the received RF signal into two power streams, and these
streams are forwarded to an information decoder and energy
harvester, respectively [23].

From the power stream fed to the energy harvester, IoT
devices can harvest and store the RF energy in their energy
storage. It should be noted that because RF energy from
the IoT gateway can be attenuated owing to the propagation
loss and/or some objects, the IoT devices may not harvest
energy.4 In addition, the IoT gateway provides the RF energy
to the IoT devices during a short period (i.e., decision epoch).
Therefore, the energy harvesting process can be modeled as a
Bernoulli random process where the IoT devices harvest one
unit energy with the probability pH [26]. Based on the other
power stream to the information decoder, the IoT devices can
notice that they are polled to transmit their data.

After decoding the polling message, the IoT devices report
their data to the IoT gateway using one unit of the energy
stored in their batteries. Note that the IoT devices use
time-division multiplexing access (TDMA) to transmit their
data to the IoT gateway.5 The IoT devices generate very small
size data (e.g., temperature and humidity) and they use the
same modulation scheme to transmit one packet regardless
of the distance to the gateway (i.e., no adaptive modulation
coding (AMC) is used in IoT devices [27]). Therefore, the
difference in the transmission times among IoT devices can
be neglected, which means that the energy consumption of
transmitting one packet is constant regardless of the distance.
In addition, due to the small size of the data, the data can
always be included in one packet. Therefore, the variation
in energy consumption according to the data size can be
neglected. If the IoT devices receiving the polling message
do not have sufficient energy in their batteries, they cannot
transmit their data to the IoT gateway. To alleviate this prob-
lem, the IoT gatewaymaintains an information table compris-
ing the locations (i.e., sectors), the estimated AoIs (i.e., the
estimated elapsed time from the new data generation), and
the estimated energy levels of the IoT devices. Because we
only consider fixed IoT devices, their locations can be easily
maintained. The AoIs can be estimated based on the data
generation frequency of IoT devices, λ. These values can be
synchronized (i.e., the estimated AoIs become zero) when the
IoT gateway receives data from the IoT devices. In contrast,
the energy levels of the IoT devices are estimated based on
the energy harvesting probability pH . Specifically, the energy
levels of the IoT devices in the polling sector can be estimated
to decrease by a specific portion to transmit their data and
increase by a specific portion with the probability pH . This
estimated energy level may differ from the actual energy
level. To alleviate this situation, IoT devices piggyback their

3The splitting antenna can be easily made by a simple circuit design [17].
4A directional antenna can mitigate this situation because it transmits

energy more intensively to a specific sector than an omni-directional antenna
that transmits energy to all directions around the antenna.

5The pollingmessage has the information about the transmission sequence
for TDMA.
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energy levels to the data payload. Based on the information
table, the IoT gateway determines the polling sector to mini-
mize the energy outage probability while maintaining the AoI
below a certain level. To optimize the performance of IFE-
DGCS, we formulate a CMDP model in the next section.

IV. CONSTRAINED MARKOV DECISION PROCESS (CMDP)
For the optimal decision of the polling sector, a CMDPmodel
is formulated in this section. When partially random results
need to be constrained and under the control of the agent,
the CMDP model can be exploited for decision making [24].
Important notations for the CMDP model are summarized in
Table 1.

TABLE 1. Summary of notations.

FIGURE 2. Timing diagram.

A. DECISION EPOCH
The timing diagram for the CMDP model is shown in
Figure 2. A sequence T = {1, 2, 3, . . .} represents the time
epochs when the agent (i.e., the IoT gateway) makes succes-
sive decisions. St and At denote the state and action selected
at the decision epoch t ∈ T , respectively. τ represents the
duration of each decision epoch.

B. STATE SPACE
The state space S can be defined as

S =
∏
i

Ti × Ei × Li (1)

where Ti is the state for an estimated elapsed time from the
new data generation of the IoT device i (i.e., freshness of
data generated by the IoT device i). Furthermore, Ei and Li

represent the state for denoting the estimated energy level
of the IoT device i and the sector where the IoT device i is
located, respectively.

