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ABSTRACT Urban rivers are often narrow, and general remote sensing data cannot meet the needs of water
quality monitoring. In the process of monitoring of river water quality by remote sensing, the spectral and
spatial dimension of satellite-borne images cannot be taken into consideration at the same time, making fine
pollution monitoring of urban rivers difficult. Transparency is one of the core indicators for evaluating water
quality, and hyperspectral remote sensing data are rich in spectral information and can be used for quantitative
transparency estimation. The application of unmanned aerial vehicles (UAV)remote sensing effectively
makes up for the deficiencies in satellite remote sensing monitoring. Aiming at this problem, this paper
proposed the use of the eXtreme Gradient Boosting (XGBoost) regression algorithm for the quantitative
inversion of urban river transparency. The spatial resolution of the collected imagery is 18.5 cm, which is
suitable for urban rivers that are almost ten meters wide. Compared with five traditional empirical models,
integrated algorithms such as gradient regression and random forest get much better results. Moreover, the
accuracy of transparency estimation using the XGBoost regression algorithm was significantly improved,
and the inversion model R2 in both study areas reached over 0.97. Finally, the established transparency
inversion models were used to generate transparency distribution maps of the two study areas. The results
showed that the distribution of the water transparency was consistent with the results of the field monitoring,
indicating that it is feasible to use the XGBoost algorithm for the inversion of urban river transparency in
UAV-borne hyperspectral imagery.

INDEX TERMS Transparency, UAV-borne, extreme gradient boosting, hyperspectral imagery.

I. INTRODUCTION
Water resources are vital for human reproduction and life,
and provide an irreplaceable ecological function [1], [2].
With the rapid development of the economy, human activities
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have intensified and had a series of impacts on the envi-
ronment [3], [4]. The reasonable protection, development,
and utilization of water resources are important aspects for
the protection and sustainable development of the ecologi-
cal environment [5]. Therefore, the need for accurate water
quality monitoring is becoming increasingly urgent. Water
transparency is very important in water ecology because it
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directly affects the depth that light can penetrate [6], [7], and
is related to the spatial distribution of benthic plants such
as large algae [8]. At certain water depths, the areas with
higher transparency tend to have more vegetation. In contrast,
in the areas with lower transparency, many aquatic plants
cannot photosynthesize, because of the insufficient light. In
addition, transparency is also related to planktonic algae,
colored dissolved organic matter (CDOM), and suspended
particles in the water [9]. Transparency is also a core indi-
cator for evaluating the eutrophication of water bodies [10].
Therefore, it is of great significance to accurately monitor the
transparency of water bodies.

Water transparency can be measured by optical sensors
(such as transmissometers) and Secchi disks [11]. The Secchi
disk, in particular, is widely used to indicate the transparency
of water, in part because it is convenient, cheap and easy
to obtain. Due to the spatial heterogeneity of water qual-
ity distribution, remote sensing technology can accurately,
quickly, and effectively cover large areas [12], [13], and can
obtain data that are difficult to obtain manually. As a result,
remote sensing has become the most popular data source for
obtaining regional-scale water body transparency data [14].

With regard to the remote sensing estimation of water
body transparency, scholars have done a lot of research, but
the research objects are mostly sea areas, rivers, and large
lakes, and the data used are mostly space-borne data [4],
[7], [15]–[18]. For example, Setiawan et al. [19] used Landsat
imagery to estimate long-term lake transparency changes. For
airborne hyperspectral data, Thiemann and Kaufmann [20]
used airborne hyperspectral data to monitor the transparency
of Mecklenburg Lake in Germany. Many scholars use various
data to monitor the transparency of water bodies, such as
TM [21], MSS [22], IKONOS [23] and even video data [24].
Among them, Landsat data is more widely used, and its
single band or band ratio is used to build the transparency
measurement algorithm, which has good performance [25].
These researches are aimed at larger scale water body trans-
parency measurements. However, for the transparency moni-
toring of urban narrow river channels, the spatial and spectral
resolutions of the traditional space-borne or airborne remote
sensing data cannot meet the accurate monitoring require-
ments [26].

Unmanned aerial vehicle (UAV)-borne hyperspectral
remote sensing images have high spatial and spectral res-
olutions, and are being used more and more in ecological
monitoring [27]. At the same time, UAV-drones have many
advantages such as low cost, low loss, reusability and easy
operation, which can provide powerful help for environmen-
tal monitoring and effectively improve the quality of environ-
mental monitoring. In this study, we applied a UAV remote
sensing platform equipped with a miniature hyperspectral
sensor to obtain hyperspectral remote sensing image data,
which were combined with ground-based measured data,
and used eXtreme Gradient Boosting (XGBoost) machine
learning algorithm for urban river channel transparency mon-
itoring. The purpose of this study was to combine UAV-borne

hyperspectral imagery with a machine learning algorithm,
and provide a reference for urban river channel transparency
monitoring research.

