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ABSTRACT The end-to-end speech recognition technology solves the problem that each component is
independent and models cannot be jointly optimized in the traditional speech recognition model. It incor-
porates such components as the acoustic model, language model, and decoding unit of the hybrid model
into a single neural network, that can avoid the inherent defects of multiple modules and greatly reduces
the complexity of the speech recognition model. In this research, an Amdo-Tibetan speech recognition
system is constructed based on Listen, Attend and Spell (LAS) model by the end-to-end speech recognition
technology. It can realize the direct conversion from Amdo-Tibetan speech sequence to the corresponding
character sequence and greatly reduces the difficulty of building the Amdo-Tibetan speech recognition
model. To further improve the performance of the proposed system, the following improvements have
been made: firstly, the Multi-Head Attention mechanism is introduced to improve the alignment accuracy
between state vectors of decoder and encoder; secondly, the label smoothing technique is adopted to solve
the problem of over-fitting; thirdly, an N-gram language model is combined with the LAS model to increase
the accuracy of speech recognition and the maximum mutual information (MMI) criterion is employed for
discriminative training; and finally, transfer learning is utilized to overcome the problem of insufficient
training data. Experimental results show that the proposed model can significantly enhance the performance
of Amdo-Tibetan speech recognition.

INDEX TERMS End-to-end, LAS model, transfer learning, low resource language speech recognition,
Amdo-Tibetan.

I. INTRODUCTION
The era of artificial neural networks research has ushered
since American neurophysiologist Warren McCulloch and
mathematician Walter Pitts presented the concept of artificial
neural network and its mathematical model in their joint
work in 1943. After decades of development, it has been suc-
cessfully applied to pattern recognition, automatic control,
signal processing, artificial intelligence, and other research
fields [1]–[4].

With the wide application of artificial neural networks
in Automatic Speech Recognition (ASR), Deep Neural
Networks-Hidden Markov Model (DNN-HMM) has become
a typical model in ASR [5], [6]. It significantly improves
the performance of the ASR system, but its training process
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relies heavily on the initial frame level label obtained by the
traditional Gaussian Mixture Model-Hidden Markov Model
(GMM-HMM). This leads to additional training steps [7].
Furthermore, DNN-HMM requires other resources such as
pronunciation dictionary and speech context dependent tree
during the decoding process. It is difficult to obtain these
resources [8], [9], especially for low-resource languages.
Therefore, it is not easy, for Tibetan, to construct a speech
recognition system based on DNN-HMM [10].

The emergence of end-to-end technology simplifies the
construction process of speech recognition system and
reduces the complexity of speech recognition model by
incorporating such components as acoustic model, language
model, and decoding unit of the hybrid model into a single
neural network [11]. In recent years, great progresses have
been achieved in end-to-end speech recognition. In 2015,
Baidu developed an end-to-end speech recognition system
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named Deep-Speech2 which can recognize Chinese and
English speech simultaneously. In 2017, Google developed
an end-to-end architecture based on the LAS model with
a 5.6% word error rate (WER). In 2018, Facebook devel-
oped an end-to-end speech recognition system based on
Convolutional Neural Networks (CNN). ItsWERhas reduced
to 5% and the speed of training has also been improved
effectively [12]–[14].

The successful application of end-to-end technology in
rich-resource language speech recognition has led to its
application in Tibetan speech recognition. Wang et al. [15]
implement an end-to-end Tibetan speech recognition system
based on Connectionist Temporal Classification (CTC). They
combine existing linguistic knowledge with the end-to-end
acoustic model, and it greatly improves the discrimination
ability and robustness of acoustic models. Huang et al. [16]
apply the Recurrent Neural Network (RNN) and CTC in
the Tibetan acoustic modeling, and they obtain higher train-
ing speed and decoding efficiency in maintaining the same
recognition performance. Zhao et al. [17] establish a Tibetan
multi-task recognition framework based on WaveNet-CTC.
It identifies Tibetan speech recognition, speaker recognition,
and dialect recognition simultaneously in an end-to-end net-
work and achieves better performance than the task-specific
model.

