
Received September 3, 2020, accepted September 7, 2020, date of publication September 14, 2020,
date of current version September 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023741

A Two-Phase Distributed Ruin-and-Recreate
Genetic Algorithm for Solving the Vehicle Routing
Problem With Time Windows
THAU-SOON KHOO 1, BABRDEL BONAB MOHAMMAD1, (Member, IEEE),
VOON-HEE WONG2, YONG-HAUR TAY3, AND MADHAVAN NAIR1
1Centre of Artificial Intelligence and Computing Applications, Universiti Tunku Abdul Rahman, Selangor 43000, Malaysia
2Centre of Mathematical Science, Universiti Tunku Abdul Rahman, Selangor 43000, Malaysia
3Recogine Technology Sdn Bhd, Putra Heights, Selangor 47650, Malaysia

Corresponding authors: Thau-Soon Khoo (khoothausoon@yahoo.com) and Babrdel Bonab Mohammad (babrdel@utar.edu.my)

This research is supported by the Universiti Tunku Abdul Rahman, UTAR Research Fund (UTARRF), no.
IPSR/RMC/UTARRF/2019-C2/M01.

ABSTRACT Developing an algorithm that can solve the vehicle routing problem with time windows
(VRPTW) and create near-optimal solutions with the least difference in magnitude is a challenging task. This
task is evident from the fact that when an algorithm runs multiple times based on a given instance, the gener-
ated solutions deviate from each other and may not near-optimal. For this reason, an algorithm that can solve
these problems is effective and highly sought after. This article proposes a novel systematic framework using
a two-phase distributed ruin-and-recreate genetic algorithm (RRGA). The two-phase consists of the RRGA
phase and ruin-and-recreate (RR) phase, which is designed to run in the distributed computing environment
that leveraging these networked resources. This combination of algorithms harnesses the strength of the
search diversification and intensification, thereby producing very high-quality solutions. Experiments with
Solomon’s benchmark show the RRGA can produce results superior to the recently published hybrid
algorithms, best-known solutions, and nine leading hybrid algorithms.

INDEX TERMS Combinatorial optimization, genetic algorithm, objective function, ruin-and-recreate,
vehicle routing problem with time windows.

I. INTRODUCTION
The VRP was introduced by Dantzig and Ramser [1] as a
truck dispatching problem. It is a prevalent logistics optimiza-
tion problem and ubiquitous in the logistics and distribution
industry. There are many variants [2] in the VRP, and one
of the popular variants is VRPTW. The original VRPTWwas
introduced by Solomon [3]. It is anNP-hard [4] combinatorial
optimization problem. The objective is to minimize the total
travelled distance within the constraint of vehicle load capac-
ity, customer time window (customer’s availability time),
service time, depot time window (depot’s availability time),
among others. In VRPTW, the vehicles are homogenous in
their specifications. Initially, a dedicated fleet of vehicles is
assigned and stationed at the central depot. These vehicles
serve customers who are located in a disparate location. They
should pick up all customer orders at different locations based

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiping Wen .

on x and y coordinates, which mimic the real-life example of
a merchandise delivery to a customer location. The distance is
calculated using the Euclidean distance, which is a straight-
line distance. Furthermore, these vehicles must also satisfy
the following constraints:
• All vehicles must end at the same central depot.
• All vehicles must operate within the start and end time
of the central depot.

• There is a finite set of vehicles to deliver customer
demands.

• Each customer must serve only once by a vehicle.
• The vehicle must arrive at the customer’s location within
the customer’s availability time. If it arrives early, it must
wait until the customer is available.

• Each service time is associated with each customer.
Initially, VRPTW was solved using the exact algorithm.

Despite the structural problem, the computational times
increase with the size and complexity of the problem [5];
thus, the exact algorithms were not able to cope. Therefore,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 169851

https://orcid.org/0000-0001-9350-642X
https://orcid.org/0000-0001-8077-7001

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

a heuristic/metaheuristic algorithm was created to overcome
these complexities. Metaheuristic algorithms have been used
since the 40s, even though they were not studied formally [6].
These algorithms scale well to a large and complex problem;
They achieve better results with the current problem complex-
ity [7]. GA is one of the popular metaheuristic algorithms.
It was discovered and presented byHolland [8] as a nonlinear-
ity mathematical model that mimicked the biological process
of adaptation [9]. GA modifies each solution in the popula-
tion. During the selection step, it selects the individuals as the
parents based on fitness value to produce offspring, which is
later used for crossover and mutation step [10]. Through this
repeatable process, the results evolve towards better and opti-
mal results. However, the classical design of GA has its draw-
backs [10], [11]. It is computationally expensive, requires
parameter tuning and no guarantee of achieving the optimal
result within a finite time [12], [13]. Despite these drawbacks,
many applications still use GAs for deriving better solutions
either by changing its internal structure [14], [15] or by
combining with other algorithms [16], [17]. Another popular
algorithm for solving VRPTW is the neighbourhood method,
which is based on ruin-and-recreate (RR) principle. This prin-
ciple was initially coined by Schrimpf et al. [18]. It is often
used for finding a satisfactory solution within a reasonable
time by ruin (removal) the existing solution and followed
by an improvement (reconstruction) procedure [19], [20].
Some neighbourhood algorithms are complicated [21], [22].
However, the RR principle is still a low-level, adaptable,
fast, and powerful to be used with other VRP variants. The
removal and reconstruction of the incumbent solution can be
varied and depending on the strategy in use. It consumes less
memory and obtains a reasonable solution in a large search
space. Often, it is used with other algorithms as it improves
the local search ability [23], [24] and results [25]–[27].

There is a less plethora of VRPTW literature which com-
bines the evolutionary algorithm with the RR principle.
Panagiotis et al. [28] proposed an arc-guided evolutionary
algorithm that manipulated the individuals in the population
using an evolution strategy. It used a discrete arc-based rep-
resentation with a binary vector of strategy parameters. The
proposed mutation operator is based on the ruin-and-recreate
principle. Their algorithm improved the best reported cumu-
lative and mean results within a reasonable computational
requirement. Tan et al. [29] presented a hybridmultiobjective
evolutionary algorithm (HMOEA), which included different
heuristics for local exploration search in the evolutionary
search and the Pareto optimality concept. It used a spe-
cialized genetic operator and a variable-length chromosome
representation which accommodated the sequence-oriented
optimization. Furthermore, their algorithm has lowered rout-
ing solutions, wider scattering areas, and better convergence
traces. Their results are better and competitive with the best
solutions in their published literature. Nacima et al. [30]
suggested a memetic algorithm (MA) [31] with a local
search. Each iteration of the local search evaluates different
moves. The iteration in each of the local searches (neighbour-

hood exploration) for the first improving move and executes
using MA it if it finds it. The local search stops when there
is no possible further improvement. This algorithm offers
faster execution time and attains several best-known results.
JingTian et al. [28] suggested the evolutionary algorithm,
scatter search, and particle swarm optimization algorithm
(ESS-PSO) to solve VRPTW. In the evolutionary algorithm
and scatter search (ESS), they use the genetic algorithm, and
a new ‘‘route +/−’’ evolutionary operator is introduced in
the scatter search template. Besides, a discrete particle swarm
optimization (PSO) is also proposed, which set the route
segment as the particle velocity. The velocity and position
updating rules are based on the ruin-and-recreate principle.
It also uses the cascade learning architecture in which PSO
learns the ideal solution set by ESS. Their results are com-
petitive, and ESS-PSO proves to be effective and efficient.
Ziauddin et al. [17] proposed a novel framework which was
called the localized optimization framework (LOF). It is
composed of two phases, which are the optimization and
deoptimization. The optimization was performed on the part
of the problem,whereas the de-optimizationwas on thewhole
problem. On average, LOF performs better on a small scale
than other heuristics. It also attains a few best solutions on the
test datasets.

