
Received August 17, 2020, accepted August 27, 2020, date of publication September 14, 2020, date of current version October 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023594

Multi Scale-Adaptive Super-Resolution Person
Re-Identification Using GAN
MUHAMMAD ADIL1, SAQIB MAMOON1, ALI ZAKIR1, MUHAMMAD ARSLAN MANZOOR2,
AND ZHICHAO LIAN 1
1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2School of Information Science and Technology, East China University of Science and Technology, Shanghai 200237, China

Corresponding author: Zhichao Lian (lzcts@163.com)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant 30919011401 and
Grant 30919011231, in part by the China Postdoctoral Foundation under Grant 2015M581800, in part by the National Key Research and
Development Program of China under Grant 2016YFF0103604, in part by the Visiting Scholar Foundation of Key Laboratory of
Biorheological Science and Technology, Ministry of Education, Chongqing University, under Grant CQKLBST-2018-011, and in part by
the Foundation of Shandong Provincial Key Laboratory of Digital Medicine and Computer Assisted Surgery under
Grant SDKL-DMCAS-2018-04.

ABSTRACT In real-world surveillance systems, the person images captured by the camera network
consists of various low-resolution (LR) images. It creates a resolution mismatching problem when compared
against high-resolution images of a targeted person. It significantly affects the performance of person re-
Identification. This problem is known as Low-Resolution Person re-identification (LR PREID). An efficient
strategy would be to exploit image super-resolution (SR) with person re-identification as a mutual learning
approach. In this paper, we propose a novel methodMSA-SR-PREID to solve this problem. The model takes
low-resolution images on different resolutions and resized them to pre-defined fixed resolution. The design
of the super-resolution network consists of ESRGAN and the de-Noisingmodule to generate super-resolution
images. The SR images are later passed to the re-identification network to learn the unique descriptors to
recognize a person identity. The performance of this model is evaluated on four competitive benchmarks,
MLR-VIPeR, MLR-DukeMTMC-reID, VR-MSMT17, and VR-Market1501. The comparison with similar
state-of-the-art demonstrates the superiority of our model.

INDEX TERMS Person re-identification, low-resolution person re-identification, super-resolution, image
de-noising.

I. INTRODUCTION
Person re-identification (PREID) aims to identify all the
occurrences of the person of interest in the surveillance
network or from different timestamps of a single camera.
It facilitates a wide range of applications varying from camera
surveillance [1] to computational forensics [2].

The problems: pose and viewpoint variations, light inten-
sity and background changes, low-resolution (LR) and scale
variations (SV), and other challenges like partial occlusion
make person re-identification a non-trivial problem. Signifi-
cant efforts have been made to eradicate or minimize these
challenges [3]–[8]. However, in person re-identification,
Low-Resolution (LR) is still considered a major challenge for
large scale surveillance systems.
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Recently, deep learning techniques are being used for
PREID and achieved significant alleviation in performance
on popular benchmarks [9]–[15]. However, regardless of var-
ious LR and SV, most of these approaches are based on the
premise that both query and gallery images are of the same or
sufficiently high resolutions. This assumption may not hold
in real-world re-identification problems as there happen to be
many variations in the resolution of the person images under
surveillance network [16]. These variations occur due to the
natural changes in the distance between person and cameras,
e.g., pedestrian movement relative to the camera. This also
creates resolution inconsistency and significant loss in visual
information. Consequently, standard re-identification models
may fail to identify the multiple instances of the respective
persons, which are undesirable in security and surveillance.

Figure 1 demonstrates low-resolution and cross-resolution
person re-identification. Resolution discrepancy between the
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FIGURE 1. Illustration of low-resolution person images on a different
resolutions, representing the real-world person re-Identification problem.

high-resolution (HR) query images and the Low-resolution
(LR) gallery images or vice versa creates an unaligned
feature distributions that affects the pedestrian matching
performance. For example, a standard PREID method [17]
can experience up to 19.2% Rank-1 performance drop when
applied to cross-resolution PREID [18]. This gives rise to a
more difficult task, which requires the algorithm to match LR
gallery images with HR probe images. It needs addressing
cross-resolution matching because LR surveillance images
contain much less discriminative information, as the image
acquisition process significantly loses the details of the
images [19]. This problem is known as Low-Resolution
Person re-identification (LR-PREID). To cope with this prob-
lem, an adequate strategy is to use an image super-resolution
(SR) method to improve the resolution of LR query images
to minimize the distribution discrepancy with HR gallery
images.

