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ABSTRACT Considering the widespread use of surgical robots in recent years, computer-assisted surgery
is becoming significantly popular. Because the automation of surgical tasks without human intervention
remains complex owing to individual patient differences, a human cooperative control is proposed in this
study. A system in which an operator manipulates one surgical instrument to insert a suture needle was
developed, along with another surgical instrument that automatically pulls out the needle from the operated
instrument. In the proposed method, YOLOv3 and a standard convolutional neural network (CNN) are used
to estimate the penetration and pull state of the needle. An image-based state estimator classifies the state
regardless of the stiffness of the object to which the suture needle is inserted. Furthermore, after the pull state
is detected, despite a failure of the needle pulling, the position can be corrected and the automated surgical
instrument can approach the needle again. Experiments on human cooperative control demonstrated the
effectiveness of state estimation using the proposed method. In addition, the failure of grasping observed in
a previous study caused by the needle angle error was reduced.

INDEX TERMS Computer-assisted surgery, deep learning, state estimation, human cooperative control.

I. INTRODUCTION

Endoscopic surgery, wherein only a few small incisions
are required to insert surgical instruments into the body,
has recently become popular. Postoperative esthetics and
rapid recovery are of significant benefit to patients, however,
the minimally invasive operation becomes more complex than
the open surgery. For example, endoscopic surgery involves
pivoting the surgical instrument around its insertion point
in a narrow working space within the body. The longer
instruments compared with those of open surgery also require
training of the physician for precision. Surgical robots have
been developed to solve the problems of endoscopic surgery
[1], [2]. Surgical robots have eliminated complex operations
around the insertion point and introduced hand tremor sup-
pression and motion scale features to ensure accurate surgery.
Intuitive Surgical’s da Vinci is the most popular surgical
support robot and is used for abdominal, pelvic, and thoracic

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

surgeries [3], [4]. Most surgical robots are master—slave
robots, and the surgeon continuously operates the position of
the surgical instruments through endoscopic images. There-
fore, the automation of complicated tasks during surgery
using precise positioning control of the robot would lead to
efficient surgery.

Murali et al. automated surgical cutting and debridement
subtasks through “Learning By Observation™ with a surgical
support robot [S]. However, the color of the suture needle and
the shape of the forceps were different from those of real sur-
gical tools. Khoorjestan ef al. proposed an automatic suture
device that has greater strength than a hand-sutured speci-
men [6]. However, it is difficult to use this open-space device
in minimally invasive surgery. Several systems have been
developed to automate suture tasks in minimally invasive
surgery [7], [8]. Shademan et al. verified the effectiveness
of suturing task automation by experiments using pigs [9].
However, automation of surgical tasks without human inter-
vention is still difficult due to individual differences in human
bodies.
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Watanabe et al. proposed a single-master dual-slave system
in which manually manipulated forceps insert a suture needle
and autonomously operated forceps pull it out [10]. This
method, which was previously proposed, shortens the time
of the entire task and demonstrates that the semi-autonomous
assistance to the operator is useful. However, there are a
few remaining issues. This method uses the product of the
external force estimated at the tip of the forceps and the angle
of the roll axis of the holder robot to detect needle penetration.
Penetration is not detected when the needle is inserted into
an organ softer than the one used to define the threshold. For
penetration into a rigid organ, the threshold is exceeded prior
to penetration. Furthermore, because it cannot detect whether
the suture needle was pulled, the automated slave conducts a
hand-off motion without the needle when it fails to pull out
the needle.

Image processing is effective for autonomous surgery and
several automation methods are based on it. Stefan et al.
verified the phase estimation of surgical videos from images
using machine-learning technology and demonstrated its
usefulness [11]. Compared to previous our methods that
only use information regarding kinematics and force, image-
processing-based methods can detect needle penetration
despite the varying stiffness of organs. Furthermore, image
processing can be used to detect failure to pull the needle
and retry pull-out operation. For efficient and accurate needle
state estimation, the following two-step image processing
is effective: tracking the needle and cropping the image
around the needle first, followed by estimating the state
using the cropped image. Speidel et al. detected suture nee-
dles by color-based and geometry-based segmentation, and
Chen et al. detected suture needles using a random forest
model connected with a particle filter [12], [13]. The previ-
ous needle detection methods include sequential processing
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and template matching, and are computationally extensive.
Considering the burden on the patient, it is desirable to
perform image processing quickly for use of the needle state
in a feedback control system.