The most proposed algorithms achieve remarkable results
by combining different algorithms. In this article, we propose
a novel hybrid algorithm that takes advantage of the GA with
the RR principle. The characteristics of a GA are a nature-
inspired and a population-based searching algorithm. It uses
a memory usage method, and their searching is stochas-
tic and iterative. In RR, it is characterized as a nonnature-
inspired and single-based search algorithm. It uses a memory
usage method, and their searching is deterministic and iter-
ative. Our proposed algorithm is designed by harnessing the
strength of exploration and exploitation inherent in GA and
RR. In space searching, exploration tends to be diversified,
whereas exploitation tends to be intensified. These charac-
teristics match perfectly in our proposed algorithm because
we leverage the benefit of GA as the space searching is
based on exploration (diversified-oriented) approach, and the
space searching in RR is based on exploitation (intensified-
oriented) approach. In the exploration approach, all regions
in the search space are evenly explored, and no number of
regions is reduced for searching. In the exploitation approach,
the promising regions are explored more thoroughly with the
hope of finding better solutions.

We made a few modifications to the classical GA. Firstly,
we modify the selection step in GA to target the nonelite
candidates. These changes mean the higher the nonelite can-
didates, the higher the fitness value. These nonelite candi-
dates have a better chance to be selected as a candidate for
crossover. Secondly, we remove the solution generation in
each of the genetic operators (selection, crossover, mutation).
In our design, all genetic operators are only responsible for
generating customers, and thirdly, we integrate each of the
genetic operators with the RR principle. In this step, each of

169852 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

the genetic operators will pass over a customer list to the RR
principle for solution generation.

The RR principle consists of the ruin and the recreate
method. In the ruin method, we have evaluated a few strate-
gies (random, radial, worst, clustered, and string) before
it is integrated with the GA. We discovered, among other
strategies proposed in the ruin method, the random and radial
strategies deliver excellent results when we integrated into
the proposed algorithm. However, in the recreate method,
we propose the best insertion and regret insertion strategy.
The main contributions of this article are listed as follows:

(1) We proposed an RRGA distributed application archi-
tecture.

(2) We presented two phases in the execution of the pro-
posed algorithm, which consists of an RRGA phase
and the RR phase that harness the exploration and
exploitation potential.

(3) We introduced the varied strategies used in the ruin
method of the RR principle, which enhances the
exploitation of searching.

(4) We suggested a separation of duties and synergistic
effects in which the GA is responsible for generating
customers, and the RR principle is to transform the
customers into a solution.

(5) We implemented a continuous improvement paradigm
using the RR strategies for continuous generating near-
optimal results for comparison to achieve the best
optimal result.

The remainder of this article is organized as follows.
Section 2 contains a description of the problem assump-
tions and notations. In section 3 explains the proposed algo-
rithm. The result analysis is shown in Section 4. Finally,
Section 5 gives an overall conclusion.

II. PROBLEM ASSUMPTIONS AND NOTATIONS
A. PROBLEM DESCRIPTION
The VRPTW problem consists of a set of homogenous vehi-
cles and loading capacity. The objective is to achieve the best-
travelled distance by traversing all customers. It must satisfy
the constraints of the customer’s time window and vehicle
loading capacity.

B. PROBLEM DEFINITION
Let G = (V , A) define a complete directed graph, where
V = {c0, , cn} is the node set, and c0 is the depot
and c1..n represents the first customer until the last customer
n. Each customer is associated with a demand quantity qi,
except node c0 is associated with q0 = 0. The A is the arcs
set, where A = {(ci, cj)| ci, cj ∈ V, ci 6= cj } and each arc
(ci, cj) is associated with travel time (tij) and represented as
a distance cost dij = dji. Each customer is associated with
preplanned loading demand and service time information.
There is a finite vehicle (v) that has a homogenous capacity.
The customer time windows (ei, li) are known before the start
of the journey. Each customer has a loading demand where

the demand (qi) is greater than or equal to zero. A hard time
window is the predefined time interval where it must serve
the customer between the customer earliest (ei) and the latest
available time (li), in which ei ≥ 0 and li ≥ 0. The central
depot is also associated with a time window and represented
in e0 and l0, in which e0 is the earliest start time, and l0
is the latest end time at depot. The vehicle needs to wait if
it arrives at the customer before the earliest available time
(ei). It could not serve the customer if it exceeded the latest
available time. The vehicle also cannot serve the customer
if its loading capacity has exceeded. Each customer (ci) is
assigned a time window, which is denoted as [ei, li]. The
accumulated service time (si) and travelling time (ti) for each
customer (ci) must not exceed the depot latest available time
(l0). Each arc aij represents the unidirectional and distance
(dij) of that arc. Each customer is served only once.

C. MATHEMATICAL MODELS
The following notations and formulas for deriving the
VRPTW model [36] are listed as follows:

qi The demand quantity of the customer ci
Q The capacity of the vehicle.
si The service time of the customer
dij The travel time from customer ci to customer cj.
wi The waiting time of the customer ci
ei The earliest available time of the customer ci
li The latest available time of the customer ci

yki =

 v if vehicle k travels from customer ci
to customer cj

0 otherwise


The objective function is to minimize the total travelled dis-
tance, which is described as follows:

min TD =
K∑
k=1

N∑
i=0

N∑
j=0

tij.xkij (1)

s.t. xkij =

 1 if vehicle k travels from customer
i to customer j

0 otherwise

 (2)

N∑
j=1

xk0j =
N∑
i=1

xki0 = 1 (∀k = 1, 2, . . . ,K) (3)

N∑
j=0

xkij =
N∑
j=0

xkji ≤ 1 (i 6= j, ∀i = 1, . . . ,N ;

∀k = 1, . . . ,K) (4)
K∑
k=1

N∑
i=0

xkij = 1 (i 6= j, ∀j = 1, 2,, n) (5)

K∑
k=1

N∑
j=0

xkij = 1 (i 6= j, ∀j = 1, 2,, n) (6)

N∑
i=0

qi
N∑
j=0

xkij ≤ Q (i 6= j; ∀k = 1, 2,,K) (7)

VOLUME 8, 2020 169853

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

tki + si + tijt
k
j ≤ (1xkij).M

(i 6= j, ∀i, j = 0, 1,,N ; ∀k = 1, 2,,K) (8)

ej
∑

j=0
xkij ≤ t

k
j ≤ lj

∑
j=0

xkij (i 6= j,∀i = 0, 1,,

N , ∀k = 1, 2,,K) (i 6= j, ∀i = 0, 1,,N ;

∀k = 1, 2,,K) (9)

xkij ∈ 0, 1} (i 6= j,∀i, j = 0, 1,,N ;

∀k = 1, 2,,K) (10)

Equation (1) shows that the primary objective function of
the problem is to minimize the total travel distance (TD).
Equations (2) and (3) represent the decision variable and
ensures that each vehicle must depart and return to the same
depot, respectively. Equation (4) is the node conservation
constraints flow. Equations (5) and (6) ensure that each vehi-
cle can serve the customer only once. Equation (7) represents
that the total customers’ demands cannot exceed the vehicle
capacity. Equations (8) and (9) represent the time window
constraint, where ti is the time the vehicle k arrives at cus-
tomer. M is a large constant. Equation (10) ensures binary
conditions on the decision variable.

III. THE PROPOSED ALGORITHM
Our proposed algorithm is a distributed application archi-
tecture that consists of two main phases, which harness the
strength of GA and the RR principle. We suggested three
types of RR strategies. In the following sections, we explain
the overall distributed application architecture, the phases
of RRGA execution, the proposed strategies in each of the
phases, and the pseudocodes.

FIGURE 1. Distributed RRGA system architecture.

A. DISTRIBUTED RRGA SYSTEM ARCHITECTURE
Figure 1 illustrates the distributed RRGA system architecture.
The design of the distributed RRGA system is based on
master-slave architecture. In this diagram, the master node is
the central computing that instructs the other nodes (slaves)
to receive an order and perform computations. In order for
the slave node to receive the instruction from the master,
each slave node must install an RRGA agent first before the
master node can send the instruction to the slave nodes. Once
the RRGA agents are installed, it will register itself in the

database so that the master node knows which slave node is
ready to receive instruction.

Before the master node can instruct the slave nodes to carry
out the instruction, the user must key in a request using an
application. This application stores the data into the database.
The master node will continuously read from the database,
and if a new record is found, the master node will inform the
slave nodes. The master node then updates the application
table in the database to mark as the job started. Once the job
finishes, the slave node will inform the master node on job
completion, and the master node will update the record in the
data. In this case, the master node updates the record in the
database as the job completed.