Ti can be described by

Ti = {0, 1, 2, . . . ,Tmax} (2)

where Ti = 0 denotes that the IoT device i is estimated not
to generate new data after the last transmission. On the other
hand, Ti 6= 0 represents the estimated elapsed time from the
new data generation. In addition, Tmax is the maximum time
handled in the systems.

When Emax denotes the battery capacity of the IoT device,
Ei can be defined as

Ei = {0, 1, 2, . . . ,Emax} . (3)

Li is described by

Li = {1, 2, . . . ,NS} (4)

where NS is the number of sectors where the IoT device can
be located.

C. ACTION SPACE
Based on the current state information, the IoT gateway deter-
mines the polling sector. Therefore, the action spaceA can be
defined as

A = {1, 2, 3, . . . ,NS} . (5)

Note that A can represent the polling sector. For example,
A = 3 indicates that the IoT gateway transmits the polling
message and provides RF energy to the third sector.

D. TRANSITION PROBABILITY
Because the state transitions of each IoT device are indepen-
dent of each other, the transition probability with the selected
action A from the current state S to the next state S ′ can be
described by

P
[
S ′|S,A

]
=

∏
i

P
[
S ′i |Si,A

]
(6)

where S ′i and Si denote the next and current states of the IoT
device i, respectively.
Ti and Ei are influenced by the selected action A. Specifi-

cally, when the selected action A is the same as the location
of the IoT device i (i.e., the IoT gateway transmits the polling
message and provides the RF energy to the IoT device i), the
IoT device i transmits its data and harvests energy, indicating
the transition of states (i.e., Ti and Ei). In addition, because
the IoT device i transmits the generated data by consuming
its energy, the transitions of Ti and Ei are affected by each
other. Meanwhile, other states independently change with
each other. Therefore, the transition probability from the
current state, Si = [Ti,Ei,Li], to the next state of the IoT
device i, Si =

[
T ′i ,E

′
i ,L
′
i

]
, can be represented as eq. (7), as

shown at the bottom of the next page.
We assume that the inter-data occurrence time of the IoT

device i follows an exponential distribution with mean 1/λi.
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Then, the data occurrence probability during the decision
epoch can be calculated as λiτ [25]. When the IoT gateway
estimates that the IoT device i has not generated data after the
last transmission (i.e., Ti = 0) and the IoT gateway does not
transmit the polling message to the sector of the IoT device i
(i.e., Li 6= A), Ti becomes 1 with probability λiτ . Therefore,
the corresponding transition probability is defined as

P[T ′i |Ti = 0,Ei,Li 6= A,A] =


λiτ, if T ′i = 1
1− λiτ, if T ′i = 0
0, otherwise.

(8)

After the IoT gateway estimates that the IoT device i
generates new data after the last transmission (i.e., Ti 6= 0)
and the IoT gateway does not transmit the polling message to
the sector of the IoT device i (i.e., Li 6= A), Ti increases one
by one. Therefore, P

[
Ti′|Ti 6= 0,Li 6= A,A

]
is defined as

P[T ′i |Ti 6= 0,Ei,Li 6= A,A] =

{
1, if T ′i = Ti + 1
0, otherwise.

(9)

When the IoT gateway transmits the polling message to
the sector of the IoT device i having energy (i.e., Ei 6= 0 and
Li = A), Ti becomes 0 regardless of the current value of Ti.
On the other hand, when the IoT device i is estimated not to
have any energy (i.e., Ei = 0), it cannot transmit data despite
receiving the polling message. Thus, we have

P[T ′i |Ti,Ei 6= 0,Li = A,A] =

{
1, if T ′i = 0
0, otherwise

(10)

and

P[T ′i |Ti,Ei = 0,Li = A,A] =

{
1, if T ′i = Ti + 1
0, otherwise.

(11)

When the IoT gateway does not transmit the RF energy
to the IoT device i (i.e., Li 6= A), its energy status does not

change. Therefore, the corresponding transition probability
can be represented by

P[E ′i |Ei,Ti,Li 6= A,A] =

{
1, if E ′i = Ei
0, otherwise.