In this study, a two-step image processing method is pro-
posed using two different deep neural networks. A laparo-
scopic image around the suture needle is cropped using a
convolutional neural network (CNN), and then another CNN
estimates the state of the needle. The proposed method can
be applied to organs of varied stiffness because the penetra-
tion and pull states are determined only by the endoscope
image, in contrast to the previous method [10], which was
insufficient for managing stiffness variation. In this study,
YOLOVv3 was used to detect a suture needle, and a standard
CNN was used to estimate the state from the image area of the
suture needle. YOLOV3 is an object detection algorithm that
can perform smoothing processing using deep learning [14].

The remaining of this study includes the following sec-
tions: Section II presents the devices used in this study.
Section IIT presents the details of the state estimator using
deep learning and human cooperative control. Section IV
presents the experimental results regarding the learning of
state estimators and the automation of suturing tasks using
human cooperative control. Section V presents the improved
functions compared with the previous study. Finally, the con-
clusions are presented in Section VI.

Il. EXPERIMENTAL DEVICE

A. SLAVE MANIPULATOR

The slave manipulator used in this study is shown in
Figure 1(a), which consists of a holder robot devel-
oped by Tadano et al. [15] and forceps developed by
Haraguchi et al. [16]. The holder robot has a joint of yaw ¢,
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FIGURE 1. Slave Manipulator with six degrees of freedom and master device for manipulating slave. (a) Pneumatically
driven surgical support robot with force feedback (b) Flexion motion and coordinate system of the forceps tip. (c) Master
device with gripper opening/closing interface on 3D Systems’ PHANTOM Desktop.
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FIGURE 2. Human cooperative control based on the state of the suturing task. (a) Human cooperative control flowchart. (b) Endoscopic image
corresponding to each step of the flowchart. The blue box in the endoscopic image indicates the detected area of the suture needle.

pitch ¢», linear motion joints g3, and roll g4, and operates as
shown in Figurel(a). The holder robot was designed such that
the intersection of the yaw and pitch axes of the holder and the
axis of the forceps becomes a fixed point O, and the rotation
around the fixed point. The tip of the forceps mounted on the
holder robot is shown in Figure 1(b). The forceps provide a
mechanism for bending the flexible joint by the push-pull of
the two opposing nickel titanium wires. The bending postures
¢1 and ¢, of the tip were controlled using four wires arranged
at equal intervals. The opening and closing movements of
the gripper attached to the tip grasps the organs and suture
needles.

B. MASTER DEVICE

The 3D Systems’ PHANTOM Desktop used as a master
device in this study is shown in Figure 1(c). The master device
is an input interface for the position and posture necessary
for the control of the slave manipulator. An input interface
attached to the distal end of the master device controls the
opening and closing of the gripper at the tip of the forceps.
The operator manipulates the input interface of the gripper
through one’s finger. The master device also has a triaxial
force presentation function to feedback the force estimated
by the forceps to the operator.

C. ENDOSCOPE

A stereoscopic endoscopy (Olympus ENDOEYE FLEX3D)
was used in this study. The endoscope outputs 680 px x
540 px images at 30 Hz. This endoscopy can select two modes
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of a three-dimensional image mode and a two-dimensional
image mode. Because the scope of this study is to confirm the
effectiveness of the proposed method, the two-dimensional
image mode was selected from a simple implementation point
of view to estimate the state of the suturing task.

ill. METHOD
A. HUMAN COOPERATIVE CONTROL
A flowchart of the human cooperative control and the cor-
responding endoscopic image are shown in Figure 2. The
system consists of an endoscope, Slave Al operated by the
master device, and Slave A2 for autonomous assistance.
The state estimator with image processing is used as a switch
to control the [Auto, Pause] mode of Slave A2. To assist the
suturing task, three states were defined: non-penetration, pen-
etration, and pull. When Slave A1 grasps the needle, whether
the needle penetrates is represented by non-penetration or
penetration; when Slave A2 grasps the needle, the state is
set to pull. The suturing task is divided into four steps, and
processing is performed based on the output of the state
estimator. The processing at each step is presented as follows:
Step 1: The operator manually operates Slave A1 and inserts
aneedle into the training kit. For simplicity, Slave A1 already
holds the needle from the beginning of the task. At this time,
the state is defined as “‘non-penetration”. While the state
estimator continues to output non-penetration, Slave A2 is in
pause mode. The position of Slave A2 is the initial position.
Step 2: The target position and posture of Slave A2 are
calculated to pull out the suture needle, and the pulling
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operation of the suture needle is controlled. Slave Al and
Slave A2 are mechanically fixed and their positional rela-
tionship is known; the orientations of their bases are the
same. The target position of Slave A2 is first given in the
Slave Al coordinate considering the needle shape, and then
transformed to the Slave A2 coordinate by using an offset
vector. However, the needle may not be held in an ideal man-
ner because it rotates freely around the grasping position of
the gripper of Slave Al. To solve this problem, an algorithm
in which Slave A2 corrects the target position was added,
which considers the rotation of the needle when the pull out
of the suture needle fails.