FIGURE 2. RRGA process flows lifecycle.

B. RRGA PROCESS FLOWS LIFECYCLE
The implementation of the proposed algorithm is organized
into two phases, as shown in Fig. 2. The first phase is the
RRGA phase, and the second phase is the RR phase. These
phases constitute the lifecycle of the RRGA. In RRGA phase,
each of the executing procedure is divided into two subpro-
cedures. The first subprocedure is to generate a customer list
and pass it to the second subprocedure to generate a solution.
There are two types of RR strategies that can be used in
the second subprocedure. The type 1 strategy combines the
radial strategy in the ruin method with the regret insertion
strategy in the recreate method. In type 2 strategy, the radial
strategy is used in the ruin method is combined with the
best insertion strategy in the recreate method. As shown
in figure 1, the customer list from the generated first solution
is passed to the type 1 strategy. The outcome of this procedure
is passed to the population initialization subprocedure in
which the customer list is executed using a type 2 strategy
subprocedure. The customer list of this procedure is passed
to the selection subprocedure, which it will call the type
2 strategy subprocedure. In summary, each of the customer
list derived from the successive procedure will be passed to
the next procedure until it reaches the final procedure. Each
successive procedure is executed in sequential order.

In the RR phase, only the type 3 strategy is used in this
procedure. The solution derives from RRGA phase is con-
tinuously improved until it reaches a terminating criterion.
In type 3 strategy, the radial or random strategy in the ruin

169854 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

method is randomly selected, and the best insertion strategy
is used in the recreate method.

These segregations of duties in RRGA and RR phase
promote global optimization where all possible solutions
are explored thoroughly, and the final solution is intensely
improved. Hence, the outcome of executing RRGA in phases
leads to a better solution. We also evaluated other common
strategies (worst, string, and cluster) in the ruin method [33].
However, their results are not better than the strategies sug-
gested in this proposed algorithm. The pseudocode of the
RRGA framework is shown in Algorithm 1. It shows the
two phases, which are the RRGA phase (lines 1 to 9) and
the RR phase (lines 11 to 17). The RRGA phase consists of
generating the first solution using a type 1 strategy (line 1),
population initialization (line 2), and generation step (line 6).
In the generation steps procedure, it encapsulates the nonelite
selection, crossover, and mutation procedures.

The RR phase uses the type 3 strategy (lines 12 to 13).
The type 3 strategy of the RR principle consists of randomly
selecting either a radial or random strategy procedure in the
ruin method (line 12), and the best insertion strategy proce-
dure in the recreate method (line 13). The generated solution
is improved continuously until the termination criteria are
made (line 11).

Algorithm 1 RRGA Framework
Input R: routes RC: removed customers
Output Bs: best solution

/∗ RRGA phase ∗/
1. S ← RegretInsertion(R, RC) //S - solution
2. P← Initialize_population(S)
3. Bs← Get best solution based on P
4. for i← 1 to N do /∗ N − number of generation steps
∗/
5. /∗ execute the generation step ∗/
6. S ← Generation_step(P)
7. if S < Bs then
8. Bs← S
9. end if
10. /∗ RR phase ∗/
11. for i← 1 to M do /∗ M − number of RR iteration ∗/
12. S, RC← radial_or_random_ruin (Bs)
13. S ← bestinsertion(S, RC)
14. if S < Bs then
15. Bs← S
16. end if
17. end for
18. end for
19. return Bs

1) CHROMOSOME REPRESENTATIONS
Each chromosome consists of a string of genes. These genes
are analogous to a string of customers and represented in
digits. Each digit represents the identity of the customer.
The position of the genes in the chromosome is essential for

FIGURE 3. Individual (Chromosome).

route and distance calculation. These genes are shuffled and
arranged randomly using RR strategy before they are used for
the next procedure. The terms ‘‘chromosome’’ and ‘‘individ-
ual’’ are used interchangeably in this article. Fig. 3 depicts
how the customers in VRPTW are represented, encoded as
the customers, and decoded into individuals or chromosomes
with the defined number of routes, total travelled distance,
and prearranged customers in the list. The number of routes
in an individual is calculated based on the defined constraints
(i.e., time windows, service time, vehicle capacity, depot start
and end time, and among others), and the total travelled
distance is calculated based on the sum of distances on all the
routes. Algorithm 2 initializes the population. In lines 1 to 6,
each of the individuals is created using type 2 strategy (lines
4 to 5).

Algorithm 2 Population Initialization
Input S: solution
Output Pop: population
1. R← null
2. for i← 1 to N do //loop the customer size
3. /∗ Popi− ith individual (solution) in the population ∗/
4. R, RC← radialruin(S) /∗ R − routes, RC –removed
customers ∗/
5. Popi← bestinsertion(R, RC)
6. end for
7. return Pop

2) GENERATION STEP
The generation step shows in Algorithm 3 consists of three
main steps. They are the nonelite selection procedure (lines
2 to 16), the order crossover (OX) procedure (lines 18 to 24),
and the mutation procedure (line 29).

Firstly, the individuals in the population are sorted ascend-
ingly (line 1). This way of sorting indicates the individual
with the shortest total travelled distance will appear at the
top of the population list. Next, each of the solution fitness
is calculated (line 2) using formula 10. In this computation,
each individual in the population list is associated with a
calculated fitness value. In this manner, the bottom of the
population list has a higher fitness value than the individual
appears at the top. This outcome explains the nonelite indi-
viduals to appear at the bottom of the population list have a
higher chance to be selected as a parent for crossover. The
elite individuals that appear at the top of the population
list may cause premature convergence and diversity loss.

VOLUME 8, 2020 169855

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

Therefore, we choose the nonelite individuals. However, this
high probability of nonelite individuals to be selected is tied
to selection pressure (sp). The higher the selection pressure
that applies to the individuals in the population, the better the
individual evolves. Each fitness value for each individual is
calculated using equation (11). Once the fitness value of all
individuals in the population list is calculated, it is summed
up (line 3) in equation (12). Line 6 shows a fitness value is
randomly selected from the total sum of fitness values using
the equation (13).

fi = 2− sp+ 2∗ (sp− 1)∗
i

N − 1
(11)

Sum of Fitness(F) =
∑N

i=1
fi (12)

individual =
∑N

i=1
Fi > random[0..1].F (13)

Lines 8 to 17 identifies the position of each individual in
the population to be selected for the order crossover (OX).
In lines 19 to 20, the two cutoff points are selected. If the
two cutoff points have the same position, it will randomly
select two cutoff points until it does not match (lines 21 to
23). Lines 24 to 25 show the two newly generated offspring
using theOXprocedure. Lines 26 to 28 indicate the two newly
generated offsprings are added to the new population. The
process of generating new offsprings into a new population
continues until it exceeds its population size. Each individual
in the population is processed bymutation procedure (line 31)
and sorted ascendingly (line 32).

Lines 33 to 35 show the individuals in the new population
replace the individuals in the original population. Finally,
the individual in the original population will replace the best
solution if the result is better (line 36).

3) ORDER CROSSOVER
Algorithm 4 shows an OX algorithm [38], and this procedure
requires four parameters. The first two parameters are the
different parents (individuals), and the second two parameters
are the two different cutoff points which are essential for the
crossover process. If the second cutoff point has the same
position as the last position of the first parent, then the entire
customers in the first parent will be copied to the segment
array (lines 3 to 6). If it is not, then the customers between
the second cutoff point until the last position of the first
parent are copied to the segment array (lines 8 to 11). Next,
the customers between the first position and the second cutoff
point of the first parent are appended to the earlier segment
array (lines 12 to 15). The customers between the first cutoff
and second cutoff points of the second parent are removed
from the segment array (lines 17 to 23). Lines 24 to 26 show
that the customers between the first and second cutoff points
are copied to the same position of the offspring. The rest of
the customers in the segment array fill the offspring starting
after the offspring second cutoff point (lines 28 to 41). The
offspring is formed using the type 2 strategy (lines 42 to 43).
Figure 4 summarizes the crossover process.