Tibetan speech recognition research is different from that
of Chinese or English. Both Chinese and English have their
own standard pronunciation, i.e. Mandarin and Received
Standard English respectively. However, for Tibetan, there
is no standard pronunciation. It has three major dialects,
namely Ü-Tsang, Kham, and Amdo. The three dialects are
unified in their writing, but their pronunciation are differ
greatly [18]–[20]. Each dialect has roughly the same num-
ber of speakers and the area of geographical distribution is
roughly equal. Therefore, Tibetan speech recognition must
be specific to one of the three dialects. However, most of
the academic reports mentioned above mainly focusing on
the speech recognition of the Ü-Tsang dialect and few reports
focus on the other two dialects. More seriously, the other two
dialects have fewer research achievements in phonetics and
there is no professional speech sample database available.

This article takes the Tibetan Amdo dialect, abbreviated
as Amdo-Tibetan hereafter, as the research object and mainly
focuses on the Sequence to Sequence (Seq2Seq) model based
on the attention mechanism. After analyzing the pronunci-
ation characteristics and determining the modeling unit of
the Amdo-Tibetan, an efficient end-to-end speech recogni-
tion system is proposed based on the Listen, Attend and
Spell (LAS) model. It can directly convert from a speech
sequence to the corresponding character sequence, and its
training process is much more efficient than the traditional
model. In this study, various methods are employed to
optimize the performance of the LAS model. For exam-
ple, the Multi-Head Attention mechanism is introduced to
improve the alignment accuracy between state vectors of
decoder and encoder, the label smoothing and discriminative

training technique is adopted to optimize the training process
of the model, an N-gram language model is combined with
the LAS model to increase the accuracy of speech recogni-
tion, and transfer learning is utilized to overcome the problem
of insufficient training data. The proposed model is verified
on the Amdo-Tibetan corpus recorded by our laboratory.
Experimental results show that the end-to-end model pro-
posed in this work can significantly improve the performance
of Amdo-Tibetan speech recognition.

The rest of the paper is organized as follows. Section II
introduces the pronunciation characteristics and modeling
units of Amdo-Tibetan. Section III introduces the LASmodel
and its optimization. Section IV describes the transfer learn-
ing in the Amdo-Tibetan speech recognition system. The
experimental setups and results are described in section V.
Finally, conclusions are made in section VI.

II. PRONUNCIATION CHARACTERISTICS AND MODELING
UNIT OF TIBETAN
A. CHARACTERISTICS OF TIBETAN PRONUNCIATION
Language and phonetics are closely related. Therefore, it is
necessary to introduce briefly Tibetan grammar such as the
rules for the formation of words and the structural relations
between words and sentences. These are the cornerstone and
prerequisite for the study of Tibetan phonetics.

In Tibetan alphabet, there are 30 consonants and
4 vowels [21]. The 30 consonants are

, and the 4 vowels are .
Consonants, or be joined together with other consonants
and/or vowels, usually form a word either horizontally or
vertically. A Tibetan word is also called a syllable. Tibetan
grammar prescribes a set of strict rules for letter stitching,
so as to form Tibetan syllable of different lengths and forms.
For example, a syllable may consist of a single consonant,
a consonant and a vowel, or several consonants and a vowel.
In each syllable, there is a basic consonant, called root conso-
nant; other consonant would be prefix, superscript, subscript,
suffix, or farther suffix, according to their relative position
to the root consonant. There is a separator ‘‘·’’ between any
two syllables. A vertical terminator ‘‘ ’’ or ‘‘ ’’ indicates the
end of a sentence [22], [23]. The relationship between letters,
syllables and sentences in Tibetan is shown in Fig. 1.

FIGURE 1. Examples of Tibetan letters, syllables, and sentence.

The pronunciation unit of Tibetan is a syllable, and the
pronunciation of each syllable is determined by the phonetic
alphabet of the syllable [24].
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B. TIBETAN MODELING UNIT
For the Tibetan speech recognition, selection of the modeling
unit is one of the most important problems, and different
modeling units have different requirements for the size of
training data. In previous studies of Chinese and English
speech recognition, researchers have considered modeling
units of different granularity such as word, syllables, Initial/
Final, phoneme, etc. The greater the granularity, the better the
accuracy will be. Correspondingly, the training process will
be more difficult, and more training corpus will be needed.