II. MATERIALS AND METHODS
A. STUDY AREAS
Two inland channels in Wuhan, China, were selected as the
experimental areas for this study. The Shahu Port channel
(114◦ 21’ 22.36’’ E, 30◦ 35’ 11.44’’ N) is one of Wuhan’s
many port channels, running fromYouyi Avenue in the north-
east, to Waisha Lake in the southwest, and Donghu Lake
in the southeast. The port channel merges with the Yangtze
River and has a total length of about 9.45 km. It is an
important channel connecting Donghu Lake and Shahu to the
Yangtze River. Due to the poor drainage and environmental
conditions, the Shahu Port channel is a typical polluted urban
water body. At the time of writing, the black odorous water
treatment project at Shahu Port has now been completed,
as has a dredging project. However, the water bodies of Shahu
Port have been contaminated for a long time, and the problem
of low visibility still exists. The selected study area of the port
channel runs fromYangyuan South Road to Luojiagang Inter-
change, in which 40 sampling points are evenly distributed.

The Xunsi River (114◦ 18’ 0.12’’ E, 30◦ 29’ 58.87’’ N) is
16 km long and is located in the southern part of Wuhan City.
It flows through Jiangxia District, Hongshan District, and
Wuchang District, and finally joins the Yangtze River. With
the continuous discharge of untreated domestic sewage into
the river, the water body is now seriously polluted. There are
many floating objects in the river, and thewater quality is very
poor. The river is gray-black in color and has an unpleasant
odor. The pollution degree of the water body is greater than
that of the Shahu Port channel. The research area covers a
section of U-shaped river, in which 32 sampling points are
evenly arranged in the river channel.

B. DATA COLLECTION
The data collected in this study included the transparency
of the river sampling points, latitude and longitude coordi-
nates, and measured ground spectra. A JCT-8 Secchi disk was
used for the transparency field measurement. To ensure the
accuracy of the measurement results, each measurement was
repeated two to three times.

The ground-based measurement of the spectrum of the
water was undertaken based on the ‘‘above-water surface
method’’ [28]. When collecting the ground-based spectrum,
calibration was first achieved on a standard board, the water
surface spectrum was then recorded, and finally the spectrum
of the sky was also collected. In the acquisition process, care
was taken to avoid direct sunlight; otherwise, the instrument
would be overexposed, resulting in unusable sampling data.

C. UAV-BORNE IMAGE ACQUISITION AND
PREPROCESSING
The hyperspectral imagery was obtained with a Nano-
HyperSpec mini hyperspectral imager. As shown in Table 1,
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FIGURE 1. Sampling points in the Shahu Port channel.

the wavelength range of the Nano-HyperSpec sensor is
400–1000 nm, the number of spectral channels is 270, and the
number of spatial channels is 640. The global positioning sys-
tem/inertial measurement unit (GPS/IMU) module records
the attitude information of the imager (including altitude,
longitude, latitude, roll, pitch, and yaw). After loading the
attitude information into the post-processing software pro-
vided by Headwall, the user can geometrically correct the
collected strips. In addition, each Nano-HyperSpec sensor is
calibrated with a lens selected by the user before it leaves
the factory. The radiation can be directly corrected in the
post-processing software provided byHeadwall to convert the
digital number (DN) data into radiance data. Coaxial reflec-
tion spectrum imaging technology is adopted, which has the
advantages of a compact size and accurate spectral infor-
mation. The hyperspectral data collection was performed on
May 31 and June 1, 2019, at the Shahu Port channel and
the Xunsi River, respectively. The flight platform for the

TABLE 1. Flight parameters of the sensor and UAV.

Nano-HyperSpec hyperspectral imaging system was a six-
rotor DJI M600 Pro drone. The flight altitude was set to
200 m. The spatial resolution of the collected imagery is
18.5 cm, the wavelength range is 0.4–1um, and the number
of spectral bands is 270.

The UAV-borne hyperspectral data processing consisted
of sensor radiation calibration, site radiation correction,
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FIGURE 2. Sampling points in the Xunsi river channel.

geometric correction, and water extraction. Sensor radia-
tion calibration involves converting the signal output by the
sensor unit into the actual radiation intensity value. In this
study, according to the radiation correction model and the
conversion parameters provided by the sensor manufacturer,
the original image data were converted pixel-by-pixel from
the DN value to the radiance value. The remote sensing
reflectance of the off-water radiation from the ground sam-
pling point and the geometrically corrected remote sensing
image pixel spectrum were then used to construct a linear
relationship between the airborne radiation curve and the
ground measured spectrum, so as to achieve site radiation
correction. Because the drone was flown at a height of only
200 m, the complex atmospheric effects could be ignored.
The image information was also geometrically corrected with
the GPS/IMU module’s attitude information [29].