Several methods [16], [18]–[24] have been introduced
to address the LR PREID problem. However, there are
some common drawbacks in these methods: (1) Instead of
trying to recover the misplaced discriminative appearance
information, they perform a transformation of the cross
resolution representation in pre-defined feature space
[20]–[22], [24], [25]. This does not solve the informa-
tion amount disparity issue since the pixel-to-pixel high-
resolution supervision lacks in cross-view pedestrian images.
(2) They focus exclusively on hand-crafted visual features
instead of taking advantage of a deep neural network’s
capability to learn and optimize the discriminative features
automatically [20], [21]. Naturally, image (SR) would pro-
vide an effective way to minimize the dilemma of resolution
discrepancy because of its ability to produce high-frequency
details [26]. (3) Utilization of multi-branch super-resolution
networks to generate high-resolution person images like
CSR-GAN, employed three consecutive GANs unit for image

SR [16], [19]. It makes the overall network complex, requires
more memory and power.

This study addresses the LR person re-identification prob-
lem by employing the image Super-Resolution technique
with the PREID network in a unified framework named
multi-scale adaptive super-resolution person re-Identification
(MSA-SR PREID). We introduce a scale-adaptive module
for resolution mismatching problem by resizing them to
pre-defined fixed resolution. The focus of this research is to
investigate the LR PREID, for that, we consider all the images
as LR images-(varies in the range of width within [8,32).
LR images have mostly blurry and coarse edges, which make
it difficult to extract the low-level features (such as edges,
color, pixel intensity, pixel gradient, and orientation, etc.)
that provide the baseline for high-level semantics features,
especially after performing downsampling operation on the
already low-resolution images.

To enhance the feature extraction capability of the network,
we employed a GAN based enhanced super-resolution gener-
ative adversarial network [27]to recreate HR counterparts of
LR images. This allows us to effectively extract the distinct
visual appearance information. It composes of Residual in
Residual dense block for effective image regeneration. Our
proposed framework utilizes only one super-resolution net-
work as compared to the [16], [19], decreasing the complexity
and computation time. Besides, a de-Noising module is
introduced to remove the noise from re-generated images.
Moreover, to keep the network lightweight, ResNet50 [28]
is employed for feature extraction. Besides, two parame-
ters, Random erasing and Linear Warm-Up, are employed
to enhance the feature extraction capability of ResNet50.
Our model has achieved state-of-the-art results for Rank-1
accuracies on MLR-VIPeR 62.00%, MLR-DUKEMTMC-
REID 79.06%, VR-MSMT17 60.65%, and VR-Market1501
68.26%.

The main contribution of our work is summarized as the
following points:
• 1) The multi-scale-adaptive super-resolution person
re-Identification network (MSA-SR PREID) adequately
addresses the resolution-mismatching problem as it
takes arbitrary input size and resizes it to a pre-defined
resolution using a scale-adaptive module. (Figure-2).

• 2) An enhanced super-resolution generative adversarial
network is utilized for effective image re-generation.
It uses the Residual-in-Residual Dense Block to gen-
erate more realistic and natural images. The relativistic
discriminator network is utilized to enhance the identi-
fication information effectively. The Batch normaliza-
tion layer is removed for stable training and consistent
performance [27]. The perceptual loss is improved by
extracting the feature map before applying the activation
function to avoid the feature sparsity [27]. To support the
in-depth training, the network employs residual scaling-
(scaling down the residuals before being added to the
main path or other residuals) and smaller initialization
strategy.
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FIGURE 2. Resizing images on a fixed resolution. The images are taken
from DukeMTMC-REID.

• 3) The de-Noising module employed to eliminate the
noisy artifacts created byGANdue to the decompressing
nature of the JPEG format images, which are utilized for
evaluation.

• 4) As of its applications, the evaluation of the pro-
posed network is made under different settings with fol-
lowing ablation studies:1) evaluation on MLR datasets,
2) evaluation on VR datasets, 3) evaluation of super-
resolution network (SRNet), 4) evaluation of image de-
noising module and 5) evaluation of re-identification
parameters.

II. RELATED WORK
This section covers a brief overview of the current work of
low-resolution person re-identification and super-resolution.

A. PERSON RE-IDENTIFICATION
Person re-identification has attracted extensive research in
the past decade [29]–[36]. Many existing approaches [35],
[37]–[40] addresses the uncontrolled variables in person re-
identification, such as pose and viewpoint variations, light
intensity, and other difficulties like partial occlusion. For
instance, Liu et al. [41]] developed a pose-transferable net-
work based on the generative adversarial (GAN) frame-
work [42]; it precisely predicts the pose variations.
Zhong et al. [43] addressed the camera-invariant subspace
to cope with the permutations in the theme caused by
multiple cameras. Yang [4] proposed a patch-based unsu-
pervised learning framework that learns discriminative fea-
tures from the image patches, instead of the whole images.
Meng et al. [9] learn the identity labels annotated at the
untrimmed video level.Munjal et al. [6] fused the query infor-
mation into a Siamese network as a guide for global context
information, proposal generation and similarity calculation.
Another research trend is domain adaptation [44], [45] for
PREID [5], [46], [47], where networks trained on the source
domain can have a significant performance drop in the eval-
uation on the target domain [5]. Several methods [15], [34],
[48] addresses background variations by leveraging attention
frameworks [25], [49], [50] to emphasize the discriminative

parts. However, most of the methods, as mentioned earlier,
designed on the assumption that all person images are of
similar or sufficiently high resolutions, which might not be
practical for real-world applications.