Algorithm 3 Generation Step
Input Pop: population
Output S: solution
1: sortPopulationAscending(Pop) //sort the population
ascendingly
2: f = computeFitness() //compute fitness
3: sf = sumFitness(f) //Sum of all fitness value
4: Pop′← Pop;
5: while (Pop′ < 2. Pop) do
6: sf′← sf.random[0..1] // Select a fitness value
randomly
7: index1← 0, sum← f0 //Get the first fitness value
8: while (sum < sf′) do
9: index1← index1 + 1
10: sum← sum + findex1
11: end while
12: sf′← sf.random[0..1] //Select a fitness value
randomly
13: index2← 0, sum = f0 //Get the first fitness value
14: while (sum < sf′′) do
15: index2← index2 + 1
16: sum← sum + findex2
17: end while
18: z← get customer size
19: cutpoint1← random[0..z].1
20: cutpoint2← random[0..z].1
21: while (cutpoint1 == cutpoint2) do
22: cutPoint2← random[0..z]
23: end while
24: offspring1← OX(pindex1, pindex2, cutpoint1,
cutpoint2)
25: offspring2← OX(pindex2, pindex1, cutpoint1,
cutpoint2)
26: Pop′i← offspring1
27: i← i + 1
28: Pop′i + 1← offspring2
29: i← i + 1
30: end while
31: Pop′← mutatePopulation(Pop′) //mutation function
32: Pop′ ← sortPopulationAscending(Pop′) // sorted
based on lowest total travelled distance
33: for i← 1 to size of Pop do
34: Pop i← Pop′i
35: end for
36: updateBestSolution(Pop) //Replace the best solution
if the individual in population performs better
37: return S

For generating the second offspring, the process is repeated
by reversing the parents.

4) MUTATION
Algorithm 5 uses a swap mutation technique [32]. Each
individual in the population is loop through (line 3). This

169856 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

FIGURE 4. Order crossover.

individual is subjected to swap mutation if the random value
is less than the mutation ratio (line 4). If the mutation ratio
is high, the individuals in the population will have a high
likelihood to be selected for mutation and more areas in the
search space will be explored, but this may prevent the popu-
lation from converging to any optimum solution. However, if
the mutation ratio is low, there will be fewer individuals in the
population to be selected for mutation and may result in local
optimal. If the random positions of the genes in the individual
are the same, then the selection of the random genes will be
repeated (lines 8 to 11). If both genes positions are different,
then these genes will interchange with one another (line 12).

The swapped genes in the individual will call the type
2 strategy (lines 13 to 14) to generate a new solution which is
shown in Fig 5.

FIGURE 5. Swap mutation.

C. RUIN AND RECREATE PRINCIPLE
The RR principle consists of a ruin method, which contin-
uously destroys a part of the same solution and the recreate
method to reconstruct the solution. This process avoids local
optimum and can obtain high-quality results. The ruin and
recreate procedure is performed on an earlier GA generated
solution, and this phenomenon leads to a faster execution time
than a population-based algorithm. The RR principle is con-
sidered a metaheuristic algorithm as there are several ways
to ruin a solution. In this article, we suggest two strategies
(radial and random) in the ruin method and two strategies
(best insertion and regret insertion) in the recreate method.

1) RADIAL RUIN
In the radial ruin method [18], the customers in the radial
deletion area aremarked for deletion, which is shown in Fig 6.

Algorithm 6 shows the radial ruin strategy. Initially,
the number of customers to be removed from the solution is
calculated based on the radial ratio (line 1). The higher the
radial ratio, the more the customers will be removed from the
solution and vice versa. Next, a random customer is selected
from the solution (line 2) and removed from the solution
(line 3). Based on the random customer, the customers in the
neighbourhood list are retrieved (line 4). Each customer is
enumerated from the neighbourhood list and removed from

Algorithm 4 OX
InputParent1:first parent,Parent2: second parent,Cutoff-
point1: first cutoff point, Cutoffpoint2: second cutoff point
Output offspring: offspring
1: tempindex← 0
2: index← Cutoffpoint2 + 1
3: if (index == Parent1.length) then
4: for i← 0 to Parent1.length do
5: outerSegmentBuildArrayi = Parent1i
6: end for
7: else
8: for index← Cutoffpoint2 + 1 to Parent1.length do
9: outerSegmentBuildArraytempindex← Parent1index
10: tempindex← tempindex + 1
11: end for
12: for index← 0 to Cutoffpoint2 do
13: outerSegmentBuildArraytempindex←
Parent1index
14: tempindex← tempindex + 1
15: end for
16: end if
17: for index← Cutoffpoint1 to Cutoffpoint2 do
18: for index← 0 to outerSegmentBuildArray.length
do
19: if (outerSegmentBuildArrayindex==Parent2index)
then
20: remove(outerSegmentBuildArrayindex)
21: end if
22: end for
23: end for
24: for index← Cutoffpoint1 to Cutoffpoint2 do
25: offspringindex← Parent2index
26: end for
27: tempIndex← 0
28: for y← Cutoffpoint2 + 1 to length(offspring) do
29: if (y == length(offspring))
30: break
31: end if
32: Offspringy← outerSegmentBuildArraytempIndex
33: tempIndex← tempIndex + 1
34: end for
35: for z← 0 to Cutoffpoint1 do
36: if (z == length(offspring)) then
37: exit for loop
38: end if
39: offspringz← outerSegmentBuildArraytempIndex
40: tempIndex← tempIndex + 1
41: end for
42: offspring← radialruin(getroutes(offspring))
43: offspring← bestinsertion(getroutes(offspring))
44: return offspring

the solution as long as it does not exceed the calculated cus-
tomer removal number (lines 5 to 8). The removed customer

VOLUME 8, 2020 169857

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 1. Instance type.

Algorithm 5Mutate Population
1: Input Pop: Population,MR: Mutation Ratio
2: Output Pop′: Population
3: for i← 0 to Pop.length do
4: if (random[0..1].1 < MR) then
5: Q← getCustomers(Popi)
6: Index1← random [0.. Pop.length].1
7: Index2← random [0.. Pop.length].1
8: while (Index1 == Index2) do
9: Index1← random [0.. Pop.length].1
10: Index2← random [0.. Pop.length].1
11: end while
12: swap(Q, index1, index2) // swap the position of
customer
13: RC← radialruin(Q) // RC − removed customers
14: Pop′i← bestinsertion(Pop′i, RC)
15: end if
16: end for
17: return Pop′

FIGURE 6. Radial ruin.

FIGURE 7. Random ruin.

is added to a removed list (line 10), which will be used for
reconstruction later. Radial ruin strategy tends to be more
local.

2) RANDOM RUIN
In the random ruin method [18], the customers are ran-
domly marked for deletion, as shown in Fig 7. In this strat-
egy (algorithm 7), the number of customers to be removed

Algorithm 6 Radial Ruin
Input R: Routes
Output R routes, RC: removedCustomers
1: noOfCustomersBeRemoved← getNumberofCustomer
BeRemoved() //Depend on the radial ratio be set
2: targetCustomer← random[1..customerSize].1
3: removedCustomers← removeCustomer
(targetCustomer, R)
4: neighborhoodList← neighbourhood[targetCustomer]
5: foreach customer in neighbourhoodList do
6: if (noOfCustomersBeRemoved == i) then
7: break;
8: end if
9: if (R← removeCustomer(customer, R)) then
10: RC← RC + customer
11: end if
12: i = i + 1
13: end for
14: return R, RC

is randomly calculated from the solution (line 1). Next,
the customers are shuffled in the list (line 2). Each cus-
tomer is removed from the solution as long as it does not
exceed the number of customer removals (lines 4 to 6). The
removed customer is added to a removed list (line 8), which
will be used for later reconstruction. This strategy tends to
be global.

3) BEST INSERTION
The best insertion strategy [18] is based on each customer
that selects from the list randomly before performing the best
insertion. Each customer is evaluated with each vehicle and
will choose the route if it has the minimum cost of insertion.
However, if the customer cannot be inserted into the route,
an additional vehicle and a new route will be added into the
solution.