III. METHODS
A. EXTREME GRADIENT BOOSTING
Integrated learning involves building and combining multiple
learners to complete the learning task. By combiningmultiple
learners, it is often possible to obtain a significantly better
generalization performance than with a single learner, so this

approach is widely used in water quality monitoring [30].
The eXtreme Gradient Boosting (XGBoost) algorithm is a
typical representative of the integrated algorithms, which was
proposed in 2016, based on a regression tree [31]. XGBoost
is a massively parallel boosted tree tool. The regression tree
and the decision tree are similar in concept, and they are both
tree-based algorithms.

The basis of XGBoost is the gradient boosting algorithm.
Gradient boosting is a powerful technique for building predic-
tive models. The integrated algorithm builds multiple weak
evaluators on the data set and summarizes the modeling
results of all the weak estimators to obtain a better regres-
sion or classification performance than with a single model.
A weak evaluator is defined as a model that performs at
least better than random guessing, that is, any model with a
prediction accuracy of not less than 50%.

There are many ways to integrate the different weak evalu-
ators. One approach is a bagging method that builds multiple
parallel and independent weak evaluators at one time. Its typi-
cal representative method is the random forest algorithm [32].
Another approach is the lifting method, whose principle is to
build weak evaluators one by one and gradually accumulate
the multiple weak estimators after multiple iterations [33].
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The most famous algorithms based on the lifting method
are AdaBoost [34] and the gradient boosting decision tree
(GBDT) [35]. XGBoost was developed from GBDT. There
can be regression trees or classification trees in the gradient
boosting tree structure, both of which use the classification
and regression tree (CART) algorithm as the mainstream tree
structure. The gradient lifting regression tree is an integrated
model focusing on the regression tree model. Its modeling
process is as follows. Firstly, a tree is built and then iterated
gradually. A tree is added during each iteration, and a strong
evaluator integrated with the many tree models is gradually
formed.

For XGBoost, each leaf node will have a prediction score,
which is also known as the leaf weight. This leaf weight is
the regression value of all the samples on this leaf node on
this tree, and is expressed by (xi) or w, where fk represents
the kth decision tree and xi represents the feature vector
corresponding to sample i. When there is only one tree, f1(xi)
is the result returned by the lifting algorithm, but this result is
far from ideal. When there are multiple trees, the regression
result of the integrated model is the sum of the predicted
scores of all the trees. Assuming that there are k decision trees
in the integrated model, then the prediction results given by
the entire model on sample i are:

ŷ(k)i =
k∑
K

fk (xi) (1)

where ŷ(k)i represents the predicted value of the ith sample
transparency in this experiment, and xi represents the input
sample.

Accurate prediction is a very important factor, and
XGBoost implements an algorithm that balances model per-
formance and operation speed. The common loss functions,
such as error rate and mean-square error, can only measure
the performance of the model and cannot measure the speed
of the model. Spatial complexity and temporal complexity
are used in many models to measure the computational effi-
ciency of the model. Therefore, XGBoost introduces model
complexity to measure the algorithm’s operational efficiency,
the formula of which is expressed as:

obj(θ) =
n∑
i

L(yi, ŷi)+
K∑
k=1

�(fk ) (2)

where i represents the ith sample in the data set, n represents
the total amount of data imported into the kth tree, and K
represents all the established trees. The first term represents
the traditional loss function, which measures the difference
between the true value and the predicted value. The measured
difference is usually the adjusted standard error. The second
term represents the complexity of the model, which is rep-
resented by a transformation of the tree model. This change
represents a formula for measuring the complexity of the tree
model from the structure of the tree, which is defined as

follows:

�(f ) = γT +
1
2
λ ‖w‖2 (3)

where T is the number of leaf nodes and ‖w‖ is the modulus
of the leaf node vector. γ represents the difficulty of the node
segmentation and λ represents the L2 regularization coeffi-
cient. In the process of iterating each tree, it is minimized in
an attempt to obtain the optimal result, so the model error rate
and model complexity are minimized at the same time.