B. LOW-RESOLUTION PERSON RE-IDENTIFICATION
(LR PREID)
Recently, various methods [16], [18]–[24], [51] have been
proposed for the LR PREID problem. Jing et al. [20] intro-
duced a semi-coupled low-rank discriminant dictionary learn-
ing hand-crafted method to uncover the relationship between
features of LR and HR images. However, they used the
LR problem images and considered all gallery images as
HR, which is usually the ideal case. In contrast, the real-
world REID environment has various LR gallery images.
Li et al. [21] used the same approach in which they used
heterogeneous class mean discrepancy (HCMD) criterion
for cross-scale image domain alignment to match the LR
problem image against HR gallery images. However, this
approach does not extract discriminative appearance informa-
tion that is lost in the acquisition of images. Jiao et al. [19]
proposed super-resolution and identity joint learning (SING)
to optimize image SR and PREID process simultaneously.
Wang et al. [22] learn a discriminative surface for re-
identifying the persons using feasible and infeasible func-
tions. Instead of recovering the missing discriminative
appearance information of LR images, they transformed mul-
tiple resolution representation to a pre-defined feature space.
Mao et al. [24] proposed two modules: a) foreground-focus
super-resolution (FFSR) model to recover the resolution loss
in LR input images, b) and a resolution-invariant person re-
ID module to extract features. Given their promising results,
it relied on the annotation of the foreground mask to direct
the learning of image recovery for each training image.

Chen et al. [23] proposed resolution adaptation and re-
identification Network (RAIN). They used adversarial loss
and reconstruction loss to reduce the difference between
different resolution deep features by aligning the feature
distributions of HR and LR images. Li et al. [18] proposed
a framework to study both learning resolution-invariant rep-
resentation and exploiting image super-resolution for improv-
ing cross-resolution PREID performance. Huang et al. [51]
developed a degradation invariance learning framework for
real-world PREID. Their proposed network consists of two
stages: a degradation invariance learning to remove real-
world degradations (like low-resolution, weak illumination,
and blurring) by a Degradation Decomposition Generative
Adversarial Network (DDGAN) and a robust identity rep-
resentation learning by a Dual Feature Extraction Network
(DFEN). Zheng Wang proposed cascaded SRGAN [16]
network for LR PREID and utilized the GAN network to
generate HR counterparts of LR images. They used multiple
super-resolution generative adversarial networks (SRGAN)
to generate high-resolution gallery images, i.e., each SRGAN
worked on a specific resolution. It made the overall network
more complex and increase computation time and power.
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FIGURE 3. The overall architecture of the proposed network. It consists of scale adaptive module, SRNet and Re-identification network. The
scale-adaptive module is used to resize the images to a pre-defined resolution. The SRNet takes fixed low-resolution images and re-creates them in the
HR form and passed them to the re-identification network. The upper part of the diagram depicts the training of the network, and the lower part illustrate
the testing of the network. In testing, the generated SR images are directly passed to the de-noising module.

C. SUPER-RESOLUTION ADVANCEMENTS
The extremely challenging task of creating an HR coun-
terpart of its LR image is known as super-resolution (SR).
It has attracted significant attention within the computer
vision community and has a wide range of practical appli-
cations [52]. Recently, Haris et al. [53] proposed a recurrent
framework for super-resolution, where they extracted context
from continuous frames and combines these contexts to pro-
duce recurrent output frames by a back-projection module.
Similarly, Li [54] developed a feedback network for image
super-resolution that employs an iterative up-and-down sam-
pling feedback block with more dense skip connections to
learn better representations. Shamsolmoali et al. [55] uti-
lized the least square function as a discriminant loss func-
tion for stable training and introduced a gradual GAN to
use all the image details. Therefore, the proposed model
can effectively create SR results, even up to large scaling
factors. Xu et al. [56] developed a pipeline to re-generate
realistic training data by simulating the imaging process
and designed a dual CNN to capture the extracted radiance
information, initially in raw images. Zhang et al. [57] intro-
duced local and non-local attention blocks to extract features
that capture the long-range dependencies between pixels.
Dai et al. [58] employed an attention mechanism to capture
long-distance spatial contextual information for single image
super-resolution, which generates a better performance of
PSNR. Several frameworks are developed based on a densely
connected network, residual blocks [52], [59], deep back
projection [60], and dense residual network [61]. Besides,
unsupervised learning and reinforcement learning methods
[62], [63] also have been exploited to solve SR problems.
However, hallucinated details of images that have been pro-
cessed by the SRGAN [52] are often accompanied by over
smooth textures. The ESRGAN [27] has been introduced

to address this problem, which can effectively enhance the
restoration and perception quality of the image by using
Residual-in-Residual Dense Block.