The modeling units selected for each language are dif-
ferent according to their pronunciation characteristics. For
example, Chinese is a monosyllabic language and syllables
are usually selected as the modeling unit; English is a poly-
syllabic language and phonemes are often used as modeling
units [25], [26]. For Tibetan speech recognition, there is no
authoritative conclusion on the granularity of the modeling
unit. Monosyllable is not a good choice if there is no adequate
training corpus, especially for low-resource language such
as Tibetan. Therefore, this article selects phoneme as the
modeling units of Amdo-Tibetan speech recognition system.

III. MODEL AND OPTIMIZATION
A. LISTEN, ATTEND AND SPELL MODEL
The LAS model was firstly proposed by William Chan et al.
in 2016 [27]. It is a neural networks speech recognizer that
transcribes the sequence of speech features directly into the
character sequence without acoustic model such as Hidden
Markov Models (HMMs) or other components of traditional
speech recognizers. The LAS model is a Seq2Seq model
based on the attention mechanism. Its goal is to maximize
the conditional probability of the output character sequence
under the given conditions for speech inputs [28], [29].
The model is trained directly with the input speech feature
sequence and its corresponding character sequence. Label
alignment information is not required during training. In the
inference stage, the probability of the output sequence calcu-
lated by the chain rule of probability is defined as

P(y|x) =
∏
i

P(yi|x, y<i), . (1)

where x = (x1, x2, · · · , xm) represents the filter bank spectra
features of input sequence while y = (y1, y2, · · · , yn) repre-
sents the output sequence of characters.

The LAS model consists of Listener and Speller. The
Listener is a typical encoder structure, whose key operation
is ‘Listen’ and its function is to convert the original signal
x into a high level representation h = (h1, h2, · · · , hu). The
operation is defined as

h = Listen (x, θLis) , (2)

where θLis denotes the parameters of the Listener.
The Listener consists of a pyramid bidirectional long short-

term memory (pBLSTM) networks, as shown in Fig. 2.
In each successive stacked pBLSTM layer, the time resolution
is reduced by a factor of 2 [30]. This structure is very effective

FIGURE 2. Schematic diagram of listener module.

in speech recognition. Speech is a continuous signal, and the
speech signals that input to the model may be hundreds or
thousands of frames at a time. Meanwhile, the difference
between the adjacent frames is not very obvious because
of the overlap. Therefore, this structure will not affect the
accuracy of speech signal encoding, and subsequent attention
models may also extract relevant information from a smaller
number of times steps. In addition, it reduces the calculation
complexity and accelerates the convergence of the model.
The output of pBLSTM at the i-th step, from the j-th layer,
is computed as

hji = pBLSTM
(
hji−1,

[
hj−12i , h

j−1
2i+1

])
. (3)

The Speller is a decoder network based on attention
mechanism. During the decoding process, the Speller pre-
dicts the subsequent graphemes based on the probability of
all graphemes obtained previously, i.e. P(yi|x, yi−1, · · · , y1).
The Key operation of Speller is to decode the output of
the Listener into a sequence of characters. The operation is
defined as

P(y|x) = Speller(h; θSpl), (4)

where θSpl denotes the parameters of the Speller, which con-
sists of the parameters of attention mechanism and decoder.
Specifically, at each step, the attention mechanism generates
attention vector according to thematching degree between the
state vector of decoder and encoder output at first; then, based
on the state vector of decoder and attention vector, the Speller
predicts the next character.