According to (2), the objective function of the learning
model for a total of t iterations is:

obj(t) =
n∑
i=1

L(yi, ŷ
(t)
i )+

t∑
k=1

�(fk )

=

n∑
i=1

L(yi, ŷ
(t−1)
i + ft (xi))+

t−1∑
k=1

�(fk )+�(ft ) (4)

According to Taylor’s second-order approximate expansion,

obj(t) =
n∑
i=1

[gi · ft (xi)+
1
2
hi · ft (xi)2]+�(ft )+ C (5)

where:

gi = ∂ŷ(t−1) l(yi, ŷ
(t−1))

hi = ∂2ŷ(t−1) l(yi, ŷ
(t−1)) (6)

where l(yi, ŷ(t−1)) represents the prediction error of the learn-
ing model composed of the previous t − 1 trees. gi and hi
represent the first and second derivatives of the prediction
model for the current model, respectively. The current model
iterates in the direction of decreasing prediction error.

By combining (1) and (3), ignoring the constant terms, the
structure of the tree introduced into the loss function, and the
objective function will continue to transform. The purpose
of transforming the objective function is to establish a direct
relationship between the structure of the tree (the number of
leaf nodes) and the size of the objective function, in order
to find the optimal tree ft that needs to be solved in the tth
iteration, to obtain:

obj(t) =
T∑
j=1

[Gjwj +
1
2
(Hj + λ)w2

j ]+ γT (7)

where: ∑
i∈Ij

gi = Gj,
∑
i∈Ij

hi = Hj (8)

Find the optimal weight:

w∗j = −
Gj

Hj + λ
(9)

Bring in the objective function and obtain the optimal
solution of the objective function:

obj∗ = −
1
2

T∑
j=1

G2
j

Hj + λ
+ γT (10)

VOLUME 8, 2020 168141



L. Wei et al.: Transparency Estimation of Narrow Rivers by UAV-Borne Hyperspectral Remote Sensing Imagery

Equation (10) is a function for scoring a tree structure,
where the smaller the score, the better the tree structure. The
algorithm searches for the optimal tree structure by construct-
ing different tree structures using (10). All the segmentation
points of the sample features are first determined, and each
identified segmentation point is segmented. The criteria for
the segmentation are as follows:

Gain=
1
2

[
G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ

]
− γ (11)

whereGain represents the difference between the single node
obj∗ and the tree obj∗ of the two nodes after slicing. It tra-
verses the slicing points of all the features and finds the slicing
point of the largest Gain, which is the best splitting point.
Through this process, the optimal transparency monitoring
model can be obtained through the parameter design of the
algorithm.

B. PEARSON CORRELATION COEFFICIENTS
Pearson Correlation Coefficients is a way to measure the cor-
relation of variables [36]. Its output range is -1 to+1.0 means
no correlation, negative value means negative correlation,
and positive value means positive correlation. The larger the
absolute value, the stronger the correlation. The calculation
formula is:

r =

∑
XY −

∑
X
∑
Y

N√(∑
X2 −

(
∑
X)

2

N

)(∑
Y 2 −

(
∑
Y)

2

N

) (12)

where X represents the spectral characteristics of the sam-
ple points. In this experiment, it is the UAV-drone spectral
value or the ratio characteristic of the band, Y represents the
transparency value of the sample points, and N represents the
number of samples.

C. MODEL ACCURACY EVALUATION
In this paper, the following statistical indicators were used to
evaluate the transparency inversion models [37], [38].

1) MEAN ABSOLUTE ERROR (MAE)
The mean absolute error (MAE) can measure the stability of
the model. The smaller the value, the more stable the model
effect. The calculation formula is:

MAE =
1
n

n∑
i=1

∣∣ŷi − yi∣∣ (13)

where
∣∣ŷi − yi∣∣ represents the absolute error of the second

result, and n is the number of samples in the test set. The
value range of MAE is [0, +∞). When the predicted value
exactly matches the true value, it is equal to 0, which is the
perfect model. The larger the error, the larger the MAE value.

2) ROOT-MEAN-SQUARE ERROR (RMSE)
The root-mean-square error (RMSE) is the square root of the
ratio of the square of the deviation of the predicted value from
the true value to the number of observations n. Its calculation
formula is:

RMSE =

√√√√1
n

n∑
i=1

(
ŷi − yi

)2 (14)

The RMSE is very sensitive to extraordinarily large or very
small errors in a set of data, so that it can reflect the accuracy
of the prediction. The value range of RMSE is [0, +∞).

3) R-SQUARED (R2)
The R-squared value is used to characterize the quality of a
fit through the change of data. Its calculation formula is:

R2 = 1−

∑(
yi − ŷi

)2∑
(yi − ȳ)2

(15)

where ȳ represents the average of the actual data set. In
the formula, the denominator is the degree of dispersion of
the original data, and the numerator is the error between the
predicted value and the true value. Their ratio can eliminate
the effect of the degree of dispersion of the original data.
The closer R2 is to 1, the better the ability of the equation’s
variables to explain y, and the model also fits the data better.