This study addresses the LR-PREID problem and intro-
duces a novel multi-scale-adaptive super-resolution person
re-identification (MSA-SR PREID). As compared to most of
the previous studies, the proposed network recovers the visual
details lost in the image acquisition process. The de-noising
module further refines the visual descriptors, which in turn
directly assist the re-identification network for feature extrac-
tion. Re-identification parameters (Random erasing+ Linear
Warm UP) further enhance the feature extraction capability.
The ablation studies report the effectiveness of the proposed
network. The designed framework achieved the state-of-
the-art results on all four benchmarks.

III. MSA-SR-PREID ARCHITECTURE
The complete illustration of MSA-S-PREID is shown
in Figure-3. It is consists of three parts. First, the person
images of arbitrary resolution are passed to the scale-adaptive
module to resize them to a pre-defined fixed resolution,
as shown in Table-1. Second, the SRNet, comprises of
ESRGAN and de-noising module, is used to re-create the
LR images into HR and removes the de-compressing arti-
facts, respectively. Third, the final HR image is passed to
the re-identification network (REID) to extract and learn
discriminative features.

A. SCALE-ADAPTIVE MODULE
The image height and width is represented by W & H ,
respectively, as shown in Figure-3. In the training phase,
to allow the designed framework to handle images at dif-
ferent resolutions, we embedded the scale-adaptive module.
It is a high-quality convolution based filter named Alias,
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TABLE 1. Statistical analysis of benchmarks.

from IMAGE library. It takes images on different resolu-
tions and resize them on a fixed resolution, which varies
for each dataset. We employed Scale adaptive module for
VR-Market1501, and VR-MSMT17 benchmarks, to resize
them on a single resolution before passing them to the SRNet.

B. SUPER-RESOLUTION NETWORK(SRNet)
SRNet is composed of ESRGAN and the de-Noising module.
It takes the output of the scale-adaptive module and generates
the high-resolution images by a enlarging factor of 2, and 4.
The generator network generates an image sample I z+1 =
Gz(I z). However, before passing it to the final activation
function, it extracts the featuremap to calculate the perceptual
loss. The pixel-wise loss is calculated, and the generated
image is passed to the discriminator network to distinguish
between generated image I z+1 and real image Î z+1. The real
image Î z+1 is fed to the discriminator network during the
training process, which has the same resolution as of the
super-resolution image I z+1. After that, the generator net-
work updates its adversarial loss function and creates another
sample of the same image. This whole process continues until
the discriminator network could not differentiate between real
and generated images. We train the generator function Gz to
estimate the correspondingHR counterpart of Î z+1 for a given
LR input image.

Total loss of SRNet is:

LTotalloss = LGen(LPerceptualLoss + λLRaG + γL1)+ L
Ra
Dis (1)

In equation (1), LRaG represents the adversarial loss of rela-
tivistic generator network, L1 is pixel-wise loss, and λ & γ

are trade-off parameters.

1) PERCEPTUAL LOSS
The perceptual loss works on a feature-level loss to enhance
the perceived quality and texture details of the generated
images [64]. The feature map of the original image Î z+1

and the generated image I z+1 is compared using Euclidean
distance. Following the concept of [27], the feature map
was extracted before applying the final activation function in
the generator network. This approach solved the following
problems:
• In the person re-identification, the illumination variation
exists in most of the benchmarks. The extraction of
feature maps after the activation function further cause
illumination inconsistency, which directly affects the
model performance.

• It provides strong supervision between feature maps in
reconstructing the LR into HR. As most of the person
images are not sufficiently HR, this factor significantly
improves the model re-generation capability.

Feature map αij obtained by after jth-convolution layer and
before the ith max-pooing layer. The perceptual loss is
calculated as the Euclidean distance between the feature rep-
resentations of a super-resolution image Gz(I z) and its cor-
responding real image Î z+1. Euclidean computation between
feature maps is given in equation (2)

LPerceploss =
Wi,j∑
x=1

Hi,j∑
y=1

(
αij

(
Î z+1

)
xy
− αij

(
Gz
(
I z
))
xy

)2

(2)

Rather than encouraging the pixels of the output image I z+1 to
exactly match the pixels of the target image Î z+1, perceptual
loss encourages them to have similar feature representations
as computed by the loss network.

2) PIXEL-WISE LOSS
The network utilizes the pixel-wise loss to improve the
pixel-level accuracy of the generated image. It forces the HR
image I z+1 to be similar to the ground truth Î z+1 on the pixel
values. The L1 loss is employed for better performance and
convergence as compared to the L2 loss that often results in
oversmooth results.