The Listener and the Speller can be trained jointly and its
objective function is defined as

max
θ

∑
i

logP
(
yi|x, y∗<i; θ

)
, (5)

where θ denotes the parameters of the LAS model, y∗<i is the
ground truth of the previous characters. It should be noted that
the objective function is the maximum logarithmic likelihood
estimation.
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B. DECODING STRATEGY
The decoding process of the LAS model aims at finding the
most possible character sequence for a given acoustic input;
the operation is defined as

ŷ = argmax log
y

P(y|x). (6)

The decoding process of the LAS model, which is based
on output, is different from that of weighted finite-state
transducer (WFST), which is based on the frames [31]–[33].
When the Speller starts decoding, the first output token is
<sos>, which means the beginning of the sentence. When
the output encounters the token<eos>, it indicates the end of
decoding. The decoding process is performed with the beam
search strategy [34]. In other words, following each output
step, the Speller only keeps the top N paths with the highest
probability among all decoding paths. It is noted that N is an
adjustable parameter, and the N paths with the highest scores
are called the N -best list.
In the process of decoding, the beam search strategy con-

trols the convergence speed of the model well. Compared
with the greedy search, it increases the diversity of the gener-
ated sequence to a certain degree and prevents the error in one
step of decoding process from continuing in the subsequent
steps. However, the similarity between the sequences gener-
ated by the beam search strategy is very high. Moreover, with
the increase of beam size, the memory occupancy rate will
increase, and the sequence generation speed will slow down.
Therefore, the determination of beam size is the key issue for
the beam search strategy.

C. MULTI-HEAD ATTENTION MECHANISM
The Multi-Head Attention (MHA), first proposed by Google
in 2017, achieves ideal effect in machine translation [35].
The essence of the conventional attention mechanism is a
mapping function of query and key-value pairs. The output
of function is the weighted sum of the value vectors, where
the weight is calculated by the similarity between the query
and the corresponding key vectors, which is expressed as

Attention(Q,K ,V ) = F(Q,K)V , (7)

where Q denotes a query vector, K and V denotes a set of
key-value pairs.

In the MHA mechanism, the query vector and a set of
key-value pairs are linearly mapped multiple times respec-
tively [36], [37]. Each mapping can generate a different atten-
tion distribution, and its results are calculated by the Scaled
Dot-Product Attention mechanism [35]. All output vectors
of the Scaled Dot-Product Attention mechanism are spliced,
and the results are linearly mapped again. The result of the
mapping is the output vector of the Multi-Head Attention
mechanism [35]. The Schematic diagram of the computa-
tional process is shown in Fig. 3.

The MHA extends the traditional attention mechanism to
have multiple heads, so that information extraction can be
carried out in different subspaces of hidden representation.

FIGURE 3. Mechanism of Multi-Head Attention.

Considering the corresponding coefficients of encoding
results and decoding states from a multi-dimensional per-
spective, the results are more accurate and representative.
Therefore, theMulti-Head Attentionmechanism can improve
the recognition performance of the model.

D. LABEL SMOOTHING REGULARIZATION
In the classification problem, the label of a sample is usually
encoded with one-hot format. More specially, N categories
are encoded using n-bit state registers. Each category has
its own register bit and only one bit is valid at each time.
The labels with one-hot format give the probability distri-
bution of the real samples, and it is very convenient for
us to calculate the cross-entropy. However, some problems
will be introduced when the model prediction probability is
used to fit the real probability of one-hot format. For exam-
ple, it leads models to over-believing prediction results and
reduces the generalization ability. The label smoothing tech-
nique is adopted to solve such problems. Specifically, a fixed
probability distribution, independent of the input sequence,
is introduced to smooth the real probability. The operation is
expressed as

Q′(y|x) = (1− e) · Q(y|x)+ e · U (k), (8)