(12)

However, when the IoT gateway performs polling for a
sector of the IoT device i (i.e., Li = A), it can harvest energy.
Specifically, the IoT device i can harvest one unit of energy
only when its received power is sufficient.6 Therefore, the
Bernoulli random process with the harvesting probability pH ,i
of the IoT device i can be exploited to model whether the
IoT device harvests energy or not [26]. The IoT device i
can harvest one unit of energy when its battery is not full
(i.e., Ei 6= Emax). In addition, if the IoT device i has newly
generated data (i.e., Ti 6= 0), it transmits the data to the IoT
gateway by consuming one unit of energy. Therefore, only
when the IoT device i has energy (i.e., Ei 6= 0), it can transmit
its data. On the other hand, when there is no newly generated
data (i.e., Ti = 0), the IoT device i does not consume its
energy. To sum up, the corresponding transition probabilities
can be denoted by eqs. (13), (14), (15), and (16), as shown at
the bottom of the page.

Since IoT devices are generally fixed at specific locations
in IoT systems, the transition probability of Li can be defined
as

P[L ′i |Li] =

{
1, if L ′i = Li
0, otherwise.

(17)

E. COST AND CONSTRAINT FUNCTIONS
Tominimize the average energy outage probability, we define
a cost function r (S,A). Energy outage implies a situation
where the current energy of the IoT device i is 0. Therefore,

6The power received at the IoT device i (i.e., ηPTX |hi|2κ) can change
according to the environment. For example, when some objects obstruct the
antenna of the IoT device i, its received power can significantly decrease.

P
[
Si′|Si,A

]
= P

[
Ti′|Ti,Ei,Li,A

]
× P

[
Ei′|Ei,Ti,Li,A

]
× P

[
Li′|Li

]
(7)

P[E ′i |Ei 6= 0,Ti 6= 0,Li = A,A] =


pH ,i, if E ′i = Ei
1− pH ,i if E ′i = Ei − 1
0, otherwise

(13)

P[E ′i |Ei = 0,Ti 6= 0,Li = A,A] =


pH ,i, if E ′i = Ei + 1
1− pH ,i if E ′i = Ei
0, otherwise

(14)

P[E ′i |Ei 6= Emax ,Ti = 0,Li = A,A] =


pH ,i, if E ′i = Ei + 1
1− pH ,i, if E ′i = Ei
0, otherwise

(15)

P[E ′i |Ei = Emax ,Ti = 0,Li = A,A] =

{
1, if E ′i = Ei
0, otherwise

(16)
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the cost function r (S,A) can be defined as

r (S,A) =

∑
i
δ [Ei = 0]

N
(18)

where δ [·] is a delta function to return 1 if the condition (i.e.,
Ei = 0) is true. If the condition is not true, the delta function
returns 0.

The constraint function c(S,A) for the average elapsed
time from the last data transmission of the IoT devices (i.e.,
average AoI) can be represented by

c (S,A) =

∑
i
Ti

N
. (19)

F. OPTIMIZATION FORMULATION
The average energy outage probability and the average
elapsed time from the last data transmission of the IoT devices
(i.e., average AoI), denoted by ζE and ζA, respectively, can be
defined as

ζE = lim
t→∞

sup
1
t

t∑
t ′
E [r (St ′ ,At ′)] (20)

and

ζA = lim
t→∞

sup
1
t

t∑
t ′
E [c (St ′ ,At ′)]. (21)

The CMDP model can be defined as follows:

min
π
ζE (22)

s.t. ζA ≤ θA (23)

where π is the policy representing the probabilities of taking
a particular action at a certain state. In addition, θA is a desired
level of the AoI.