L1 =
W∑
x

H∑
y

∥∥∥∥Gz (I z)xy − (Î z+1)xy
∥∥∥∥
1

(3)

From equation (3), the L1-Norm distance between SR image
Gz(I z)xy and ground truth image(Î z+1)xy is calculated.

3) RELATIVISTIC GAN LOSSES
Most of the preliminary studies used standard GAN in image
SR, however, we employ a realistic discriminatory loss in
our SR network to ensure the generated HR images are
more natural and realistic than gallery images. The standard
discriminator Dst in generative adversarial network aims to
classify the images, according to the equation (4):

Dst = σ (fd (Î z+1)→ 1

Dst = σ (fd
(
I z
)
))→ 0 (4)

Equation (4), represents the working of standard GAN. Here,
Dst is the output of the discriminator to classify whether the
input images are real or generated, fd (.) is the discriminator
feature vector, and σ represents the sigmoid function. Here,
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adversarial loss works as a binary classifier to check either
it is real or fake. We employ the relativistic GAN Dst [65],
which computes the probability to differentiate between the
actual Î z+1 and the generated data Gz(I z) by computing the
distance:

DRa(Î z+1,Gz
(
I z
)
) (5)

Relativistic GAN (RGAN) outputs the person images with
sharp edges and contains more visual and frequency details
as compared with standard GAN. This is explained in the
equation (6):

DRa(Real,Fake) = C(Real)− E(C(Fake))→ 1

Calculating how much more realistic than the fake one

DRa (Fake,Real) = C (Fake)− E (C (Real))→ 0

Calculating how much less realistic than the real one (6)

Here E (.) is the average of all (Fake or Real) data in
the mini-batch and fd (.) represents the discriminator output
value. This slight improvement makes the model more effec-
tive than the classic discriminator network.
Equation 7 represents the discriminator network loss:

LRaG = −EÎ z+1
[
log

(
DRa

(
Î z+1,Gz

(
I z
)))]

−EGz(I z)
[
log

(
1− DRa

(
Gz
(
I z
)
, Î z+1

))]
(7)

Contrary to it, Equation 8 represents the adversarial loss for
the relativistic generative network.

LRaG = −EÎ z+1
[
log

(
1− DRa

(
Î z+1,Gz

(
I z
)))]

−EGz(I z)
[
log

(
DRa

(
Gz
(
I z
)
, Î z+1

))]
(8)

The network is trained in a mutual training strategy for both
real image Î z+1 and generated images Gz(I z), by simulta-
neously reducing the loss of the discriminator and gener-
ator networks. In the traditional GAN, when the gradient
of the discriminator reaches the optimal value, i.e.,
(1−DÎ z+1 )→ 0 is optimal; it stops learning from real images
Î z+1 and focuses mostly on the generated Gz(I z) images.
At this stage, traditional GAN is not learning how to generate
images more realistic. In contrast, RGAN learns from both as
its gradients depend on both Î z+1 and Gz(I z).

C. de-Noising (deN) IN GAN
The presence of noise disrupt not only the human perception
of images but also the efficiency of networks. Therefore,
to have well-performing de-noising strategies at our disposal
is crucial to make sure the optimal functionality of image pro-
cessing pipelines. The utilization of the Joint Photographic
Group (.jpg) format to train the GAN network creates noisy
artifacts due to the decompressing nature of.JPG images.
To solve this problem, we incorporate a non-local means
de-noising [66] module. It is based on the principle of replac-
ing a pixel color with an average of identical pixel colors.
It takes a noisy input image and selects a pixel in the noise;

takes the search patch around the selected pixel and search
for similar patches in the image; calculates the Euclidean
distance and computes the average of all the Euclidean dis-
tances. The selected noisy pixel is finally replaced by the
resultant pixel, which enhances the overall performance of
the network. We can also balance the perceptual quality
and fidelity by controlling the de-Noising hyper-parameters
without re-training the model. Removal of unwanted artifacts
assists the re-identification model in extracting information.
The ablation studies suggests that it is effective to eliminate
unwanted decompressing factors.

D. PERSON RE-IDENTIFICATION NETWORK
For REID, we employ the Resnet-50 [28] with dropout
and Kaiming weights initialization strategy. The pre-trained
weights on Image-Net are used as an initialization.
We employ two hyper-parameters: a) random erasing along
with the standard augmentation techniques and b) linear
warm-up to improve the generalization of the PREID
network. They are described below.