IV. RESULTS AND DISCUSSION
In total, 40 and 32 spectra were extracted from the UAV-borne
hyperspectral images in the first research area of Shahu Port
channel and the second research area of Xunsi River, respec-
tively, with a band range of 400–1000 nm. The band range of
400–900 nm (225 bands) was cut to perform the transparency
inversion experiments. As mentioned in the overview of the
study area in Section II, the river water in the two study areas
selected in this experiment is relatively turbid and has low
visibility, so this experiment will not be affected by reflec-
tions from the bottom of the river. Correlation evaluation
is an important part of the quantitative inversion modeling
process. In the analysis of the experimental results, Pearson
correlation coefficients were used to characterize the correla-
tion between the drone spectrum X_Spectra and the inversion
target Y_Transparency [39].

A. FIRST STUDY AREA: SHAHU PORT CHANNEL
This experiment involved the collection of transparency data
for 40 sample points in the field at Shahu Port channel.
The transparency distribution line chart is shown in Fig. 3.
At sample point Nos. 1 to 13, the transparency is low, and
the transparency values are less than 30cm, indicating that the
water body in this section is relatively turbid and the visibility
is poor. Sample point No. 3 has the lowest transparency
at 19cm. After sample point No. 14, the transparency of
the water body increases significantly, as a whole, with the
transparency value of each sampling point being above 50 cm.
The maximum value is sample point No. 16, for which the
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FIGURE 3. Shahu port channel transparency sampling results.

TABLE 2. Field transparency measurements from Shahu port channel.

transparency is 71cm. As shown in Table 2, the maximum
value of the transparency of all the sampling points is 71cm,
the minimum value is 19cm, the average value is 50.85cm,
and the standard deviation is 16.34cm. Overall, the trans-
parency of the 40 sample points at Shahu Port channel varies
significantly.

The spectral curves extracted from the remote sensing
imagery were pre-processed by the band ratio method, and
Pearson correlation analysis was performed with the trans-
parency values of the sampling points in the field. The corre-
lation coefficients are shown in descending order in Fig. 4.
The maximum correlation coefficient between the original
remote sensing reflectance spectrum and the transparency

TABLE 3. Comparison of the modeling accuracy of the different
traditional algorithms for the Shahu port channel data.

TABLE 4. Comparison of the modeling accuracy of the different
algorithms for the Shahu port channel data.

is 0.72454 (Fig. 4a). Overall, the correlation coefficients
of 76 spectra are greater than 0.6, which are mainly con-
centrated in the ranges of 400–430nm and 680–840nm, indi-
cating that these band ranges are sensitive to changes in
transparency.

The band ratio method can eliminate the interference of
background noise, such as water surface smoothness and
the surrounding environment, which changes temporally and
spatially. This is a contrast enhancement operation com-
monly used in quantitative remote sensing inversion [40],
[41]. In this experiment, the exhaustive method was used to

FIGURE 4. Pearson correlation analysis with transparency. (a) Original spectra. (b) Band ratio result.
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FIGURE 5. Fitted results of each function of Shahu Port: (a) Exponential function. (b) Power function. (c) Logarithmic function.
(d) Linear function. (e) Quadratic polynomial.

calculate the ratio of the bands. The ratios of the 225 bands
of the original spectra were calculated in pairs, and 50,400
characteristic variables were obtained. They are arranged in
descending order according to the Pearson correlation coef-
ficient as shown in Fig. 4b. The maximum correlation coeffi-
cient is 0.8918, and there are 312 remote sensing reflectance
ratio correlation coefficients of greater than 0.8, with the

maximum negative correlation being −0.8919. The corre-
lation is significantly improved compared to the original
spectra, so these data can be deemed as suitable for the
transparency inversion modeling.

In this research, we tried to use the band ratio model to
predict the transparency in various common remote sens-
ing inversion models, including exponential function, power
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FIGURE 6. Relationship between the predicted and measured values of transparency with each method. (a) GBDT. (b) AdaBoost.
(c) Random Forest. (d) XGBoost.

function, logarithmic function, linear function, and quadratic
polynomial models to explore whether traditional meth-
ods are suitable for transparency inversion of urban rivers.
In Shahu Port, the maximum correlation coefficient between
the band ratio and the transparency ratio is 0.8919. The ratio
(B136/B86) is the input variable of five empirical models,
and the transparency is the output variable. The results of the
inversion accuracy are listed in Table 3, and the fitted results
are shown in Fig. 5. These results indicate that the traditional
empirical models are not suitable for this experiment in Shahu
Port.