whereQ(y|x) denotes the actual probability distribution of the
sample labels, e is a smoothing factor, and U (k) denotes a
fixed and known probability distribution. A new distribution
Q′(y|x) is formed by mixing the real distribution Q(y|x) and
the fixed distribution U (k) according to the weight of 1 − e
and e. This operation is equivalent to adding noise to the
actual distribution of sample labels. In other words, when the
label is 1, we no longer treat 1 as a training objective but
replace it with a number closer to 1. The same is true when
the label is 0. Using the label smoothing technology to train
the model can alleviate the problem of over-fitting caused by
one-hot encoding and improve the generalization ability of
the model [38].
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In the experimental process of this article, the LAS model
adopts the cross-entropy as the objective function. Its opti-
mization goal is to make the predicted probability distribution
approaching the real probability distribution as much as pos-
sible. In this case, the cross-entropy optimization makes the
model over-focused on the category with larger probability,
the small probability samples are gradually ignored by the
model. Therefore, a certain degree of deviation is generated
and the generalization ability of the model is reduced. The
Amdo-Tibetan is a low-resource language, and the training
data is inadequate. This is more likely lead to over-fitting.
Therefore, the label smoothing technique is introduced in the
training process of the LAS model.

E. EXTERNAL LANGUAGE MODEL
The Speller can learn the language information from training
data; however, the amount of training data is insufficient
for the training of the language model. Fortunately, combin-
ing the LAS model with an external language model could
increase the accuracy of speech recognition [39], [40]. In this
article, an N-gram language model is chosen as an external
language model. Specifically, the decoding path is decided
by the probability score of the LASmodel and that of N-gram
language model. Namely

Score = SLAS + α · SLM , (9)

where α is an adjustable parameter, and it represents the
proportion of the score of the N-gram language model in all
scores.

F. DISCRIMINATIVE TRAINING
The maximum likelihood function is usually used as the
objective function in the LAS model. However, in the actual
optimization process, such an optimal objective may not
achieve the expected results. Specifically, in the training pro-
cess, when the value of the loss function is smaller, the WER
is not necessarily lower. Discrimination training can alleviate
this problem by using the solution of the traditional speech
recognition system for reference [41]–[43].

In this article, the Maximum Mutual Information (MMI)
criterion is used for discriminative training. The optimization
objective of the MMI criterion is a fractional value in which
the numerator is the probability of the correct prediction
while the denominator is the sum of the probabilities of
all the wrong predictions. In the optimization process, the
numerator is maximized and the denominator is minimized.
In this way,minimizing the value of the objective function can
lead to minimizing the WER. During the actual optimization
process, it is infeasible to calculate for all the error proba-
bilities in the denominator, therefore, the N-best list is used
to estimate all error probabilities. The loss function of MMI
criterion is calculated as

LN−bestMMI (x, y) =
P(y|x)∑

yi∈N−best&yi 6=y
P(yi|x)

. (10)

To get better training effect, MMI criterion and cross-
entropy are interpolated to the loss function. The loss function
after interpolation is

LMMI =
∑
(x,y)

(1− λ)LN−bestMMI (x, y)+ λLCE . (11)

G. SUMMARY OF MODEL COMPLEXITY
The complexity of artificial neural network includes space
complexity and time complexity. The former determines the
training/prediction time of the neural network. The latter
determines the number of parameters in the neural network.

In this study, an Amdo-Tibetan speech recognition system
is established based on the LAS model. Its encoder mod-
ule is constituted of the pBLSTM networks, as described
in section III. This structure greatly reduces the number of
parameters and, thereby, reduces the spatial complexity of the
model. In the meantime, the beam search strategy is adopted
in the decoding process of themodel, and the time complexity
of the model is reduced by controlling the value of beam size.
In the two ways, the complexity of the LAS model is reduced
and the convergence speed of the model is well controlled.

IV. TRANSFER LEARNING
Ideally, the recognition ability of an ASR system can be
achieved that of a human being. However, the construction of
ASR system with good performance needs a large amount of
training data. For the low-resource language, speech recog-
nition faces the challenge of insufficient resources. Based
on the similarity between data and tasks, transfer learning
can apply models learned in the old domain to the learning
process of the new problem. Therefore, transfer learning has
been widely used to improve the performance of speech
recognition for data deficient languages [44].