Algorithm 8 shows each customer in the removal list is
enumerated and reinserted into each route (lines 1 to 13).
Each insertion cost is calculated in each route to determine
which route has the best insertion cost. The route with the best
insertion cost will be selected. Lines 14 to 20 explain that a
new route is created with the customer and add a new route to
the existing routes if it has a better insertion cost. However,
the customer will not be able to add to the route if the best
insertion cannot be found. In this case, this customer will be
added to an unassigned customer pool (lines 21 to 25). If the

169858 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

Algorithm 7 Random Ruin
Input S: solution
Output R routes, RC: removed Customers
1: noOfCustomersBeRemoved← getNumberofCustomer
BeRemoved()
2: availableCustomers← shuffle(getAllCustomers(S))
3: removed = 0
4: foreach cust in availableCustomers do
5: if removed == noOfCustomersBeRemoved exit for
6: S← removedCustomer(cust, S)
7: RC← RC + cust
8: removed← removed + 1
9: end if
10: end for
11: R← getroutes(S′)
12: return R, RC

TABLE 2. Parameters.

TABLE 3. Parameters.

best insertion can be found, this customer will be added to the
route (line 27). Line 30 explains that a new solution is created
based on the created routes.

Lines 1 to 26 explain the best Insertion score of each
customer according to the cost insertion calculation. The
customer with the lowest cost will be selected for reinsertion.
A new solution is generated due to this process. Lines 21 to
24 explain that customers who cannot make it for reinsertion
due to constraints violation will be reported as unassigned
customers.

4) REGRET INSERTION
Regret Insertion algorithm is used to initialize routes in
VRPTW by Potvin and Rousseau [36]. In algorithm 9, it is
based on inserting the best possible route for each customer,
how much the ‘‘regret’’ of the first and second best customer
insertion cost is calculated, and the score difference between
the two insertion costs is compared. If the second best cost
is higher than the first score, the customer will be inserted
into the route immediately. If it is not, the customer will be
inserted later. Lines 2 to 15 explain each customer, traverse
all other customers, and calculate which one has the best
score or the shortest distance. The best score is added to the
route, and finally, it returns a solution (line 16).

Algorithm 8 Best Insertion
Input R: Routes, C : Removed Customers
Output S ′: New Solution
1: foreach customer in C do
2: bestInsertion← null
3: bestInsertioncost←MAX_VALUE
4: foreach route in newRoutes do
5: insertionData← bestInsertionCostCalculator
.getInsertionData (route, customer, bestInsertioncost)
6: If (insertionData cannot insert) then
7: continue
8: end if
9: if (insertionData.getInsertionCost()< bestInsertion-
cost) then
10: bestInsertion← getInsertion(route, insertionData)
11: bestInsertioncost← insertionData
.getInsertioncost()
12: end if
13: end for
14: newRoute← createEmptyRoute()
15: newInsertionData← bestInsertionCostCalculator
.getInsertionData (newRoute, customer, bestInsertioncost)
16: if (newInsertionData can insert into existing routes)
then
17: if (newInsertionData.getInsertionCost() < bestIn-
sertioncost) then
18: newRoutes← newRoutes + newRoute
19: bestInsertion← generateInsertion(newRoute,
newInsertionData)
20: end if
21: else

/∗ Get failed constraints ∗/
22: empty← empty + getFailedConstraintNames()
23: end if
24: if bestinsertion == null then
25: unassignedcustomers← unassignedcustomers +
customer
26: else
27: insertCustomer(unassignedCustomer, bestInser-
tion.getInsertionData, bestInsertion.getRoute())
28: end if
29: end for
30: S ′ ← createNewSolution(routes, unassignedCus-
tomers, empty)
31: return S ′

IV. RESULTS
A. EXPERIMENT SETUP
In this experiment, the Solomon [16] instances are used for
benchmarking. This benchmarking is to test algorithm vul-
nerability and effectiveness. These instances are grouped into
C1, C2, R1, R2, RC1, and RC2, respectively. Each group
of instances is subdivided into two types. The first type is
the clustered (C), random (R), and a combination of random

VOLUME 8, 2020 169859

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 4. Variants.

Algorithm 9 Regret Insertion
Input, C : Customers
Output S ′: New Solution
1: routes← null
2: while there is still customer in C do
3: for each customer in C do
4: bestScoredCustomer = calculateCustomer-
Score(customer, C)
5: if (bestScoredCustomer! = null) then
6: if (bestScoredCustomer.isNewRoute()) then
7: routes.add(bestScoredCustomer.getRoute())
8: end if
9: insertCustomer(bestScoredCustomer
.getCustomer(),
10: bestScoredCustomer.getInsertionData(),
11: bestScoredCustomer.getRoute())
12: removeCustomer(customer, C)
13: end if
14: end for
15: end while
16: S ′ ← createNewSolution(routes, unassignedcus-
tomers, empty)
17: return S ′

(R) and clustered (C) in the group, which shows the extent
of the customers disparate. The second type indicates the
time window and vehicle capacity size. The C1, R1, and
RC1 have a smaller time window size and vehicle capacity,
which can serve a small number of customers. In contrast,
the C2, R2, and RC2 instance types can serve a large number
of customers as it has a broader time window size and vehicle
capacity. Table 1 summarizes the detail of the instances types.
This proposed algorithm is developed using Java version
1.8 and runs on a desktop machine with an Intel Core i5 CPU,
2.6GHz/8G of RAM. It can be run on Window, Macintosh
or Linux operating system. The parameters used are shown
in Table 2.

B. RESULT ANALYSIS
To prove our proposed algorithm is better than other
algorithms, we benchmark our results against four different
comparisons. They are five suggested variants, four recently
published hybrid algorithms, the best-known solutions, and
nine leading algorithms.

1) COMPARISON WITH OTHER VARIANTS
Table 3 shows different strategies type used for construct-
ing different variants. Each strategy type may consist of
either or both ruin and recreate methods. Type 1 strategy
only consists of regret insertion strategy in the recreate
method. There is no strategy adopted in the ruin method.
Type 2 strategy is formed by combining radial strategy in
the ruin method and best insertion strategy in the recreate
method. Type 3 strategy is selecting radial or random strategy
randomly in the ruinmethodwith the best insertion strategy in
the recreate method, and type 4 strategy consists of random
strategy in the ruin method with the best insertion method
in the recreate method. Table 4 shows five different vari-
ants that are used for comparison with RRGA. Each variant
may involve either or both RRGA and RR phases. During
RRGA phase, the GA is used. The GA has five procedures
which are performed in sequence. These procedures are the
first solution generation, population initialization, selection,
crossover, and mutation. Each of these procedures will call
one of the strategy types. Variant 1 consists of both RRGA
and RR phase. During RRGA phase, first solution generation,
population initialization, crossover, and mutation will use
types 1, 4, 4, and 4 strategies, respectively. In the RR phase,
the type 4 strategy is used. Variant 2 has RRGA andRR phase.
In the RRGA phase, types 1, 2, 2, and 2 strategies are used in
first solution generation, population initialization, cross over
and mutation, respectively. Variant 3, 4, and 5 have the RR
phase only. The types 3, 4, and 2 strategies are used in variant
3, 4, and 5 accordingly. Table 5 compares the RRGA with
five variants. In the table, ‘‘NV’’ represents the minimum
number of used vehicles, ‘‘TD’’ represents the minimum
total travelled distance (function cost) and ‘‘T’’ represents the
minimum operation time of the proposed algorithm in sec-
onds. The ‘‘count’’ represents the number of minimum total
travelled distance in the instances. The ‘‘Average’’ represents
the average of each metric for each instance type. The ‘‘Over-
all Average’’ represents the average of each metric for all
instances. The best result or minimum value of total travelled
distance in each instance is obtained after 30 independent
runs.

In C1 and C2 instances, the RRGA best results are sim-
ilar to other variants except for variant 2 in C109 instance.
In C1 instance type, variant 1 has the minimum average
operation time, and except for variant 2, all variants and the
RRGA have the minimum average total travelled distance.

169860 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 5. Comparison with different variants.

VOLUME 8, 2020 169861

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 5. (Continued.) Comparison with different variants.

169862 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 6. Comparison with different variants by average.

VOLUME 8, 2020 169863

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 6. (Continued.) Comparison with different variants by average.

169864 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 7. Comparison with the four recently published hybrid algorithms.