The CMDP model can be transformed into an equivalent
LPmodel. When φ(S,A) represents the stationary probability
of state S and action A, the equivalent LP model can be
expressed as

min
φ(S,A)

∑
S

∑
A

φ(S,A)r(S,A) (24)

subject to the following constraints:∑
S

∑
A

φ(S,A)cE (S,A) ≤ θA (25)∑
A

φ(S ′,A) =
∑
S

∑
A

φ(S,A)P[S ′|S,A] (26)∑
S

∑
A

φ(S,A) = 1 (27)

and

φ(S,A) ≥ 0 (28)

The objective function in (24) is to minimize the average
energy outage probability. The constraint in (25) is to main-
tain the average AoI below θA. The constraint in (26) is for the

Chapman-Kolmogorov equation. The probability properties
can be satisfied by the constraints in (27) and (28).

In this paper, we adopt a stochastic policy for the solution
of the CMDPmodel. Accordingly, actionA to be taken at state
S is selected randomly according to the optimal probability
distribution. Because the optimal solution of the LP model
represents the stationary probability φ∗(S,A) of state S and
action A that achieve the objective of the formulated CMDP
model, the optimal stochastic policy π∗(S,A) can be obtained
from

π∗ (S,A) =
φ∗ (S,A)∑

A′
φ∗ (S,A′)

for S ∈ S,
∑
A′
φ∗
(
S,A′

)
> 0.

(29)

Note that, if
∑
A′
φ∗
(
S,A′

)
= 0 (i.e., there is no solution to

satisfy all constraints), the IoT gateway transmits the polling
message to a randomly selected sector.

Algorithm 1 Greedy IFE-DGCS

1: Count the number NT
A of IoT devices with Ti > θA in

each sector
2: if

∑
Li
NT
A 6= 0 then

3: Select the preferred sector A∗ = argmax
A

NT
A

4: Transmit the polling message and provide RF energy
to sector A∗

5: else
6: Check the estimated energy levels of all IoT devices
7: Count the number NE

A of IoT devices with Ei < θE in
each sector

8: Select the preferred sector A∗ = argmax
A

NE
A

9: Transmit the polling message and provide RF energy
to sector A∗

10: end if

V. GREEDY IFE-DGCS
To alleviate the curse of dimensionality problem in the
CMDP, we propose a greedy IFE-DGCS as shown in Algo-
rithm 1. First, the IoT gateway counts the number NT

A of
IoT devices whose estimated elapsed time is lower than the
desired level θA for each sector (line 1). If there is any sector
with NT

A 6= 0 (line 2), the IoT gateway selects the preferred
sector A∗ with the largest number of IoT devices whose
estimated elapsed time is lower than the desired level θA
(line 3). Then, it transmits the polling message and provides
the RF energy to sector A∗ (line 4). On the other hand, if there
is no IoT device with a larger estimated elapsed time than
a certain level (i.e., Ti < θA for all IoT devices), the IoT
gateway checks the estimated energy levels of the IoT devices
(line 6) and counts the number of IoT devices whose energy
levels are lower than a desired level of energy θE (line 7).
Based on these numbers, the IoT gateway selects the preferred
sector A∗ where the largest number of IoT devices with
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TABLE 2. Default parameter settings.

FIGURE 3. Operational example of the greedy IFE-DGCS algorithm.

Ei < θE are located (i.e., A∗ = argmax
A

NE
A ) (line 8). Then,

it polls the IoT devices in the selected sector A∗ and transmits
the RF energy to them.

Figure 3 shows an operational example of the greedy
IFE-DGCS algorithm, where θA and θE are set to 2 and 3,
respectively. Note that Figures 3(a) and (b) show the situa-
tions at t = a whereas Figures 3(c) and (d) represent the
cases at the next time slot, i.e., t = a + 1. First, the IoT
gateway counts the number NT

A of IoT devices with Ti > θA
in each sector. The estimated AoIs of IoT devices 3 and
4 in sector 3 are larger than θA (i.e., 2). That is, NT

