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ABSTRACT With the continuous development of deep learning, face detection methods have made the
greatest progress. For real-time detection, cascade CNN based on the lightweight model is still the dominant
structure that predicts face in a coarse-to-fine manner with strong generalization ability. Compared to other
methods, it is not required for a fixed size of the input. However, MTCNN still has poor performance in
detecting tiny targets. To improve model generalization ability, we propose a Receptive Field Enhanced
Multi-TaskCascadedCNN. This network takes advantage of the Inception-V2 block and receptive field block
to enhance the feature discriminability and robustness for small targets. The experimental results show that
the performance of our network is improved by 1.08% on the AFW, 2.84% on the PASCAL FACE, 1.31%
on the FDDB, and 2.3%, 2.1%, and 6.6% on the three sub-datasets of the WIDER FACE benchmark in
comparison with MTCNN respectively. Furthermore, our structure uses 16% fewer parameters.

INDEX TERMS Face detection, cascade convolutional neural networks, receptive field.

I. INTRODUCTION
Face detection is the basis in the field of computer vision and
pattern recognition, as well as a fundamental step of face-
related research, such as face recognition [1], verification [2],
and tracking [3]. After decades of development and research,
face detection has been widely used in various aspects of
life, such as security monitoring. It has increasingly become
a research hotspot in the field of video images.

There are some widely used non-neural network-based
face detectors, such as skin-color detection, SVM classi-
fier [4]. Classic image feature extraction algorithms achieve
good accuracy with real-time efficiency for face detec-
tion. Ma et al. [5] proposed an AdaBoost-based training
method to obtain cascade classifiers with multiple feature
types: Haar-like, HOG for an improved discrimination ability.
However, this requires high computation due to contain-
ing too many weak classifiers. An algorithm based on the
Bayesian framework [6] used the Omega shape formed by
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a person’s head and shoulder for head localization to tackle
severe face occlusion. It achieves good performance in detec-
tion faces with severe occlusion, but the scene is restricted
in Automatic Teller Machines. Beyond the AdaBoost-based
methods, Mathias et al. [7] proposed face detection with
deformable part models (DPM) and obtain impressive results.
However, this method usually suffers from high computa-
tional cost. Another method [8] is proposed based on DPM
for detecting faces with occlusion. It can reduce the false-
negative face detection and error rate for detection, however,
it has poor universality for only frontal face images used in
the experiments.

In recent years, the face detection method based on a con-
volutional neural network (CNN) has made a breakthrough
and become the mainstream of the face detection method.
Several studies [9], [10] utilize deep CNN for face detec-
tion and have a better performance on face detection. Faster
R-CNN [11] and other CNN-based two-stage or one-stage
algorithms, with the help of deep convolutional networks
such as VGGNet [12] and ResNet [13], achieve superior
performance. Nevertheless, due to a surplus of convolutional
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layers, the speed of detection slows down greatly. Hence,
some models with a multi-stage face detection algorithm
that has a relatively high True Positive Rate and a real-
time speed are proposed. Wu et al., [10] proposed a funnel-
structured cascade (FuSt) detection constituted by multiple
view-specific fast LAB cascade, multiple coarse MLP cas-
cade, and a unified fineMLP cascade. Farfade et al., [14] pre-
sented a fast CNN’s cascade face detector, using a CNNwith a
novel pyramid architecture, multi-layer merging, knowledge
distilling online and offline hard sample mining.

Multi-task Cascaded Convolutional Neural Networks
(MTCNN) [9] is the dominant multi-stage and multi-task
structure in recent years. Different from generic object detec-
tion, face detection features much larger scale variations
(from several pixels to thousand pixels). Hence, the image
pyramid method adopted by MTCNN could not perform well
on faces with a high degree of variability in scale, especially
for the tiny face. The main reason lies in that the first stage,
the P-net of MTCNN which produces candidate windows
quickly through a shallow CNN, puts the limit of the per-
formance of the entire network. The shallow structure of
P-net cannot cover all the size of the receptive field to extract
the high discriminative feature with standard CNN, which
come from deeper neural networks. As the kernel of standard
convolution is sampled at the same center and commonly set
receptive field at the same size with a regular sampling grid
on a feature map, which probably induces some loss in the
feature discriminability as well as robustness.