VOLUME 8, 2020 169865

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 7. (Continued.) Comparison with the four recently published hybrid algorithms.

However, in C2 instance type, the RRGA and all variants
have the minimum average total travelled distance. In R1 and
R2 instances, the RRGA achieves more minimum total trav-
elled distance (R1 - 11 instances and R2 - 9 instances) than
variant 1 (R1 - 6 instances and R2 - 2 instances), 2 (R1 - 7
instances and R2 - 7 instances), 3 (R1 - 9 instances and R2 -
8 instances), 4 (R1 - 8 instances and R2 - 7 instances) and 5
(R1 - 5 instances, and R2 - 8 instances). In R1 instance type,
variants 2 and 3 have the minimum average operation time
and average total travelled distance, respectively. However,
the variant 2 minimum average total travelled distance differ-
ences are insignificant compared to the RRGA. In R2 instance
type, the RRGA and variant 3 have the total travelled distance
and minimum average operation time, respectively. The dif-
ference in minimum average total travelled distance between
the RRGA and variant 3 are insignificant.

In RC1 instances, the RRGA has similar number of
minimum total travelled distance with variant 3 (RC1 has
5 instances), but the minimum average operation time is
better than the RRGA, but the difference in minimum average
total distance is insignificant. Nevertheless, in RC2 instance
type, the RRGA shows better results in average total travelled
distance (1004.35) and operation time (1.58 seconds) than
other variants.

Overall, the RRGA shows remarkable results (47 instances)
than other variants (variant 1 – 27 instances, variant 2 - 36
instances, variant 3 - 43 instances, variant 4 - 37 instances,
and variant 5 - 39 instances) in overall average total trav-
elled distance eventhough the overall average operation time
(68.29 seconds) is marginally lower than variant 3 (57.06 sec-
onds). In this comparison, the RRGA has better optimization
performance and reasonable convergence speed than other
variants. It is worth mentioning some instances have longer
average operation time because the production machines
used in this experiment are personal computers and not a
server specification. The operation time can be lowered down
drastically by vertically scaling the personal desktop or using
a server specification. Nowadays, the cost of acquiring a
better server specification is within the affordable range and
the deploy speed is faster and economical through on-demand
requests with the advent of cloud computing and the demise
of on-premise deployment.

Table 6 compares the average of total travelled distance,
standard deviation, and operation time after 30 independent
runs with other variants. ‘‘MTD’’ represents the average of
total travelled distance after 30 independent runs. This metric
measures the best results on average after 30 independent
runs. ‘‘Std Dev’’ represents the standard deviation of total
travelled distance after 30 independent runs and this metric
measures the magnitude of best results or a minimum average
of total travelled distance differences. ‘‘AT’’ represents the
minimum average operation time after 30 independent runs
in seconds. The ‘‘count’’ represents the number of mini-
mum total travelled distance in the instances. The ‘‘Aver-
age’’ represents the minimum average of each metric in each
instance type. The ‘‘Overall Average’’ represents the mini-
mum average of each metric in all instances. In C1 instances,
the RRGA has more minimum average of total travelled
distances (9 instances) than variant 1 (8 instances), vari-
ant 2 (6 instances), variant 4 (8 instances), and variant 5
(5 instances) except variant 3. In C1 instance type, the RRGA
and variant 3 have the minimum average operation time
and better standard deviation than other variants except vari-
ant 3. Although variant 4 has better average operation time
(18 seconds) than the RRGA, their results on average total
travelled distance and standard deviation are slightly higher
than the RRGA, which makes variant 4 slightly inferior in
this instance type. In C2 instances, all variants except for
variant 5 have the same number of minimum total travelled
distances (8 instances), and standard deviations (0 values)
with the RRGA. In C2 instance type, the minimum aver-
age total travelled distance (589.86) and standard deviation
(0 value) in RRGA are similar to all variants except for
variant 5, but the average operation time is slightly above
(5.92 seconds) the variant 3 (0.62 seconds) which makes
the RRGA slightly underperformed in this instance type.
In R1 instances, the RRGA has more minimum total travelled
distance (6 instances) than variant 1 (1 instance), variant 2
(5 instances), variant 3 (0 instances), variant 4 (0 instances),
and variant 5 (0 instances). In R1 instance type, the RRGA
has the minimum total travelled distance (1187.34) and stan-
dard deviation (6.01) than other variants, even though variant
3 has minimum average operation time (2142.88). There are
more instances (6 instances) in variant 2 with the number

169866 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 8. Comparison with the four recently published hybrid algorithms average results.

VOLUME 8, 2020 169867

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 9. The Wilcoxon signed-ranks non-parametric test.

of minimum average total travelled distance than the RRGA
(5 instances) in R2 instances. However, the RRGA is still
leading when it comes to the minimal average total travelled
distance (880.66) and average operation time (475.29 sec-
onds) than other variants in this instance type. This result
means the RRGA outperforms other variants in R1 and
R2 instance type. In RC1 instance type, the RRGA outper-
form other variants, but in RC2 instance type, the RRGA is
underperformed but the difference is insignificant. In sum-
mary, the RRGA still has the best overall average total trav-
elled distance (982.64) and overall average operation time
(1050 seconds) than other variants. These results indicate that
RRGA has superior average optimization results and average
convergence speed.

2) COMPARISON WITH THE FOUR RECENTLY PUBLISHED
HYBRID ALGORITHMS
Table 7 compares the RRGA with four recently pub-
lished hybrid algorithms. Our results show that RRGA
has high number of minimum total travelled distances
(42 instances or 75% of total instances) than other
hybrid algorithms (ESS-PSO – 34 instances, M-MOEA/D
– 16 instances, GA-PSO – 28 instances, and LGA – 18
instances). The RRGA also outperforms other hybrid algo-
rithms by instances (R1 - 7 instances, R2 - 8 instances, RC1
- 5 instances, and RC2 - 6 instances). These results show that
the RRGA has superior optimization performance than the
four recently published hybrid algorithms.

Table 8 compares the average total travelled distance and
standard deviation with the four recently published hybrid
algorithms. The ‘‘N/A’’ represents that the result is not avail-
able. In instances comparison, our proposed algorithm has
the highest number of average total travelled distances in
C1 (9 instances), C2 (8 instances), R1 (9 instances), R2
(10 instances), RC1 (5 instances), and RC2 (8 instances)
than the recently published hybrid algorithms. In addition,
if we compare the overall average, the RRGA also has
the minimum average total travelled distance (C2 - 589.86,
R1 - 1187.34, R2 - 880.66, RC1 - 1355.24, and RC2 -
1009.53) and standard deviation (C1 – 0, C2 - 0, R2 - 2.54,
and RC2 - 6.02) which outperforms four recently published
hybrid algorithms. This result explains that RRGA has bet-
ter average optimization performance than the four recently
published hybrid algorithms even after 30 independent
runs.

Table 9 shows that the Wilcoxon signed-ranks is a non-
parametric test that is used to determine whether two depen-
dents of data are different. The p-value is the probability of
obtaining the observed difference between the two groups are
based on chance. If the p-value is very low (<0.05), the null
hypothesis will be rejected, and the result is significant; other-
wise, the null hypothesis will be accepted. Table 10 shows the
p-value resolve by the Wilcoxon test with significance level
α = 0.05. This measurement is used to compare the RRGA
with the four recently published hybrid algorithm papers,
whether they are statistically significant or not. The notation
‘‘+’’ represents the null hypothesis is rejected, and the RRGA
is statistically better performance for that particular instance.
Except in LGA [17], M-MOEA/D [38], and ESS-PSO [36] in
C1 and C2 instance type and GA-PSO [37] in RC1 instance
type, our proposed algorithm is statistically better in most of
the instances types.

3) COMPARISON WITH THE BEST-KNOWN SOLUTIONS
Table 10 compares with the best-known solutions [36]. In this
table, ‘‘BKS’’ is the best-known solution, and ‘‘TD’’ is the
total travelled distance. ‘‘Gap %’’ is the percentage differ-
ence between the proposed algorithm and the best-known
result. ‘‘Average Gap %’’ is the average percentage differ-
ence between the proposed algorithm and the best-known
solution. Our results show that 33 instances which have
similar results compare to the best-known solutions, and
7 instances which outperform the best-known solutions. This
result is equivalent to 71.42% of all the instances, which
is similar or better results than best-known solutions. If we
compare with the minimum average total travelled distance,
50% (28 instances) of the instances outperform the best-
known solutions, 23 instances which do not have the infor-
mation available, and 4 instances which have results inferior
to the best-known solutions, but the differences are relatively
insignificant (0.55%). In this case, we can conclude that the
RRGA can produce a lot of best-known solutions in many
instances and outperform the best-known average total trav-
elled distance in most of the instances.