FIGURE 3. Geometry of the suture needle and anticipated rotation of the
suture needle. P1, P2, and P3 are needle tip positions corresponding to
the angle of the suture needle rotation.

Figure 3 presents the geometry of the needle and assumed
needle rotation. Slave A2 first moves to position Py, assum-
ing that the needle is ideally grasped. Then, if the first attempt
fails, the position is corrected in the order of P2, P3. The
target positions Py, Pa, and Pg of Slave A2 are calculated as
follows on the coordinate system of the tip of Slave Al:

d

Pir=P4s1—1]0

| 0

[ d cos (8)

Py = P41 — 0

| d sin (0).

[ d cos (—0)

P3 = P41 — 0 (H
| d sin (—0).

where P4 is the tip position of Slave A1, and d is the diame-
ter of the semicircular arcuate needle shown in Figure 3. 6 is
the rotation angle of the suture needle assumed in this study.
The target posture of Slave A2 is calculated as follows:

Ry2 = R;(30) - Rp1 @

where R;(30) is a matrix rolling the z-axis shown in Figure 3
by 30 °, and R4 is the posture of Slave Al. In this study,
Slave A2 is rotated by 30 ° around the z-axis to make the
posture suitable for grasping the suture needle. The modified
target positions Po and P3 depend on the needle rotation
angle 6, and was set to 20 ° in this study. Under this setting,
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if the rotation is within 20 °, then the needle will be within the
graspable range of the gripper in less than three approaches.

When the target position and posture of Slave A2 are cal-
culated, Slave A2 shifts to the automatic control and pulls out
the needle. Slave A2 conducts the pulling operation with the
gripper closed, and the state estimator confirms the success
or failure of the needle pull-out. When the state estimator
does not detect a “pull” after the pulling operation, Slave
A2 performs the pulling operation by correcting the target
position, as shown in Figure 3. While the state estimator
continues to output the penetration, Slave A2 is in Auto mode.

Step 3: The pull of the needle is detected, and Slave A2 is
controlled to hand off the suture needle to Slave A1. The posi-
tion where slave A2 hands off the needle is the position that
moved 20 mm in the y direction from the position where the
state estimator detected penetration. While the state estimator
estimates the pull, Slave A2 is set to the auto mode and moves
to the needle transfer position.

Step 4: The operator manipulates Slave Al to grasp the
needle held by Slave A2. After Slave A2 moves to the needle
transfer position, Slave A2 shifts to the pause mode until
Slave Al grasps the needle. When the operator manually
operates Slave Al and grasps the needle, Slave A2 releases
the needle and moves to the initial position. After the opera-
tion is completed, return to Step 1.

The correspondence between the steps of automation,
the mode of Slave A2, and the output of the state estimator is
shown in Table 1.

TABLE 1. Correspondence between automation step, Slave A2 mode and
output of state estimator.

Pause Auto

Non-penetration | Step 1 -
Penetration - Step 2
Pull Step4 | Step3

B. STATE ESTIMATION

State estimation is one of the most important factors to
achieve task automation because it is used as the switch
of automated control. In this study, a method to estimate
a task state is proposed, as shown in Figure 4. The sutur-
ing task was performed using the suture training kit by
KOTOBUKI Medical Inc., as shown in Figure 4. In this study,
the following two deep neural networks were combined: one
for needle detection and the other for task state estimation.
YOLOv3 and a standard CNN were used to estimate the three
states (non-penetration, penetration, and pull) required for
human cooperative control. YOLOV3 is a method based on
deep learning that detects a target object from an image and
outputs a bounding box that operates at a high speed [14]. The
proposed method uses YOLOvV3 to obtain the bounding box
of the needle from the 680 px x 540 px image and resizes
it to 256 px x 256 px for input to the CNN. The resized
image is annotated with [non-penetration, penetration, and
pull] labels, and the CNN estimates the state of the three
classes.
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FIGURE 4. A method for estimating the state of the suturing task using YOLOv3 and standard CNN. YOLOv3 detects a suture needle from an
endoscopic image of 680 px x 540 px. For input to the CNN, the detected region is cropped and resized to 256 px x 256 px. CNN classifies

suture needle images into three states of the suturing task.