According to the discussion above, we propose a new
model called Receptive Field EnhancedMulti-Task Cascaded
CNN (RFE-MTCNN), which integrates the ideal from the
Inception-V2 Block [15] and Receptive Field Block [16] to
build a fast yet powerful face detector with the reasonable
alternatives in a different stage of the cascade network. The
ideal is to enhance the network’s receptive field for feature
representation by bringing in certain hand-crafted mecha-
nisms rather than stubbornly deepening the model. At the
same time, we import Additive Angular Margins (AM) [17]
into Softmax to optimize loss function. Extensive experi-
ments on the Wider Face and FDDB datasets show that
the proposed method achieves state-of-the-art performance
compared with MTCNN variants.

The major contributions of this paper are summarized as
follows: (1) We propose a new face detection model RFE-
MTCNN which takes advantage of the Inception-V2 block
and receptive field block to enhance the feature discrim-
inability and robustness for small targets. (2) We use the
Global Average Pooling (GAP) to replace the second to last
fully connected layers in order to enforce correspondences
between feature maps and categories, avoid overfitting, and
reduce the network parameters. (3) The AM-Softmax loss
function is introduced to enhance the discriminability of the
R-Net.

The remainder of the paper is organized in the fol-
lowing manner. Section 2 presents the related technolo-
gies involved in this paper. Section 3 provides a detailed

description of our new proposed method of RFE-MTCNN.
In section 4, we show the experimental settings and compare
RFE-MTCNN to other state-of-the-art algorithms on FDDB,
Wider Face. Finally, the paper is drawn to the conclusion in
Section 5.

II. RELATED WORK
Inception-V2 Block [15] is composed of multiple differ-
ent branches. And the receptive field of the feature map is
enhanced by convolution kernels of different sizes. It adds
a BN layer based on Inception-V1 [18], which accelerates
the convergence speed of the network. At the same time,
two 3*3 convolutions are connected in series to replace a
5*5 convolution, and the parameter amount is reduced under
the condition that the receptive fields are the same. Compared
with Inception-V2 block, its derived structure Receptive Field
Block (RFB) [16] adopts multiple branch structures. Each
branch is constructed using a combination of conventional
convolution and dilated convolutions of different proportions.
Convolution kernels of different sizes can simulate different
sizes of the overall receiving field (pRF) [16] [13]. Its dilated
convolution layer uses a separate eccentricity to simulate the
ratio between pRF size and eccentricity. Inception-V2 has a
similar structure to RFB, and it realizes a multi-size receptive
field through a multi-branch structure. But the difference
between the two is that in the Inception-V2 structure, the con-
volution has the same sampling center. So part of the edge
informationwill be lost. But RFB exploits dilated convolution
to simulate the impact of the eccentricities of pRFs in the
human visual cortex. The kernel size and dilation have a
similar positive functional relation as that of the size and
eccentricity of pRFs in the visual cortex. The pixel in the
feature map contributes the same to the output response. The
spatial RF structure of Inception-V2 Block and RFB is shown
in Fig. 1 and Fig. 2.

FIGURE 1. Spatial RFs of inception-V2 block.

Generally speaking, object detection needs to make predic-
tions on the last layer of feature maps. And the receptive field
of the last layer of feature maps determines the upper limit of
the size that the network can detect. As usual, downsampling
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FIGURE 2. Spatial RFs of RFB.

can enhance the receptive field of the feature map, but it
makes small targets difficult to detect. Common downsam-
pling methods, such as standard convolution and pooling, can
enhance the receptive field of the feature map, but its spatial
resolution will be reduced, and the pooling operation will
lose the information of the feature map. Dilated convolution
can enhance the receptive field of the feature map without
losing information. Although it has problems such as gridding
effects, we use hybrid dilated convolution [19] to effectively
avoid this problem.

III. THE PROPOSED METHOD
Traditional MTCNN [9] uses standard convolution. As the
network depth increases, its receptive field will also increase,
which is conducive to the detection of large-sized faces, but
not conducive to the detection of small-sized faces. To solve
this problem, we use the Inception-V2 Block and its derived
Receptive Field Block (RFB) to use its multiple branches to
enhance the receptive field of the feature map.