1) RANDOM ERASING
Random erasing introduced by Zhong et al. [67] is analo-
gous to dropout in the case of input data space embedded
into the network architecture. It is designed, specifically, for
image recognition challenges. It is a promising technique and
assures that a network pays attention to the entire image.
It works on the random selection of a patch in an image and
replaces it with a mean of 0s to 255s pixel values or random
values. We employ image and object aware random erasing
that focuses on both the image background and the object (Or
ground truth of the object). Figure-4

FIGURE 4. The illustration of image and object aware random erasing.
It works by selecting a random patch from both the Image and bounding
box of the object to replace it with a mean of 0s to 255s pixel values or
random values.

By replacing specific patches, it forces the model to learn
other characteristics of the image.

2) LINEAR WARM UP
Linear Warm-Up uses the linear scaling rule where the learn-
ing rate is increased by ‘k’ times (the value of ‘k’ depends
upon the batch size) [68]. It has two strategies: constant
warm-up and gradual warm-up. The gradual warm-up is
applied in the proposed model because constant warm-up
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causes a spike in training when the learning rate changes
abruptly. It starts with a small learning rate and then gradually
increases by a constant for each epoch until it reaches k times.

The final HR image goes directly to the re-identification
network, which extracts the features to use for person
re-identification.

IV. EXPERIMENTS
This section aims to explain the experimental setup, imple-
mentation settings, results, and evaluation details.

A. EXPERIMENTAL SETUP
We evaluate the proposed method on four large-scale per-
son re-identification benchmarks: VIPeR,DukeMTMC-reID,
VR-MSMT17, and VR-Market1501. The results are com-
pared with the previous state of the art on all four bench-
marks. The Table-1 represents the statistical analysis of the
benchmarks.

VIPeR (View Point Invariant Pedestrian recognition)
[69] dataset was introduced in 2007, one of the most chal-
lenging datasets due to one to one corresponding. Following
SING [19], every image is down-sampled with a ratio r ∈ 1

4 ,
such that (H4 ×

W
4 × 3), as shown in Figure-5. MLR-VIPeR

has 316 identities for training and testing.

FIGURE 5. Example image pairs from two datasets. Each column shows
two images of the same identity with fixed resolutions and different
scales, where images in the bottom row are LR.

DukeMTMC-REID (DukeMulti-TargetMulti-Camera
REID) [70] is a subset of the DukeMTMC dataset for image-
base re-identification in the format of Market1501 dataset.
It contains 16, 522 training images of 702 identities, 2, 228
query images of the other 702 identities and 17, 661 gallery
images (702 ID + 408 distractor IDs).

The transformation of DukeMTMC-ReID into MLR is
carried out the same way as for the VIPeR dataset.

MSMT17 [46] is developed by the 15 cameras network
and contains many real environment-challenging factors.
It is not designed for the LR-PREID problem; therefore,
it is reconstructed into VR-MSMT17 (Various Resolution
MSMT17) by [24]. Images are downsampled to make the
width within the range of [32, 128), consisting of 96 different
resolutions. Original settings of 1,041 and 3,060 for training
and testing, respectively on VR-MSMT17 are kept.

Market1501 [71] is collected in front of a supermarket at
Tsinghua University. Similarly, as MSMT17, Market1501 is
reconstructed into VR- Market1501 (Various Resolution
Market1501) by [24]. All images are down-sampled to make

the width within the range of [8, 32), consisting of 24 dif-
ferent resolutions separately. We kept the original settings
of 751 and 710 identities for training and testing, respectively.

Compared with existing datasets, VR-Market1501 and
VR-MSMT17 are considerably more substantial in size and
are more challenging due to the extensive range of resolution
variance in both query and gallery images.

B. IMPLEMENTATION DETAILS
We employed a frequent performance metrics, Cumulative
Matching Characteristic (CMC top-K) for evaluation. CMC
addresses the probability of reacquiring a minimum one cor-
rect identity within the top-K predictions (CMC top-1, top-5
and top-10 are adopted here). The Standard training-testing
ratio is used and is summarized in Table-1.

The training process includes three steps.
1− The scale adaptive module is used to transform the

images on a pre-defined fixed resolutions.
2− The resized images are then downsampled by using

Matlab bi-cubic kernel function to obtain the LR images.
Super-Resolution network is trained with the LR images with
a mini-batch size eight. The training of the SR network is
divided into two steps. Firstly, the network is trained with the
L1− loss to improve the PSNR value. The learning rate (lr)
is initialized with 2× 10−4 and lr is set to reduce by factor of
2 after every 1× 104 iterations. Secondly, the PSNR oriented
model is initialized for the generator network. Total loss of
GAN is calculated with the function:

LTotalLoss = LGen
(
LPercepLoss + λLRaG + γL1

)
+ LRaDis (9)

where λ = 5 × 10−3 & γ = 1 × 10−2. The learning rate
is set to 1× 10−4, and reduces at every 10K , 20K , 30K , and
40K iterations with a total number of 50K . Training is carried
out on RGB channels. Augmentation is performed on training
dataset with random horizontal flip and 90−degree rotation.