4) COMPARISON WITH THE NINE LEADING ALGORITHMS
Table 11 shows nine leading algorithms are selected for
comparison. Their instance type results are compared with
one another, and the best results are highlighted in bold. The
RRGA achieves the best results in most of the instance types
except for RC1 instance type. However, the result difference

169868 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 10. Comparison with the best-known solutions.

is insignificantly lower than the CGH algorithm. On average,
the RRGA has the best average solution (978.12) than other
leading algorithms and very close to the best-known average
result (974.02).

V. CONCLUSIONS
This article presents a distributed RRGA to solve the
VRPTW. In this proposed algorithm, the RRGA process
lifecycle is divided into RRGA phase and the RR phase.

VOLUME 8, 2020 169869

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

TABLE 11. The RRGA compares with the nine-leading algorithm.

In RRGA phase, it has two subprocedures. In the first sub-
procedure, the genetic operators generate a random customer
list, and in the second subprocedure, the strategy types in the
RR principle create a new solution based on the generated
customer list. In RR principle, part of the solution can be
randomly or radially ruined and reconstructed back into a
new solution using the recreate method. Therefore, the radial
and random strategies were proposed in the RR principle
because they can produce excellent results compared to other
strategies. In the RR phase, it executes a procedure iteratively
until a termination criterion is met. In these iterations, the new
solution is intensely improved. In these ways, these two
phases will focus and make use of exploration and exploita-
tion traits, thus promoting global optimal.

The RRGA achieves outstanding results when compared
with the best-known solution, four recently published hybrid
algorithms, and nine leading hybrid algorithms. Moreover,
our results are statistically better, and this shows that our
proposed algorithm is highly effective and better convergence
speed. Although our results are excellent, there is still a myr-
iad of problems we can solve using our proposed algorithm,
especially in VRP variants.

ACKNOWLEDGMENT
These experiments are carried out at the Universiti Tunku
Abdul Rahman’s (UTAR) Numerical and High-performance
Computing lab, MIMOS lab, and Traffic Equipment
lab. This research is supported by the Universiti Tunku
Abdul Rahman, UTAR Research Fund (UTARRF), no.
IPSR/RMC/UTARRF/2019-C2/M01.

REFERENCES
[1] G. B. Dantzig and J. H. Ramser, ‘‘The truck dispatching problem,’’ Man-

age. Sci., vol. 6, no. 1, pp. 80–91, Oct. 1959.
[2] P. Toth, D. Vigo, P. Toth, andD. Vigo,Vehicle Routing: Problems,Methods,

and Applications, 2nd ed. Philadelphia, PA, USA: SIAM, 2014.
[3] M. M. Solomon, ‘‘Algorithms for the vehicle routing and scheduling

problems with time window constraints,’’ Oper. Res., vol. 35, no. 2,
pp. 254–265, Apr. 1987.

[4] J. K. Lenstra and A. H. G. R. Kan, ‘‘Econometric institute complexity
of vehicle routing and scheduling problems,’’ Networks, vol. 2, no. 2,
pp. 221–227, 1981.

[5] D. Pecin, C. Contardo, G. Desaulniers, and E. Uchoa, ‘‘New enhancements
for the exact solution of the vehicle routing problem with time windows,’’
Informs J. Comput., vol. 29, no. 3, pp. 489–502, Aug. 2017.

[6] K. Sörensen, M. Sevaux, and F. Glover, ‘‘A history of metaheuristics,’’
Handb. Heuristics, vol. 2, pp. 791–808, 2018.

[7] O. Bräysy andM.Gendreau, ‘‘Vehicle routing problemwith timewindows,
part II: Metaheuristics,’’ Transp. Sci., vol. 39, pp. 119–139, Feb. 2005.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MA, USA: Univ. Michigan Press, 1975.

[9] C. Darwin and D. Quammen, On the Origin of Species: The Illustrated
Edition. Sterling Signature, 2008, p. 560.

[10] V. S. Kumar, M. R. Thansekhar, R. Saravanan, and S. M. J. Amali,
‘‘Solving multi-objective vehicle routing problem with time windows by
FAGA,’’ Procedia Eng., vol. 97, pp. 2176–2185, Jan. 2014.

[11] C.-B. Cheng andK.-P.Wang, ‘‘Solving a vehicle routing problemwith time
windows by a decomposition technique and a genetic algorithm,’’ Expert
Syst. Appl., vol. 36, no. 4, pp. 7758–7763, May 2009.

[12] R. Pérez-Rodríguez and A. Hernández-Aguirre, ‘‘A hybrid estimation of
distribution algorithm for the vehicle routing problemwith timewindows,’’
Comput. Ind. Eng., vol. 130, pp. 75–96, Apr. 2019.

[13] J. Berger and M. Barkaoui, ‘‘A parallel hybrid genetic algorithm for the
vehicle routing problem with time windows,’’ Comput. Oper. Res., vol. 31,
no. 12, pp. 2037–2053, Oct. 2004.

[14] D. M. Pierre and N. Zakaria, ‘‘Stochastic partially optimized cyclic shift
crossover for multi-objective genetic algorithms for the vehicle routing
problem with time-windows,’’ Appl. Soft Comput., vol. 52, pp. 863–876,
Mar. 2017.

[15] G. B. Alvarenga, G. R. Mateus, and G. de Tomi, ‘‘A genetic and set
partitioning two-phase approach for the vehicle routing problem with time
windows,’’ Comput. Oper. Res., vol. 34, no. 6, pp. 1561–1584, Jun. 2007.

[16] K. Ghoseiri and S. F. Ghannadpour, ‘‘Multi-objective vehicle routing prob-
lem with time windows using goal programming and genetic algorithm,’’
Appl. Soft Comput., vol. 10, no. 4, pp. 1096–1107, Sep. 2010.

[17] Z. Ursani, D. Essam, D. Cornforth, and R. Stocker, ‘‘Localized genetic
algorithm for vehicle routing problem with time windows,’’ Appl. Soft
Comput., vol. 11, no. 8, pp. 5375–5390, Dec. 2011.

[18] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck, ‘‘Record
breaking optimization results using the ruin and recreate principle,’’
J. Comput. Phys., vol. 159, no. 2, pp. 139–171, Apr. 2000.

[19] E. Prescott-Gagnon, G. Desaulniers, and L.-M. Rousseau, ‘‘A branch-and-
price-based large neighborhood search algorithm for the vehicle routing
problem with time windows,’’ Networks, vol. 54, no. 4, pp. 190–204,
Dec. 2009.

[20] D. Pisinger and S. Ropke, ‘‘A general heuristic for vehicle routing prob-
lems,’’ Comput. Oper. Res., vol. 34, no. 8, pp. 2403–2435, Aug. 2007.

[21] Z. Wang, Y. Li, and X. Hu, ‘‘A heuristic approach and a tabu search
for the heterogeneous multi-type fleet vehicle routing problem with time
windows and an incompatible loading constraint,’’ Comput. Ind. Eng.,
vol. 89, pp. 162–176, 2014.

[22] B. Yu, Z. Z. Yang, and B. Z. Yao, ‘‘A hybrid algorithm for vehicle
routing problem with time windows,’’ Expert Syst. Appl., vol. 38, no. 1,
pp. 435–441, 2011.

[23] Y. Nagata, O. Bräysy, and W. Dullaert, ‘‘A penalty-based edge assembly
memetic algorithm for the vehicle routing problem with time windows,’’
Comput. Oper. Res., vol. 37, no. 4, pp. 724–737, Apr. 2010.

[24] Y. Shi, T. Boudouh, and O. Grunder, ‘‘An efficient tabu search based pro-
cedure for simultaneous delivery and pick-up problem with time window,’’
IFAC-PapersOnLine, vol. 51, no. 11, pp. 241–246, 2018.