Due to the small number of samples in this experiment,
it is not necessary to set all the parameters when setting the
parameters using the various integrated algorithms for the
experiment. The parameters selected by GBDT for adjust-
ment are learning_rate, the number of boosting stages to
perform (n_estimators), and the fraction of samples used
for fitting the individual base learners (subsample). The
parameters that AdaBoost needs to set are n_estimators and
learning rate. Random forest only needs to set the parame-
ter n_estimators. The parameters required for XGBoost are
n_estimators andmaximumdepth of the individual regression

estimators (max_depth). Through the above three evaluation
indexes RMSE, MAE and R2, a suitable model is determined
for the inversion of transparency.

When the GBDT parameter is set, n_estimators is set
in units of 50, and it is finally determined to be 500.
To prevent overfitting when setting the other two param-
eters learning_rate and subsample, the unit is 0.001 and
0.05 respectively, and it is finally determined to be 0.004 and
0.55. AdaBoost set parameters in accordance with GBDT,
and finally determined that the parameters n_estimators is
100 and learning_rate is 0.001. When setting parameters in
the random forest algorithm, n_estimators is in units of 50,
and it is finally determined to be 100. When setting parame-
ters in XGBoost, max_depth is in units of 1 and n_estimators
is also in units of 50. Finally, it is determined that max_depth
is 4 and n_estimators is 150.

From Table 4, comparing the inversion results of all the
models for Shahu Port channel, XGBoost shows the best
effect in predicting the transparency. Although the predic-
tion accuracy for the XGBoost validation data set (R2

=

0.976, RMSE = 2.515cm, MAE = 2.008cm) is lower than
the prediction accuracy for the modeled data (R2

= 0.988,
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FIGURE 7. Inversion result map for Shahu port channel.

RMSE = 1.711cm, MAE = 1.306cm), on the basis of the
minimum measured ground transparency of 19cm for Shahu
Port channel, the inversion results meet the actual require-
ments.

In addition, the accuracy of the transparency inversion
prediction of several other integrated methods for Shahu
Port channel can also meet the actual needs. The modeling
accuracy for the AdaBoost prediction model (R2

= 0.986,
RMSE = 1.908cm, MAE = 1.423cm) and the prediction
accuracy for the validation set (R2

= 0.975, RMSE =
2.545cm,MAE= 2.001cm) are slightly lower than the results
of the XGBoost model, as a whole, but this model does
obtain relatively good results. Compared with the AdaBoost
model, the prediction accuracy of the random forest model
is reduced, but it also obtains good prediction results, with
the R2 for the modeling set and the validation set reach-
ing 0.97. Compared with the other methods, the prediction
accuracy of the GBDT model in modeling the data (R2

=

0.973, RMSE = 2.640cm, MAE = 2.285cm) is the same,

FIGURE 8. Xunsi river transparency sampling results.

but the prediction accuracy for the verification data (R2
=

0.914, RMSE = 4.754cm, MAE = 3.617cm) decreases sig-
nificantly. The inversion results of the training and test data
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FIGURE 9. Pearson correlation analysis with transparency. (a) Original spectra. (b) Band ratio result.

TABLE 5. Field transparency measurements from Xunsi river.

TABLE 6. Comparison of the modeling accuracy of the different
traditional algorithms for the Xunsi river channel data.

set are shown in Fig. 6. The predicted and true values of all
samples are evenly distributed on the diagonal, indicating that
the inversion results are good, and the model can be used for
transparency inversion. Therefore, considering these results,
the XGBoost model was selected for the inversion of the
hyperspectral imagery of Shahu Port channel.

After saving the determined model and inputting the UAV-
drone image, the inversion results of river transparency can
be obtained. Fig. 7 shows the results of the inversion of the
channel transparency with the hyperspectral imagery using
the XGBoost model. According to the inversion results for
Shahu Port channel, the maximum value of the inversion
result is 70.27cm and the minimum value is 18.92cm. The
maximum value of the field measurement of the transparency
is 71cm and the minimum value is 19cm. The inversion
results are therefore consistent with the actual results. The

sampling points in Fig. 7 are marked with the transparency
values measured in the field.

Further observation of the map shows that the distribution
of the channel transparency is consistent with the results
of the field sampling. The transparency distribution shows
a trend of low first and then high. Before sampling point
No. 12, most of the transparency is below 30cm. During the
field sampling, this river section was quite turbid, the water
body was black in color, and the pollution was serious. How-
ever, starting from the 13th point, the overall transparency
increases significantly. Later field investigations revealed that
the drainage outlet between points 12 and 13 is the drainage
outlet for the nearby waterworks, from which treated purified
water is discharged. Therefore, the transparency results for
Shahu Port channel appear low at first and then high.