MTCNN is a framework that integrates the face detec-
tion and face alignment tasks using unified cascaded CNNs
by multi-task learning. In MTCNN itself, it is made up of
three networks. The first network, called Proposal Network
(P-Net), mainly obtains candidate windows and their
bounding box regression vector and uses non-maximum sup-
pression (NMS) to merge the boxes that highly overlap.
The second network which is known as Refine Network
(R-Net), is employed to filter a large number of false can-
didates from P-Net and calibrates the bounding box with
regression. Last but not least, the final network with the
name Output Network (O-Net), outputs the final candidate
windows and five facial landmarks’ positions with a deeper
network.

Combining the characteristics of MTCNN and two Blocks
that enhance the receptive field, we introduced RFB in P-Net.
It enhances the deep features in the neural network and retains
the edge part of the feature map to obtain more accurate
candidate boxes. In R-Net and O-Net, the input is the face
detection candidate box of the superior network. If the candi-
date frame is the detection target, its central area contributes

a lot to the output response, so Inception-V2 Block based
on central sampling is introduced to improve the screening
ability of R-Net and O-Net to the candidate frame. At the
same time, we use the Global Average Pooling (GAP) [20]
to replace the connection layers in the last layers. In order to
enhance the discriminative ability of face classification in the
R-Net, we adapt AM-Softmax [17] to push the face /non-face
decision boundaries away from each other. Based on ablation
experiments, it is shown that the fully connected layer with
AM-Softmax in R-Net achieves better results.

A. FACE DETECTION NETWORK
Fig. 3, Fig. 4, and Fig. 5 shows the three proposed sub-
networks of RFE-MTCNN. As can be seen from the figure,
we introduced the RFB structure in P-Net. At the same time,
the Inception block was introduced in R-Net and O-Net.
Besides, maximum pooling is adopted between each block
for feature dimensionality reduction. Fig. 6 and 7 show the
RFB and Inception-V2 block, respectively.

Three tasks are used to train CNN detectors: face/non-face
classification, bounding box regression, and facial landmark
localization. For the first task of the face and non-face classifi-
cation, we use AdditiveMargin Softmax (AM-Softmax) [17],
which introduces additive margin to softmax loss function as
follows.

ϕ (θ) = cos (θ)− m (1)

Ldeti = −(y
det
i · log(

es·(cos(θi)−m)

es·(cos(θi)−m) + es·cos(θi)
)

+ (1− ydeti ) · log(
es·cos(θi)

es·(cos(θi)−m) + es·cos(θi)
)) (2)

where θi is the target angle between normalized weights and
normalized features and i denotes the i − th sample. The
hyperparameter s and m are set to 30 and 0.35 respectively,
which achieve good results in face recognition tasks [17].
The notation y

det
i denotes the ground-truth label. The margin

is enforced by subtracting m from cos (θ) rather than m
multiplied to θ , so that the derivative will not change during
backpropagation. On the other hand, the additive margin
enlarges the differences between face and background thus
making the learning of the classification task more difficult.

On the other hand, bounding box regression is formulated
in Equation 3,

Lboxi =

∥∥∥ŷboxi − y
box
i

∥∥∥2
2

(3)

where regression target ŷboxi is obtained by the network and
yboxi is the ground-truth coordinate. Four coordinates are x, y
of the upper left corner, height and width.

Last but not least, facial landmark localization is formu-
lated as follows:

L landmarki =

∥∥∥ŷlandmarki − ylandmarki

∥∥∥2
2

(4)

Equation. 4 is the Euclidean loss, and facial landmark
detection is formulated as a regression problem. There are
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FIGURE 3. The architecture of P-Net.

FIGURE 4. The architecture of R-Net.

FIGURE 5. The architecture of O-Net.

FIGURE 6. The architecture of RFB.

FIGURE 7. The architecture of inception-v2 block.

five facial landmarks, including left eye, right eye, nose, left
mouth corner, and right mouth corner.

min
N∑
i=1

∑
j∈(det,box,landmark)

αjβ
j
iL

j
i (5)

Then the overall learning target can be formulated as
Equation. 5, where N is the number of training samples.
αj denotes on the task importance and β jiε(0, 1) is the label
of the j− th sample.

B. FACE DETECTION PROCESS
The training and testing phase of RFE-MTCNN are per-
formed in the three networks, i.e., P-Net, R-Net, and O-Net.