Image data was used when a suturing task was executed
by the master—-slave device in Figure 1 for the learning of
state estimation. The total of 15,505 images were created for
learning, and the ratio of the number of each state was approx-
imately [non-penetration : penetration : pull] = [1: 1 : 1].
The learning data was manually annotated with 1,471 images
that were resampled every 10 samples, excluding images
where the needle was not visible. YOLOvV3 learning is a
single classification of suture needles. Object detection was
conducted for all the images using learned YOLOvV3. Images
in which the suture needle could not be detected were qual-
itatively removed. The image in which the suture needle
was finally detected was 13,386, and the learning of state
estimation was performed using these images.

The structure of the constructed CNN is shown in Table 2.
The CNN for state estimation receives the detected image of
the suture needle resized to 256 px x 256 px and classifies it
as a [non-penetration, penetration, or pull] state. The weights
and biases of the CNN were initialized to the initial value
of He et al. [17]. All convolution layers were activated by
the Relu function and optimized using Adam [18], [19]. The
extracted image vector is smoothed after convolution layers
and classified into three states using the softmax function.
In this study, a standard CNN was designed to focus on
human collaboration and high processing speed, not Alexnet
or Resnet, which scored significantly well in the image cate-
gories [20], [21]. In this study, the images of the suture needle
detected by YOLOV3 were prepared for learning the CNN.
The training data were 13,386 images in which the suture
needle was detected by YOLOV3.

TABLE 2. Structure of CNN for state estimation.

Layer name Kernel | Stride | Shape (HXW xC)
Convolution 1 3%3 2 128128 %32
Convolution 2 3x3 2 64 x64x32
Convolution 3 3x3 2 32x32x64
Convolution 4 3%3 2 16x16x64
Convolution 5 3x3 2 8x8x128
Convolution 6 3x3 2 4x4x128
Convolution 7 3%x3 2 2x2x256

Flutten - - 1024
Output - - 3
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To avoid control errors due to misdetection of the state
estimator, the state transition was programmed to occur when
the penetration or pull was estimated 20 times continuously.
In addition, the pull was processed to transition only from the
penetration.

IV. RESULTS

A. HUMAN COOPERATIVE EXPERIMENTS

Verification experiments of human cooperative control in the
suturing task were performed using the state estimator. The
operator manipulates a single Slave A1 through a single mas-
ter. A trial that achieved Step 4 is considered a success. On
the other hand, the trial Slave A2 missed gripping the needle
and did not reach Step 4, which was considered a failure. The
initial condition of the task was that the system state is in
Step 1 and Slave Al is grasping the needle. The termination
condition is that the system is in Step 4 and Slave A1 grasps
the needle held by Slave A2. We conducted 20 trials. The
proposed method estimates the state of the suturing task at
a sampling rate of approximately 10 Hz. The experimental
results are presented in Table 3. In the 20 trials, 12 suturing
tasks succeeded in the first approach to the suture needle. The
number of trials that succeeded after approaching the needle
two or three times were 4 and 2, respectively. There were two
trials in which the pull of the suture needle was not confirmed
after three approaches.

TABLE 3. Results of automated suturing task.

Successful grasping operations | number of trials
1st time 12
2nd time 4
3rd time 2
Failure 2

B. STATE ESTIMATION

The accuracy of needle detection by YOLOv3 and the accu-
racy of state estimation by CNN are shown in Table 4. The
accuracy of state estimation was verified only for images in
which the suture needle was detected by YOLOv3. Table 4
presents the needle detection and state estimation accuracy
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TABLE 4. Accuracy of needle detection and state estimation.

Range | Needle detection [%] | State estimation [%]
Step 1 81.4 99.1
Step 2 67.0 94.7
Step 3 83.8 97.5
Step 4 60.7 39.7
Total 72.4 93.2

of each step. Because Steps 3 and 4 were not performed in
the 2 tasks in which the suturing task failed, the accuracy of
Step 3 and Step 4 indicates the average of the 18 tasks.