B. SECOND STUDY AREA: XUNSI RIVER
In this experiment, the transparency data for 32 sample points
were collected in the field at Xunsi River. The line chart of
the transparency distribution is shown in Fig. 8. In contrast
with the results for Shahu Port channel, the transparency
distribution of the sampling points for the Xunsi River is
relatively stable, and the transparency values of each point
are all between 35cm and 60cm. Statistics of the transparency
information for the 32 sample points inXunsi River are shown
in Table 5. The maximum value of all the sample points
is 59cm, the minimum value is 39cm, the average value is
46.67cm, and the standard deviation is 5.28cm. On the whole,
the transparency of the sample points at Xunsi River changes
only slightly. According to the preliminary judgment, there
are no abnormal values in the transparency data from Xunsi
River.

The spectral curves extracted from the UAV-borne remote
sensing imagery were pre-processed by the band ratio
method, and Pearson correlation analysis was performed with
the transparency data of the field sampling points from Xunsi
River. The correlation coefficients are shown in descending
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FIGURE 10. Fitted results of each function of Xunsi river: (a) Exponential function. (b) Power function. (c) Logarithmic function.
(d) Linear function. (e) Quadratic polynomial.

order in Fig. 9. Themaximum correlation coefficient between
the original remote sensing reflectance spectra and the trans-
parency is 0.6924 (Fig. 9a). Overall, 60 spectra have cor-
relation coefficients of greater than 0.6, which are mainly
concentrated in the 400–500nm range, indicating that this
band range is sensitive to changes in transparency.

For the Xunsi River experiment, the band ratio enhance-
ment was conducted again, which can eliminate the interfer-
ence of background noise, such as water surface smoothness
and the surrounding environment, which changes temporally
and spatially. The exhaustive method was again used to cal-
culate the ratios of the bands. The ratios of the 225 bands of
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FIGURE 11. Relationship between the predicted and measured values of transparency with each method. (a) GBDT. (b) AdaBoost.
(c) Random Forest. (d) XGBoost.

the original spectra were calculated in pairs, and 50,400 char-
acteristic variables were obtained. The Pearson correlation
coefficients and the transparency of the sample points are
arranged in descending order in Fig. 9b. The maximum cor-
relation coefficient is 0.7887. There are 47 remote sensing
reflectance ratio correlation coefficients of greater than 0.75.
The correlation is again significantly improved compared to
the original spectra. Therefore, these data can be considered
as suitable for the transparency inversion modeling.

In this experiment, we also used the band ratio model
to predict the transparency in five common remote sensing
inversion models. In Xunsi River, the maximum correlation
coefficient between the band ratio and the transparency ratio
is 0.7887. The ratio (B18/B25) is the input variable. The
results of the inversion accuracy are listed in Table 6, and
the fitted results are shown in Fig. 10. These results indicate
that the traditional empirical models are not suitable for this
experiment in Xunsi River.

When the GBDT parameter is set, n_estimators is set in
units of, 50, and is finally determined to be 1500. To prevent
overfitting when setting the learning_rate and subsample, it is
set in units of 0.001 and 0.1 respectively, and it is finally

determined to be 0.005 and 0.3. AdaBoost is similar to GBDT
when setting parameters, and finally determined that the
n_estimators is 400 and learning_rate is 0.001. When setting
parameters in the random forest algorithm, n_estimators is
also set to 50, which is finally determined to be 600. When
setting parameters in XGBoost, max_depth is in units of 1
and n_estimators is also in units of 50. Finally, max_depth is
determined to be 4 and n_estimators is 50.

From Table 7, comparing the inversion results of all the
models for Xunsi River, XGBoost shows the best effect in
predicting the transparency. For the Xunsi River research
area, the prediction accuracy for the XGBoost validation data
set (R2

= 0.972, RMSE = 0.684cm, MAE = 0.561cm)
is comparable to the prediction accuracy for the modeled
data (R2

= 0.971, RMSE = 0.901cm, MAE = 0.594cm).
Based on the minimum measured transparency of 39cm and
a standard deviation of 5.28cm on the ground for Xunsi River,
the inversion results meet the experimental requirements.

In addition, the accuracy of the transparency inver-
sion results of several other integrated methods for Xunsi
River shows a significant decrease. The accuracy of the
AdaBoost prediction model (R2

= 0.976, RMSE= 0.799cm,
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FIGURE 12. Inversion result map for Xunsi river.