When training the P-Net, first randomly crop images in
the dataset and resize the cropped images to 12*12. Then
determine the cropped image is a positive or negative sample
based on the Intersection over Union(IOU) ratio of the box to
ground truth. Secondly, when training the R network, detect
images in the dataset with a trained P-Net model, each image
will generate a large number of candidate windows. For each
candidate window, according to its’ IOU with ground truth,
this candidate window is determined to be a positive and neg-
ative sample. After, resize these windows to 14*14 and train
R-Net. Finally, similar to R-Net, the trained R-Net model is
used to generate candidate windows, the candidate windows
are determined to be positive and negative samples according
to its’ IOU with ground truth. Finally, resize these windows
to 48*48 and train O-Net. The steps for training the proposed
RFE-MTCNN are shown in Fig. 8.

When inference is performed, first of all, generate an image
pyramid of different scales. The candidate bounding boxes
and scores are initially obtained by P-Net. And then candidate
bounding boxes with large overlap are eliminated through
NMS. Next, merge overlapped candidates of different scales.
Secondly, detect the image with the P-Net model and convert
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FIGURE 8. The steps for training the proposed RFE-MTCNN.

FIGURE 9. The steps for face detection with RFE-MTCNN.

the detected candidate windows of the face into the square
boxes. Afterward, convert these square boxes in the original
image to new boxes starting at 0 coordinates and resize the
new boxes to 24×24. Subsequently, use the R-Net model to
detect these new boxes and get R-Net’s candidate windows
of the face and scores. After, merge overlapped candidate
windows with NMS. Finally, similar to R-Net, use the O-Net
model to detect these new boxes and output bounding boxes
and scores. The steps for face detection with RFE-MTCNN
are shown in Fig. 9, respectively.

IV. EXPERIMENTS AND RESULTS
A. DATASETS USED FOR TRAINING AND TESTING
WIDER FACE [21] dataset is a face detection benchmark
dataset, which is a challenging dataset and is widely used to
study the problem of unconstrained face detection. It contains
393,703 faces with a high degree of variability in scale, poses,
and occlusion.

CelebFaces Attributes (CelebA) Dataset [22] is a large-
scale face attributes dataset with more than 200K face images
and 10,177 identities, and 5 landmark locations per image.

Face Detection Data Set and Benchmark (FDDB) [23] is
a widely used public dataset. It contains the annotations for
5171 faces in a set of 2845 images.

Annotated Faces in the Wild (AFW) [24] Dataset contains
205 images with 473 labeled faces.

PASCAL face dataset [25] has 1335 labeled faces
in 851 images with large face appearance and pose variations.
It is collected from the PASCAL person layout test subset.

B. EXPERIMENT SETTING
1) TRAINING
We chooseWIDERFACE andCelebA as the training datasets
for training the proposed RFE-MTCNN. Similar to MTCNN,
the entire training dataset contains 215,479 images, of which
theWIDER FACE dataset has 12,880 images and the CelebA
dataset has 202,599 images. Four kinds of data annotation
are used in the training process, negatives, positives, part
faces, and landmark faces. We set the same parameter values
as MTCNN. Positives mean that the Intersection-over-Union
(IOU) ratio is more than 0.65 to a ground truth face. Part
faces are between 0.4 and 0.65. Negatives are lower than
0.3. Landmark faces label the locations of the left eye, right
eye, nose, left mouth corner, right mouth corner. We use
(classification = 1, bounding box = 0.5, landmark = 0.5)
in P-Net and R-Net, meanwhile, (classification = 1, bound-
ing box = 0.5, landmark = 1) in O-Net. These numbers
denote the importance of classification loss function, bound-
ing box regression loss function, and landmark regression
loss function.

Three networks are trained in order and the steps of training
networks are as Fig. 8. It should be noted that the trained
P-Net model is used to detect pictures to obtain the samples
when R-Net is trained, so the steps of training R-Net include
the steps of P-Net detection. Similarly, the trained R-Net
model is used to detect pictures to obtain the samples when
O-Net is trained, so the steps of training O-Net include the
steps of P-Net and R-Net detection.

2) TEST
We conduct considerable test experiments on the public-
domain face detection benchmark: FDDB dataset, Wider
Face dataset, AFW dataset, and PASCAL dataset. The steps
of face detection with RFE-MTCNN are shown in Fig. 9.

C. EXPERIMENT RESULTS
To better understand the proposed RFE-MTCNN, we con-
ducted extensive ablation experiments to examine how the
improvement of different network substructures and the intro-
duction of AM-Softmax quantitatively affect the performance
of face detection.