A for
sector 3 is 2, and it is the largest value among all sectors
(see Figure 3(a)). Therefore, the IoT gateway polls the IoT
devices in sector 3 and transfers the RF energy to them (see
Figure 3(b)). At the next time slot t = a+1, theAoIs of all IoT
devices in sector 3 become zero (see Figure 3(c)).Meanwhile,
because there is no sector with IoT devices whose estimated
AoI is higher than θA in this time slot, the IoT gateway
counts NE

A of all sectors (see Figure 3(c)). After that, it polls
section 1 with the largest NE

A (see Figure 3(d)).
Since Algorithm 1 can operate with state information of

IoT devices (i.e., S) as shown in the operational example, the
space complexity ofAlgorithm 1 isO(S). On the other hand,
to obtain the optimal solution (i.e., to solve the equivalent LP
model, we need to store the transition probability whose space
complexity is O(S2A).

VI. EVALUATION RESULTS
To evaluate the performance of IFE-DGCS, we developed an
event-driven simulator usingMATLAB and conducted exten-
sive simulations. We compare IFE-DGCS with the following
four schemes: 1) RAND where the IoT gateway randomly
selects a sector for polling and RF energy transfer; 2) NUM-
BER where the polling sector is determined proportionally to
the number of IoT devices in each sector; 3) FRESH where
the IoT gateway selects a sector where the number of IoT
devices with the estimated elapsed time higher than θA is the
largest; and 4) ENERGY where the IoT gateway selects a
sector where the number of IoT devices with energy levels
lower than θE is the largest.
Because the objective of this paper is to minimize the

average energy outage probability ζE while maintaining the
average AoI ζA below a certain level, ζE and ζA are used as the
performance measures of IFE-DGCS. The default parameter
settings are summarized in Table 2, where [a, b] denotes a
random value between a and b.

A. GREEDY IFE-DGCS VS. OPTIMAL IFE-DGCS
To find out the optimal IFE-DGCS, we employed the
brute-force search. Due to the high complexity of the
brute-force search, the optimal solution of IFE-DGCS can be
achieved only in a small-scale scenario.7 The desired level of
AoI, θA, is set to 2.

TABLE 3. Greedy IFE-DGCS vs. Optimal IFE-DGCS.

Table 3 presents the effect of the desired level of energy
θE on the average energy outage probability ζE and the
average AoI ζE . It can be found that both greedy and optimal
IFE-DGCS achieve the average AoI below a desired level of
AoI (i.e., 2) regardless of θE . In addition, it can be observed
that the greedy IFE-DGCS can achieve comparable perfor-
mance (i.e., ζE and ζA) to the optimal IFE-DGCS when θE
is set to the appropriate value. Specifically, when θE is 3,
the performance difference between the greedy IFE-DGCS
and optimal IFE-DGCS is below 7%. Note that the optimal
IFE-DGCS has high complexity due to the brute-force search
and thus forthcoming sub-sections consider only the greedy
IFE-DGCS for performance evaluations.

7The number of sectors, NS , is set to 4. Tmax and Emax are set to 4 and
10, respectively.
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FIGURE 4. Effect of pH : (a) Average energy outage probability and
(b) Average AoI.

B. EFFECT OF AVERAGE ENERGY HARVESTING
PROBABILITY pH
Figures 4(a) and (b) show the effect of the average energy
harvesting probability pH on the average energy outage prob-
ability and average AoI, respectively. From Figure 4(a), it is
evident that the average outage probability of all schemes
decreases with the increase in the energy harvesting proba-
bility. This is because a high energy harvesting probability
implies that IoT devices can sufficiently charge their batteries
despite infrequent transmission of the RF energy.Meanwhile,
the average outage probability of IFE-DGCS is maintained at
a low level compared to other schemes except for ENERGY.
This is because IFE-DGCS provides the RF energy to the
sector where the number of IoT devices with lesser energy
than the pre-defined threshold, θE , is the largest. This can
help prevent the depletion of energy from IoT devices because
most of the IoT devices can have sufficient energy lev-
els that are typically larger than the pre-defined threshold.
Note that, because ENERGY provides the RF energy in the

FIGURE 5. Effect of θA: (a) Average energy outage probability and
(b) Average AoI.

same way as IFE-DGCS, its average energy outage proba-
bility is slightly lower than that of IFE-DGCS when pH is
0.1 ∼ 0.2.8 However, ENERGY does not consider the AoI;
thus, its average AoI is always higher than that of IFE-DGCS
(see Figure 4(b)).