[25] H. Li and A. Lim, ‘‘Local search with annealing-like restarts to solve the
VRPTW,’’ Eur. J. Oper. Res., vol. 150, no. 1, pp. 115–127, Oct. 2003.

[26] H. Ben Ticha, N. Absi, D. Feillet, and A. Quilliot, ‘‘Multigraph modeling
and adaptive large neighborhood search for the vehicle routing problem
with time windows,’’ Comput. Oper. Res., vol. 104, pp. 113–126, 2019.

169870 VOLUME 8, 2020

T.-S. Khoo et al.: Two-Phase Distributed Ruin-and-Recreate Genetic Algorithm for Solving the Vehicle Routing Problem

[27] V. Pureza, R. Morabito, and M. Reimann, ‘‘Vehicle routing with multiple
deliverymen: Modeling and heuristic approaches for the VRPTW,’’ Eur. J.
Oper. Res., vol. 218, no. 3, pp. 636–647, May 2012.

[28] P. P. Repoussis, C. D. Tarantilis, and G. Ioannou, ‘‘Arc-guided evolutionary
algorithm for the vehicle routing problem with time windows,’’ IEEE
Trans. Evol. Comput., vol. 13, no. 3, pp. 624–647, Jun. 2009.

[29] K. C. Tan, Y. H. Chew, and L. H. Lee, ‘‘A hybrid multiobjective evolution-
ary algorithm for solving vehicle routing problem with time windows,’’
Comput. Optim. Appl., vol. 34, no. 1, pp. 115–151, May 2006.

[30] N. Labadi, C. Prins, and M. Reghioui, ‘‘A memetic algorithm for the
vehicle routing problem with time windows,’’ RAIRO-Oper. Res., vol. 42,
no. 3, pp. 415–431, Jul. 2008.

[31] P. Moscato, New Ideas in Optimization, D. Corne, M. Dorigo, F. Glover,
D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, Eds. Maidenhead, U.K.:
McGraw-Hill, 1999, pp. 219–234.

[32] J. Zhang, F. Yang, and X. Weng, ‘‘An evolutionary scatter search particle
swarm optimization algorithm for the vehicle routing problem with time
windows,’’ IEEE Access, vol. 6, pp. 63468–63485, 2018.

[33] V. Ghilas, E. Demir, and T. VanWoensel, ‘‘An adaptive large neighborhood
search heuristic for the pickup and delivery problem with time windows
and scheduled lines,’’ Comput. Oper. Res., vol. 72, pp. 12–30, 2016.

[34] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine
Learning, vol. 27, no. 2, 1st ed. Boston, MA, USA: Addison-Wesley, 1989.

[35] I. Mihajlovic, Z. Zivkovic, N. Strbac, D. Zivkovic, and A.Jovanovic,
‘‘Using genetic algorithms to resolve facility layout problem,’’ Serbian J.
Manag., vol. 2, no. 1, pp. 35–46, 2007.

[36] J.-Y. Potvin and J.-M. Rousseau, ‘‘A parallel route building algorithm for
the vehicle routing and scheduling problem with time windows,’’ Eur. J.
Oper. Res., vol. 66, no. 3, pp. 331–340, May 1993.

[37] S.-H. Xu, J.-P. Liu, F.-H. Zhang, L. Wang, and L.-J. Sun, ‘‘A combination
of genetic algorithm and particle swarm optimization for vehicle routing
problem with time windows,’’ Sensors, vol. 15, no. 9, pp. 21033–21053,
Aug. 2015.

[38] Y. Qi, Z. Hou, H. Li, J. Huang, andX. Li, ‘‘A decomposition basedmemetic
algorithm formulti-objective vehicle routing problemwith timewindows,’’
Comput. Oper. Res., vol. 62, pp. 61–77, Oct. 2015.

[39] Y. Rochat and É. D. Taillard, ‘‘Probabilistic diversification and intensi-
fication in local search for vehicle routing,’’ J. Heuristics, vol. 1, no. 1,
pp. 147–167, Sep. 1995.

[40] J. Sripriya, A. Ramalingam, andK. Rajeswari, ‘‘A hybrid genetic algorithm
for vehicle routing problem with time windows,’’ in Proc. Int. Conf. Innov.
Inf., Embedded Commun. Syst. (ICIIECS), Mar. 2015, pp. 1–4.

[41] G. B. Alvarenga, G. R. Mateus, and G. de Tomi, ‘‘A genetic and set
partitioning two-phase approach for the vehicle routing problem with time
windows,’’ Comput. Oper. Res., vol. 34, no. 6, pp. 1561–1584, Jun. 2007.

[42] B. Ombuki, B. J. Ross, and F. Hanshar, ‘‘Multi-objective genetic algo-
rithms for vehicle routing problem with time windows,’’ Appl. Intell.,
vol. 24, no. 1, pp. 17–30, Feb. 2006.

[43] P. Shaw and S. A. Ilog, ‘‘Using constraint programming and local search
methods to solve vehicle routing problems,’’ in Proc. Int. Conf. Princ.
Pract. Constraint Program. Berlin, Germany: Springer-Verlag, 1998,
pp. 417–431.

[44] J.-F. Cordeau, G. Laporte, and A. Mercier, ‘‘A unified tabu search algo-
rithm for vehicle routing problems with soft time windows,’’ J. Oper. Res.
Soc., vol. 52, no. 8, pp. 928–936, 2001.

[45] E. T. Yassen, M. Ayob, M. Z. A. Nazri, and N. R. Sabar, ‘‘Meta-harmony
search algorithm for the vehicle routing problem with time windows,’’ Inf.
Sci., vol. 325, pp. 140–158, Dec. 2015.

[46] D. Zhang, S. Cai, F. Ye, Y.-W. Si, and T. T. Nguyen, ‘‘A hybrid algo-
rithm for a vehicle routing problem with realistic constraints,’’ Inf. Sci.,
vols. 394–395, pp. 167–182, Jul. 2017.

THAU-SOON KHOO received the M.Sc. degree
in finance from the University of Hull, Hull,
U.K., in 1996, and the M.Sc. degree in advanced
in IT from the University of Malaysia Sarawak
(UNIMAS), Sarawak, Malaysia, in 2012. He is
currently pursuing the Ph.D. degree with the
University of Tunku Abdul Rahman (UTAR),
Selangor, Malaysia. He has over 25 years of IT
working experience in different industry. His cur-
rent interests include big data analytics, artificial

intelligence, optimization, software engineering, machine learning, cloud
computing, and their applications.

BABRDEL BONAB MOHAMMAD (Member,
IEEE) received the Ph.D. degree in philoso-
phy from Universiti Teknologi Malaysia. He was
a Postdoctoral Research Fellow with Universiti
Tunku Abdul Rahman (UTAR), where he is cur-
rently an Assistant Professor of computer science
with the Lee Kong Chian Faculty of Engineering
and Science, Universiti Tunku Abdul Rahman,
Malaysia. His research interests include artifi-
cial Intelligence, deep learning, image processing,

machine learning, and evolutionary algorithms.

VOON-HEE WONG received the Ph.D. degree
in philosophy from Universiti Sains Malaysia
(Statistics). He is currently an Assistant Profes-
sor and the Head of Department of Mathematical
and Actuarial Sciences, Universiti Tunku Abdul
Rahman (UTAR).

YONG-HAUR TAY received the Ph.D. degree in
philosophy from the University De Nantes. He is
currently the Director of Recogine Technology.
He serves as an Adjunct Associate Professor with
UTAR. His research interests include artificial
intelligence, pattern recognition, neural comput-
ing, handwriting recognition, machine learning,
and neural networks.

MADHAVAN NAIR received the Ph.D. degree
in philosophy from the Universiti Putra Malaysia
(Nature Tourism). He is currently an Assistant Pro-
fessor with UTAR and the Head of the Department
of Internet Engineering and Computer Science. He
serves as a board of moderators of data commu-
nicaion and networking, from 2009 to 2014. He
is a member of the board of moderator in 2009.
He was also a Technical Consultant for software
on network security and data storage management,
in 2018.

VOLUME 8, 2020 169871