In 2014, Yosinsk of Cornell University carried out a
study on the portability of deep neural networks based on
ImageNet data sets [45], [46]. The results show that: (1) with
the help of transfer learning, it is better to use an exist-
ing network than a neural network whose weights are ran-
domly initialized and trained with a small amount of data;
(2) fine-tuning in neural network parameters can achieve
better results of transfer learning. Based on the above con-
clusions, transfer learning is employed to improve the per-
formance of Amdo-Tibetan speech recognition system in
this study. Specifically, the pre-trained model with abun-
dant Chinese and English resources is applied to the
Amdo-Tibetan speech recognition through transfer learning.
Fig. 4 illustrates the flow chart of the transfer learning in this
study.

Transfer learning brings several advantages to the proposed
model: firstly, the model is pre-trained by using the source
languagewith rich corpus such as Chinese and English, which
ensures the recognition effect of the model; secondly, the cor-
pus of the target language: Amdo-Tibetan in this study is used
to fine-tune the trained model. It is equivalent to expanding
the Amdo-Tibetan corpus and contributes to the robustness
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FIGURE 4. Schematic diagram of transfer learning.

of the model; finally, the training model is no longer trained
from the beginning and thus reduces the training time.

V. EXPERIMENT AND DISCUSSION
The experiments are mainly divided into two parts: the
experiments related to the LAS model and those related to
transfer learning. Concretely, the experiments related to the
LAS model include performance testing for baseline model
and effect testing for various optimization technologies. The
experiments related to transfer learning include the tests
to assess the influence of language similarity and different
source language data volume on the performance of transfer
learning.

A. DATABASE
The experiments are carried out on three corpora: English
corpus, Chinese corpus, and Amdo-Tibetan corpus. In the
experiments related to the LAS model, the Amdo-Tibetan
corpus is used directly to train the model. In the experiments
related to transfer learning, English and Chinese are source
languages while Tibetan is the target language. During the
training process, the corpus of the source language is used to
pre-train the model while that of the target language is used
to fine-tune the model.

The Amdo-Tibetan corpus used in this article is recorded
by 12 speakers, and the sampling rate is 16 kHz with the
mono channel. The corpus contains 8,400 pieces of speech
with a total of 14 hours, and 7,500 sentences with a total
of 13 hours are selected as the training set while the remaining
900 sentences with a total of 1 hour are used as the test set.

To decide which language is more suitable as the source
language of transfer learning, a 150-hour Chinese corpus is
selected from AISHELL and a 150-hour of English corpus is
selected from LibriSpeech.

B. SETTING
Firstly, a baseline LAS model is implemented, on which
the beam search strategy is tested to get the best decod-
ing efficiency. Secondly, the model is optimized by several

technologies such as the Multi-Head Attention mechanism,
label smoothing, external languagemodel, and discriminative
training. Finally, the transfer learning experiment is carried
out on the optimized model.

The Listener is structured with 512 nodes of 3 layers
pBLSTM (i.e., 256 nodes per direction), which reduces the
time resolution by 8 times. The Speller uses two layer one-
way LSTM with 512 nodes each. The attention mechanism
adopts feed-forward neural network. This model uses the
cross-entropy function as loss function to update network
parameters. In the training phase, the Adam algorithm is
employed for optimization and the initial learning rate is set
to 0.001.

The 40-dimensional log-Mel filter bank features are used
as inputs feature. The frame length is 25ms and frame shift is
10ms. The adjacent ±2 frames are spliced for each frame.
200 dimensional concatenated features with a total of five
frames are used as the input of the current frame. Phoneme
error rate (PER) is regarded as the final evaluation criterion.

C. EXPERIMENT ON LAS MODEL
1) DECODING STRATEGY
The beam search strategy could speed up the convergence
rate and improve the generalization ability of the LASmodel.
To this strategy, the determination of the beam size is a key
issue. In this section, the beam search strategy is validated
with the baseline LAS model. The influence of various beam
sizes on decoding results is shown in Table 1 and Fig. 5.

TABLE 1. Results under different beam sizes.

FIGURE 5. Phoneme error rates under different beam sizes.