3− A pre-trained re-identification network on ImageNet
is trained with HR images obtained from super-resolution
network. Training is conducted on RTX2080Ti with a total
time of 18 hours. The MSA-SR PREID network is developed
on PyTorch framework.

V. EVALUATION OF MSA-SR-PREID
This section consists of two parts. In first, we show the
effectiveness of SRNet in the image generation task. The sec-
ond part deals with the evaluation of the Re-Identification
network on four competitive benchmarks.

A. SRNet EVALUATION
In this section, the aim is to demonstrate the effective-
ness of SRNet in high-resolution image generation tasks.
Figure-6 illustrates low-resolution images (LR), HR images
(HR) generated by SRNet, and HR images with de-Noising
(HR+deN). The HR images generated by SRNet, contains
unwanted decompressing artifacts, which can be observed in
the Figure-6. By integrating the de-Noisingmodule, the Super

VOLUME 8, 2020 177357



M. Adil et al.: MSA-SR PREID Using GAN

FIGURE 6. Super-resolution results of our modified version of ESRGAN. From left to right, low-resolution image (LR),
high-resolution image (HR), and high-resolution image after passing through image de-Noising module (HR+deN).

Resolution network generates more adequate images, and it
eliminates those artifacts and provides better visibility for fea-
ture extraction. The HR images generated by SRNet preserve
information of a person’s body, and discriminate background
environment from persons with prominent edges.

B. PERSON RE-IDENTIFICATION EVALUATION
1) COMPARE METHODS
We compare the findings of our network with previous
state-of-the-art LR-PREID methods, which includes,
SDF [22], DAMA [76], JUDEA [21], SLDL [20],
SING [19], CSR-GAN [16], RAIN [24], CR-GAN [73],
Densenet121 [77], SE-resnet50 [72], DSPDL [78] and meth-
ods developed for standard PREID, such as FDGAN [17],
CamStyle [43], DSMIN [75], and PL-Net [74]. For standard
person re-identification, the training set contains HR images
for each identity.

2) RESULTS
The experiments are performed on four benchmarks,
MLR-VIPeR, MLR-Duke-MTMC-reID, VR-MSMT17, and
VR-Market1501. The quantitative results of MLR-VIPeR
and MLR-Duke are illustrated in Table-2. Our network
yields Rank-1 accuracy of 62.00% and Rank-5 accuracy
of 74.48% on MLR-VIPeR. The accuracy improvement is
14% and 2.08% than the PL-NET [74] in Rank-1 and Rank-5,
respectively. The increase in the performance is 5.36% in
Rank 1, as compared to PL-Net+LOMO [74]. However,
PL-Net+LOMO [74] performed better in Rank-5, as it
employs LOMO, which is a method based on hand-crafted
feature extraction machine learning approach. As the VIPeR
dataset consists of fewer training samples for each iden-
tity, it is challenging to learn discriminative features,

TABLE 2. The experimental results of the proposed network on
MLR-VIPeR and MLR-Duke.

especially when it comes to end-to-end training of deep neu-
ral networks from scratch. For MLR-Duke, MSA-SR-PREID
achieves state-of-the-art results i.e., 79.62% Rank-1, and
90.03% Rank-5 accuracy. In comparison with CR-GAN [73],
improvement in the results are 1.86%, and 1.9%, on
Rank-1 and Rank-5, respectively.

On VR-MSMT17 and VR-Market1501, the experimen-
tal results and comparison are summarized in Table-3.
We adopted the standard settings of [24] for experimen-
tation. The experiments are performed with three different
configurations settings on both datasets. First, the experi-
ment is conducted without re-creating HR images i.e., with-
out SRNet. The PREID network is trained on LR images.
On VRMSMT17, the network achieves 52.85% at Rank-1
and 68.91% at Rank-5, outperform the [19], [72], [77],
and [16]. On VR-Market1501, it yields 60.68% at Rank-1,
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TABLE 3. The experimental results on VR-Market1501 and
VR-MSMT17 benchmarks.

79.83% at Rank-5, better [16], [19], [72], [77], and RIPR-
ResNet50 [24]. Second, the LR images are passed to the
SRNet to recreate them in HR with a downsampling factor of
r ∈ 1

4 . In comparison with [16], [19], [72], [74], the proposed
network achieves 8.9%, 6.6%, 7.3% and 0.2% improvement
at Rank-1 on VR-Market1501, respectively. The model out-
performed the CSR-GAN with 2.8%, SING by 2.68%, and
[74] by 2.48% on Rank-1 on VR-MSMT17. Third, to further
elaborate the effectiveness of MSA-SR-PREID, the exper-
iments using downsampling factor r ∈ 1

2 are conducted.
MSA-SR-PREID yield state of the art results on both bench-
marks. It surpasses the previous state of the art [74] by
5.15% at Rank 1, 2.8% at Rank 5, on VR-MSMT17. When
trained onVR-Market1501, 1.36%, and 1.01% increase in the
performance is reported on Rank-1 and Rank-5, respectively.