Table 1 shows that we conducted an ablation experiment
on the proposed model. It can be seen from the table that the
improved sub-network has a certain improvement to the entire
network, but the performance of the overall network will
also be limited to other cascaded networks. Besides, adding
the Inception-V2 Block to O-Net has the greatest improve-
ment on the network. AM-Softmax has improved network
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TABLE 1. Ablation experiments of the proposed methods on FDDB
dataset.

FIGURE 10. ROC curves on FDDB database.

TABLE 2. Detection performance comparison on FDDB dataset.

performance to a certain extent. The detection performance
on the FDDB data set has been improved by 0.18%.

Fig 10 and Table 2 show the performance evaluation of our
proposed RFE-MTCNN against the state-of-the-art methods
MTCNN [9], Multiscale Cascade [26], LDCF+ [29], Hyper-
face [27], DP2MFD [28] on FDDB.We obtained its data from
the FDDB official website and evaluated the performance
of the model through the ROC curve. The horizontal axis
of the ROC curve represents False Positive (FP), and the
vertical axis represents True Positive Rate (TPR). Besides
the ROC curve, another indicator AUC is used to illustrate
the pros and cons of the model, which is defined as the area
enclosed by the ROC curve and coordinates. From the ROC
curves in Fig 10, our proposed RFE-MTCNNoutperforms the
conventional MTCNN and other state-of-the-art algorithms
for face detection. Compared with the MTCNN [9], the TPR
of our proposed method increases by 1.3% at 2000 false
positives (96.35%).

TABLE 3. Detection performance comparison on wider face.

TABLE 4. Detection performance comparison on AFW dataset.

TABLE 5. Detection performance comparison on PASCAL dataset.

On the WIDER FACE dataset, we compared the pro-
posed new network architecture with other excellent net-
works. We use the Precision-Recall (P-R) graph to measure
the performance of the model. The horizontal axis of the
P-R graph represents the recall of the model, and the verti-
cal axis represents the Precision of the model. The Average
Precision represents the area enclosed by the P-R graph and
the coordinate axis. The better the performance. WIDER
FACE has three different subsets, namely EASY, MEDIUM,
and HARD. We obtained the detection data of ACF [34],
Multiscale Cascade CNN [26], Faceness [32], LDCF+ [29],
and MTCNN [9] on the official website of WIDER FACE,
and plotted P-R diagrams. As shown in Table 3, the model
we proposed has been greatly improved on three different
subsets, especially on the HARD subset. Therefore, it can
be seen that the model has strong robustness and detection
performance.The results are shown in Fig. 11.

On the AFW and PASCAL face dataset, we compared the
proposed new network architecture with our baseline and
other excellent networks. We use the PR graph to measure
the performance of the model. It has a great performance
improvement on these two datasets. The results are shown
in Table 4 and Table 5.
Fig. 12 and Fig. 13 demonstrate some qualitative results on

common face detection benchmarks, including AFW, FDDB,
Wider Face, and PASCAL face. The experimental results
show that the proposed method has good robustness in the
real environment.

D. INFERENCE EFFICIENCY
As shown in Table 6, compared with 496k parameters in
MTCNN, the proposed network structure parameters are
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FIGURE 11. WIDER FACE Val: (a) Easy (b) Medium (c) Hard.

FIGURE 12. Qualitative results on AFW, PASCAL, and FDDB dataset.

FIGURE 13. Qualitative results on wider face.

reduced by 78k, and the detection speed reaches 26 FPS on
NVIDIA GTX 1070Ti. We use the Inception-V2 Block and
RFB to increase the reception range of the network, and use

a global average pool to replace the fully connected layer,
which reduces the number of parameters and improves the
detection performance of the network.
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TABLE 6. Comparison Of network structure parameters.

E. EXPERIMENT ENVIRONMENT
The experimental software environment is the operating sys-
tem Ubuntu 18.04, CUDA 10.0, and cudnn 7.4. The deep
learning framework is Tensorflow. The experimental hard-
ware environment is Intel Core i7 8700K processor GPU for
NVIDIA GTX 1070Ti.

V. CONCLUSION
In this paper, we propose a new face detection model
RFE-MTCNN. According to the unique cascading character-
istics of MTCNN, two different receptive field enhancement
modules are used to optimize the network structure, and
the AM-Softmax loss function is introduced to enhance the
discriminability of the network. Experimental results show
that, compared with other methods, this method has certain
advantages, can improve the accuracy of face detection, and
has fewer parameters.
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