V. DISCUSSION

A. HUMAN COOPERATIVE EXPERIMENTS

Results of the human cooperative experiments for the sutur-
ing task demonstrated that the proposed method detected the
penetration and pull of the needle, and automated part of the
suturing task. State estimation using an image is useful in that
the state is estimated regardless of the stiffness of an object
to be sutured because the penetration or pull of a needle is
detected from the image feature around the needle. When
the needle posture has an error of less than 20 ° from the
ideal posture, the proposed method succeeds by the second
or third grasping motions. Note, the indicated suturing task
would have failed using the previously proposed method [10].
This is because the previous method assumed an ideal needle
posture and did not have a system to detect pulling failure. An
image-based state estimator has a significant advantage of the
proposed method because it has the potential for successful
suturing tasks despite the needle tip not being in an ideal
position.

However, the experimental results recorded 2 failures
in 20 trials. The reason for these failures was that the posture
of the needle was rotated more than the expected angle of 20 °.
In addition, there was a scene in which Slave A2 grasped the
simulated organ by mistake; however, it is desirable for the
needle to be accurately pulled out by one grasping operation
considering the damage to a patient’ s organ. These concerns
may be resolved by measuring the tip position of the suture
needle. Image-based estimation of needle posture is possible,
as Kurose et al. demonstrated, using a 3D model of a suture
needle and template matching [22]. Furthermore, the use of
external force information acting on forceps will lead to safe,
human cooperative robot control.

In this study, when automatically controlling Slave A2,
a control signal was given for a linear movement to a tar-
get position. However, in real-time surgery, such a simple
linear motion might cause an undesirable contact between
the organ and Slave A2. Therefore, it is desirable to develop
a method for generating trajectories that avoid organs for
clinical application. The development of a trajectory gener-
ation system that uses YOLOV3 to detect organs and avoid
undesirable contact during movement is considered for future
studies.
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B. STATE ESTIMATION

The false detection of the state estimation in Steps 1 and 2
leads to the failure of the suturing task. This is because human
cooperative robot control is performed based on the results of
state estimation in Steps 1 and 2. As Step 3 and Step 4 execute
automated control regardless of the estimated state, there is
no failure of the suturing task due to erroneous detection of
the state. Table 4 presents that the state estimation accuracy
of Steps 1 and 2 is high. The effect of false detection in the
same step was removed by the processing, which shifted the
state when the same state was estimated continuously for
20 frames.

Examples of state estimation errors are shown in
Figure 5. Although Figure 5(a) is an example of the pull
state, the state estimator indicated non-penetration in Step 4.
The error is considered to have occurred because the learning
data was not created for the two slaves located near the
needle. However, the state estimation error that occurred in
Step 4 does not affect human cooperative control because
Slave A2 is in pause mode. An example of the state estima-
tion error that occurred in Step 1 is shown in Figure 5(b).
Figure 5(c) presents non-penetration, whereas the state esti-
mator indicates penetration. Because the state estimation
error that occurred in Step 1 can possibly transition to Step 2
before the actual penetration, an improvement in accuracy
is required. Therefore, expanding the learning data would
be effective in improving the estimation accuracy. By auto-
matically annotating data using previous needle detection
methods, it is possible to expand the learning data without
manual annotation [12], [13], [22].

Non-penetration \ Penetration

(b)
FIGURE 5. Example images that the state estimation error occurred.
(a) Misdetection of non-penetration. (b) Misdetection of penetration.

In this study, the proposed state estimation method was
validated using a suturing training kit. However, in real-time
surgery, the background has complicated shapes and colors,
such as organs, thus the proposed method is planned to be
validated in vivo in the future. In addition, tissue mechanics
is also an essential problem to achieve the suturing task in a
real surgical situation [23]. Therefore, kinematic conditions
for robot motion generation along with conditions for tissue
mechanics will be added as the next step.

VI. CONCLUSION

In this study, a human cooperative suturing task control
system was developed using a state estimator that com-
bines YOLOV3 and a standard CNN. The proposed method
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estimates the penetration state regardless of the stiffness of
the sutured object by estimating the penetration state from
only the image. The effectiveness of the proposed method
was confirmed when there was an error in the position of
the suture needle, in which the robot using the method in a
previous study [10] failed to grasp the needle. The following
will be considered for future studies: By adding an algorithm
to the proposed method to estimate the three-dimensional
posture of the suture needle, the needle will be pulled out
at once regardless of the posture error. Because the accuracy
of suture needle detection and state estimation for suturing
tasks performed in an unlearned environment is insufficient,
the expansion of learning data using existing suture needle
detection methods is planned to improve the estimation accu-
racy. For clinical application, a trajectory generation method
that detects organs and avoids undesirable contact during
movement will be developed. In addition, tissue mechanics
conditions will be added to the robot motion generation as
the next step.
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