The proposed framework achieves the state-of-the-art
results in the meantime utilizing less number of parameters
as compared to the CSR-GAN [16]. Our designed approach
is cost-effective, lightweight, yet deep architecture main-
tains the optimal network depth. Table 4 reports the num-
ber of parameters comparison against CSR-GAN, a super-
resolution based LR-PREID approach.

TABLE 4. Comparisons of parameter numbers.

VI. ABLATION STUDIES
This section analyzes the benefit of three major hyper-
parameters tested during extensive experimentation.
Moreover, experiments are also conducted to evaluate the
performance of SRNet and losses used in the network.

A. EFFECTIVENESS OF SRNet IN PREID
The experimentation process is carried out to quantify the
capability of SRNet, against nearest and Bi-cubic interpo-
lation functions. Nearest and bi-cubic interpolation function
is used for upsampling the images. The PREID network
is trained on the upsample images. Table-5 reports the

re-identification results on MLR-VIPeR. The nearest inter-
polation works on the principle of translating the nearby
pixel values as compared to the bicubic interpolation, which
works on averaging the four translated pixel values for each
output pixel value. Both interpolation functions are not an
optimal approach for upsampling the LR images as it pro-
duces the blurry images and causes the jaggies effect. The
SRNet utilizes the advanced architecture for re-generating the
High-resolution images with better perceptual details, sharp
edges, and contains more spatial and context information.
This, in turn, assists the re-identification network to extract
the more robust and distinctive identity features.

B. CHOICE OF LOSSES IN SRNet
The experiments are performed to show the importance of
Pixel Wise loss and Perceptual Loss in SRNet. Table 7
summarizes the evaluation results with Perceptual loss (PR
Loss), Pixel Wise loss (PW Loss), and both PWLoss + PR
Loss. Note that the experimental results mentioned above
are carried with the same settings of adversarial loss and
PREID network. In PR Loss, perceptual loss and GAN loss
are used with all other hyperparameters, achieves 61.60%
at Rank-1, which is 0.40% performance drop. In PWLoss,
pixel-wise loss and GAN loss are employed with all other
hyperparameters, achieves 62.08% at Rank-l. Although the
Rank-1 performance is improved by 0.08%, the proposed
framework exhibits strong generalization capability by the
incorporation of both losses. It can be seen with a 3.23%
enhancement in Rank-5.

C. CONTRIBUTION OF IMAGE DE-NOISING
The experiments are conducted with and without de-Noising
module on MLR-VIPeR and MLR-Duke. As reported
in Table-6, network reports the boost in performance with DN
module in all ranks on both benchmarks, as Rank-1 accuracy
ofMLR-VIPeR increased from 59.80% to 62.00%. Similarly,
the results enhancement can also be observed on MLR-Duke
proves the importance of the image de-Noising module.

D. CONTRIBUTION OF PREID PARAMETERS
Initially, experiments were performed with the standard
baseline model. Table-8 reports the Rank-1 results of
MLR-VIPeR and MLR-Duke. First, we show the effect of
random erasing (RE) by adding it to the baseline model.
As shown in Table-8, the addition of random erasing
improves the results over baseline on both benchmarks.
It demonstrates that random-erasing is an efficient way to
improve the discrimination capability of the target domain.
Second, the experiment is performed with the addition of lin-
ear warm-up (WU) in the baseline. The results improvements
on both benchmarks can be observed in the Table-8. Finally,
the best performance is achieved by themodel on the incorpo-
ration of both hyper-parameters.i.e. 5%, 3.82% improvement
to the baseline model can be observed on Rank 1 when tested
on MLR-VIPeR and MLR-Duke, respectively. It exhibits the
complimentary benefit of these two components.
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TABLE 5. SRNet evaluation against nearest and bi-cubic interpolation.

TABLE 6. Evaluation of with and without the utilization of the de-noising module.

TABLE 7. The contribution of pixel wise loss (PWLoss) and perceptual
loss (PRLoss).

TABLE 8. Contribution analysis of re-identification network
hyperparameters.

VII. CONCLUSION
In this paper, we have proposed multi-scale-adaptive
super-resolution person re-identification framework, intend-
ing to address the LR-PREID. We have introduced a
scale-adaptive module to deal with the resolutions variations
problem and a de-Noising module to solve the noising effect
in the image generation process by GAN during the utiliza-
tion of.JPG format images. We have shown that our model
can generate more realistic and natural images and able to
extracts the deep features to use for person re-identification.
Our proposed method outperformed the previous state of the
art LR-PREID methods by a large margin.
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