MAE = 0.525cm) is improved, but the prediction accuracy
for its validation data set (R2

= 0.881, RMSE = 1.414cm,
MAE = 1.165cm) decreases significantly, so these modeling
results are not accurate enough. Similar to the AdaBoost
model, the accuracy of the GBDT model (R2

= 0.974,
RMSE = 0.863cm, MAE = 0.774cm) is higher than the test
set prediction accuracy (R2

= 0.871, RMSE = 1.476cm,
MAE = 1.152cm). Compared with the other methods, the
prediction accuracy of the random forestmodel for themodel-
ing data (R2

= 0.932, RMSE = 1.386cm, MAE = 1.233cm)
and the prediction accuracy for the verification data (R2

=

0.858, RMSE = 1.548cm, MAE = 1.274cm) decrease sig-
nificantly. The inversion results of the training and test data
set are shown in Fig. 11. The predicted and true values of all
samples are evenly distributed on the diagonal, indicating that
the inversion results are good, and the model can be used for
transparency inversion. Therefore, the XGBoost model was

TABLE 7. Comparison of the modeling accuracy of the different
algorithms for the Xunsi river data.

selected for the inversion of the hyperspectral imagery from
Xunsi River.

After the model parameters are determined, the inversion
results can be obtained by inputting the UAV remote sensing
images from the second study area. Fig. 12 shows the results
of the XGBoost model’s inversion of the transparency for the
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Xunsi River hyperspectral imagery. According to the statis-
tics of the inversion results for Xunsi River, the maximum
value of the inversion result is 55.75cm and the minimum
value is 37.95cm. The statistical results of the field measure-
ment have a maximum value of 59cm and a minimum value
of 39cm. Therefore, the inversion result is consistent with the
actual result. The sampling points in Fig. 12 are marked with
the transparency values measured in the field.

Further observation of the map shows that the distribution
of the channel transparency for the Xunsi River is consis-
tent with the results of the field sampling. The transparency
distribution shows a trend of low, then high, and then low
again. In conjunction with Fig. 2, it can be seen that, at sam-
pling points Nos. 1 to 8, the transparency is mostly above
50cm. Upstream of these sampling points, it was observed
during the field sampling that this river section was turbid
and severely polluted. However, at the beginning, at sampling
point No. 1, the overall transparency increases significantly.
Later field investigations revealed that, between the No. 1 and
No. 7 sampling points, green floating islands have been set
up on both banks of the Xunsi River to purify the water.
Green plants, including celery, are planted on the floating
islands to purify thewater [42]. Therefore, the transparency of
Xunsi River appears to be low at first and then high. Because
the distribution of the water quality is relatively uniform,
this inversion result only reflects the distribution trend of
the river transparency, and the prediction results at individ-
ual pixels are not considered here. When compared with
the actual transparency measurement results, the inversion
results can better reflect the transparency distribution trend of
the river.

V. CONCLUSION
In this paper, we have described the quantitative inversion
of UAV-borne hyperspectral imagery for urban river channel
transparency monitoring. In the experiments undertaken in
this study, the spectral data in the 400–900nm wavelength
range of the hyperspectral imagery were extracted, and the
original spectra were used to establish a band ratio model.
Compared with five traditional empirical models and other
boosting integrated algorithms, the accuracy of the water
body transparency estimation using the XGBoost algorithm
showed a significant improvement. And in the case of low
overall transparency, the XGBoost algorithm works well in
both research areas. The training and test set R2 values in both
study areas were higher than 0.97. Finally, the transparency
inversionmodels were used to generate transparency distribu-
tion maps of the two study areas. The results confirmed that
the distribution of the water transparency was consistent with
the results of the field monitoring.

To date, there have been few studies of the application
of UAV-borne hyperspectral imagery for water quality mon-
itoring, and the algorithms used have been different. From
the above discussion, it has been shown that integrated algo-
rithms such as XGBoost have a high prediction accuracy
when applied to the water quality monitoring of UAV-borne

hyperspectral images, and the results can meet the actual
needs. Therefore, in future research, such algorithms could be
combined with UAV-borne hyperspectral imagery to monitor
other water quality parameters, such as chlorophyll and sus-
pended solids concentrations. This research involved using
the rich features of UAV-borne hyperspectral imagery to build
a statistical relationship with water transparency. Moreover,
through this study, we confirmed that it is possible to use
UAV-borne hyperspectral imagery to achieve the dynamic
monitoring of urban river water quality. With the immediacy
of UAV-drone data acquisition, this research can be applied
in more aspects, such as pollution source monitoring and
pollutant transfer. In our future research, we will attempt to
make better use of the hyperspectral spectral features.
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