The HMM framework or CTC framework for speech
recognition often retain thousands of possible paths in the
decoding process. It can be seen from Table 1 that, in the
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LAS model, the beam size is much smaller than that in
traditional speech recognition model and CTC model. The
best recognition result can be obtained only by keeping the
possible path of single digits. The sharp reduction of candi-
date paths simplifies the decoder framework and improves
the decoding speed greatly. Meanwhile, it can be seen from
Fig. 5 that the PER decreases sharply as the beam size is
adjusted from 1 to 5 and 5 to 10; and it decreases gently
as the beam size is adjusted from 10 to 20. Considering the
balance between system performance and convergence time,
it is appropriate to set the beam size to be 10 in subsequent
experiments.

2) EFFECTIVENESS OF MULTI-HEAD ATTENTION
The effectiveness of the Multi-Head Attention mechanism,
proposed in the section III of this article, is verified in this
section.

Table 2 lists the experimental results on the baseline LAS
model and LAS model with Multi-Head Attention. It can be
seen that, the PER on the training set decreases gradually with
the increase of the number of heads. The PER on the test
set also decreases gradually at first, but it begins to increase
when the number of headers reaches 8. The change curve of
PRE is shown in Fig. 6. The basic reason is that expansion of
parameters leads to over-fitting of the model.

TABLE 2. Results of Multi-Head Attention mechanism.

FIGURE 6. PER on training and test set under different number of head.

The advantage of the Multi-Head Attention mechanisms
is that the correlation between the state vector of encoder
and decoder is quantified from more dimensions. This makes
the context vector generated by the attention module has
more discriminant information. Nevertheless, it can make the

model parameters too large, which makes the model difficult
to converge or produce over-fitting. Therefore, increasing the
dimension of representation subspace in a certain range can
improve recognition performance. If the dimension is too
high, it may lead to the risk of over-fitting.

In order to reduce the degree of over-fitting, the label
smoothing regularization (LSR) is introduced in the exper-
iments. Uniform distribution is adopted as the fixed proba-
bility distribution to realize the label smoothing strategy, and
the smoothing ratio is set to be 0.1. The experimental results
are shown in Table 3.

TABLE 3. Results of label smoothing regularization.

Comparing the results of Table 2 and Table 3, it can be seen
that the lower PER can be obtained by model with the label
smoothing normalization under the same parameters. When
the Multi-Head LAS model is set to 4 heads, the best PER is
obtained on the test set. Therefore, the number of head should
be set to 4 in subsequent experiments.

3) EXTERNAL LANGUAGE MODEL
In order to improve the recognition accuracy, an N-gram lan-
guage model is combined with the LAS model. This section
tests the effect of different weights of N-gram languagemodel
on the Multi-Head Attention LAS model with labels smooth-
ing. The results are shown in Table 4.

TABLE 4. Result under different LM weights. MHLAS-LSR refers to
Multi-Head Attention LAS model with labels smoothing.

In the HMM framework, the weight of the N-gram lan-
guage model is generally between 10 and 20. In the CTC
framework, the weight of N-gram language model is gen-
erally between 1.0 and 2.0. From Table 4, it can be seen
that the weight of N-gram language model is in between
0.1 and 0.3. This indicates that, compared with traditional
models, the LAS model is much less dependent on the lan-
guage model. In addition, it can be seen that the recognition
accuracy of the model is improved with the help of the exter-
nal language model and the weight of the external language
model affects the recognition accuracy. In the experiments,
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the best recognition result is obtained when the weight sets
as 0.2.

4) DISCRIMINATIVE TRAINING
The loss function of the LASmodel with discriminative train-
ing is calculated with Eq. (11), where λ and N-best list are the
adjustable super parameters. Experiments in this section are
designed to explore the influence of λ and the N-best list on
discriminative training, as shown in Table 5 and Fig. 7.

TABLE 5. Result of discrimination training.

FIGURE 7. Phoneme error rate under different hyper-parameter during
discriminative training.

Previous experiments show that good performance and
decoding speed can be achieved when the beam size is set
to 10. Therefore, for each value of λ, three beam sizes,
namely 8, 10 and 12, are set respectively. From the results of
Table 5 we can see that the recognition accuracy of the model
has been improved by introducing discrimination training.
Meanwhile, it can be seen from Fig. 7 that the accuracy of
model varies with the proportion setting of the cross-entropy
loss function, and the number of paths retained in the N-best
list is also different with the value of λ. The best performance
of discrimination training is obtained when the λ value is set
to 0.3 and the N-best list is set to 10.