Meanwhile, from Figure 4(b), it can be shown that the
average AoI of all schemes decreases as the energy harvesting
probability increases. This is because a higher energy har-
vesting probability implies a smaller probability that the IoT
devices cannot transmit their data due to the energy depletion.

C. EFFECT OF DESIRED LEVEL OF AoI θA
Figures 5(a) and (b) show the effect of the desired level
of AoI on the average energy outage probability and aver-
age AoI, respectively. From Figures 5(a) and (b), it can be

8Both IFE-DGCS and ENERGY check all sectors to select the sector
based on their criterion, which means that their time complexities are the
same with each other.
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FIGURE 6. Effect of the average data generation rate on the average
energy outage probability.

observed that IFE-DGCS can minimize the average energy
outage probability while maintaining the average AoI below a
desired level. This can be explained as follows. In IFE-DGCS,
if there is any sector where the IoT devices are estimated to
have generated data a long time ago (i.e., the IoT devices have
a larger average estimated elapsed time than the desired level,
θA), the IoT gateway attempts to reduce the average AoI.
Specifically, the IoT gateway transmits the polling message
to the sector with the largest number of IoT devices whose
elapsed time is higher than the desired level (see lines 2-4
in Algorithm 1). Based on this operation, the average AoI
does not grow much larger than the desired level. However,
if there is no sector where IoT devices are estimated to have
generated data a long time ago, the IoT gateway attempts to
minimize the average energy outage probability (see lines 5-9
in Algorithm 1).

Because RANDOM and NUMBER do not consider the
desired level of AoI, their average energy outage probability
and average AoI do not change according to θA. In contrast,
even though FRESH selects a sector considering the desired
level of θA, its performance cannot be comparable to that
of IFE-DGCS. This is because FRESH does not consider
the energy level of IoT devices and thus, there is a high
probability of polling energy-depleted IoT devices.

D. EFFECT OF AVERAGE DATA GENERATION RATE λ

The effect of the average data generation rate λ on the aver-
age energy outage probability is shown in Figure 6. From
Figure 6, it can be found that the average energy outage prob-
ability of comparison schemes except ENERGY increases
with the increase in the average of λ. This is because a high
data generation rate implies that the IoT devices consume
energy whenever they receive the polling message.9 In this
situation, their energy can be easily depleted. On the other
hand, because IFE-DGCS and ENERGY transfer the RF
energy to the sector that has several IoT devices with low

9Note that, when no data are generated in IoT devices, they do not need
to transmit their energy even though receiving the polling message.

estimated energy levels, their average energy outage probabil-
ities are maintained at a low level irrespective of the average
data generation rate.

VII. CONCLUSION
In this paper, we propose an information freshness-guaranteed
and energy-efficient data generation control system
(IFE-DGCS). In IFE-DGCS, the IoT gateway with the direc-
tional antenna determines the frequency of data transmission
by selecting the polling sector at periodic decision epochs.
By means of simultaneous wireless information and power
transfer (SWIPT), the IoT gateway can provide RF energy to
the IoT device with polling. To minimize the energy outage
probability while maintaining the age of information (AoI)
below a certain level, we formulate a constrained Markov
decision process (CMDP) and obtain the optimal policy for
the polling sector via linear programming (LP). To resolve
the curse of the dimensionality problem in CMDP, a greedy
IFE-DGCS is developed. The evaluation results demonstrate
that the greedy IFE-DGCS can achieve comparable perfor-
mance to IFE-DGCS with the optimal policy. In addition,
it is found that IFE-DGCS operates adaptively according to
the operating environment (e.g., data occurrence rate and
energy harvesting probability). In our future works, we will
introduce a deep reinforcement learning approach to operate
the proposed system without any information regarding the
environments.
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