D. EXPERIMENT ON TRANSFER LEARNING
This section verifies the effectiveness of the transfer learn-
ing to Amdo-Tibetan speech recognition from two differ-
ent perspectives, namely, language similarity and volume of
the source language data. The best model, abbreviated as
MHLAS-LLM, is selected to examine the effect of trans-
fer learning, where MHLAS-LLM refers to the Multi-Head
Attention LAS model with Labels Smoothing, external
Language Model, and discriminative training.

1) THE INFLUENCE OF LANGUAGE SIMILARITY
In this section, three experiments are implemented to verify
the influence of language similarity on transfer learning. The
first experiment utilizes only the Amdo-Tibetan corpus to
train the LAS model. In the second experiment, the LAS
model is pre-trained with 150 hours of Chinese corpus, and
then the model is fine-tuned with Amdo-Tibetan corpus.
During the pre-training, syllables are selected as modeling
units. In the third experiment, the LAS model is pre-trained
with 150 hours of English corpus, and then the model is
fine-tunedwithAmdo-Tibetan corpus. Phonemes are selected
as modeling units in the pre-training stage. The experimental
results are shown in Table 6.

TABLE 6. The influence of language similarity.

Table 6 shows that the PER of the test set is the highest
when the random initial network parameters are trained with
Amdo-Tibetan data directly. For transfer learning, the PER
decreases obviously no matter English or Chinese is used
for pre-training. Compared with the direct training model
of Amdo-Tibetan data, the pre-trained model using Chinese
corpus has an absolute improvement of 2.64%. This indicates
that transfer learning can effectively enhance the performance
of the model. Moreover, the effect of pre-training using
Chinese is better than that of English. To the target language
i.e. Amdo-Tibetan, Chinese is more suitable for pre-training
than English. The reason may be that Chinese and Tibetan
have some similarities in syntactic structure, and English and
Tibetan are quite different in grammar and pronunciation.

2) THE INFLUENCE OF DIFFERENT VOLUME
This section verifies the influence of the volume of source
language data for Tibetan transfer learning in pre-training
stage. Three experiments are organized and all of them use
Chinese data to pre-train the LAS model. The model is
pre-trained with 50 hours, 100 hours, and 150 hours of
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Chinese corpus respectively at first, and then that is fine-tuned
with Amdo-Tibetan corpus. The results are shown in Table 7.

TABLE 7. Quantitative influence of source language data.

It can be inferred from Table 7 that, with the increase
of Chinese pre-training data, there is a decline of PER of
Tibetan speech recognition. The performance of the model
with 150-hour corpus for pre-training is 1.46% higher than
that of 50-hour corpus. At the same time, compared with the
previous experiment, it comes to a conclusion that if there are
higher similarities between the source language and the target
language, the difficulties of transfer learning between the two
languages can be reduced. It could achieve good results in
transfer learning even utilizing less source language data.

VI. CONCLUSION
An end-to-endmodel was proposed for Amdo-Tibetan speech
recognition as it can provide a simple and effective solution
for the construction of Tibetan speech recognition system.
And then, the performance of the system was optimized by
several techniques such as Multi-Head Attention mechanism,
label smoothing, external languagemodel, and discriminative
training. In the meantime, Amdo-Tibetan is a low-resource
language; especially its linguistic resources and corpus are
very limited. To solve this problem, transfer learning was
introduced. By using Chinese and English corpus to pre-train
the model, it reduced the impact on the model performance
due to inadequate of Amdo-Tibetan training data. The exper-
imental results showed that the proposed end-to-end model
improved the recognition performance of Amdo-Tibetan
significantly.

In the future, data enhancement methods will be explored
to improve the performance of Amdo-Tibetan speech recog-
nition. In addition, improving the robustness and generaliza-
tion of the Amdo-Tibetan speech recognition system is also
the future research direction.
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