IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 23, 2020, accepted September 8, 2020, date of publication September 14, 2020,

date of current version September 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023764

Design of Intrusion Detection Honeypot Using
Social Leopard Algorithm to Detect loT

Ransomware Attacks

S. SIBI CHAKKARAVARTHY 1, D. SANGEETHA234, MEENALOSINI VIMAL CRUZ23:4,
V. VAIDEHI?34, AND BALASUBRAMANIAN RAMAN?, (Member, IEEE)

!School of Computer Science and Engineering (SCOPE), VIT-AP University, Amaravati 522237, India

2Madras Institute of Technology, Anna University, Chennai 600044, India
3Keene State College, USNH, Keene, NH 03435, USA

4Mother Teresa Women’s University, Kodaikanal 624101, India

Sndian Institute of Technology Roorkee, Roorkee 247667, India

Corresponding author: S. Sibi Chakkaravarthy (chakkaravarthy.sibi@vitap.ac.in)

ABSTRACT In recent times, ransomware has become the most significant cyber-attack targeting individuals,
enterprises, healthcare industries, and the Internet of Things (IoT). Existing security systems like Intrusion
Detection and Prevention System (IDPS) and Anti-virus (AV) as a single monitoring agent is complicated
and time-consuming, thus fails in ransomware detection. A robust Intrusion Detection Honeypot (IDH)
is proposed to address the issues mentioned above. IDH consists of i) Honeyfolder, ii) Audit Watch,
and iii) Complex Event Processing (CEP). Honeyfolder is a decoy folder modeled using Social Leopard
Algorithm (SoLA), especially for getting attacked and acting as an early warning system to alert the user
during the suspicious file activities. AuditWatch is an Entropy module that verifies the entropy of the files
and folders. CEP engine is used to aggregate data from different security systems to confirm the ransomware
behavior, attack pattern, and promptly respond to them. The proposed IDH is experimentally tested in a
secured testbed using more than 20 variants of recent ransomware of all types. The experimental result
confirms that the proposed IDH significantly improves the ransomware detection time, rate, and accuracy
compared with the existing state of the art ransomware detection model.

INDEX TERMS Complex event processing, CEP, Honeypot, Honeyfolder, SoLA, intrusion detection

Honeypot, ransomware.

I. INTRODUCTION

IoT is a system of built-in-sensors interconnected to col-
lect and transfer the data automatically without any human
interventions. The sensors in the IoT devices interact with
the internal and external state of environments and makes
a decision autonomously. The tremendous era of IoT is the
dawn of the digital world, which has seen massive inven-
tions almost in every facet of our lives. The performance
of today’s IoT devices extends from managing the extreme
amount of data to computing through synthetic intelligence.
However, any disruption or malfunction of any devices in
an IoT infrastructure may incur devastating threats to the
process and trustworthiness. The ransomware attack is known

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

169944

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

to be quite effective in disrupting and paralyzing the IoT
devices [1]. IoT Ransomware is malicious software that
restricts access to the IoT devices until an amount of ransom
is paid. There are two types of ransomware: Locker [23] and
Crypto-ransomware [2], [14]. Locker ransomware locks the
entire system and denies access to the system, whereas the
crypto-ransomware encrypts the user files and denies access
to the user files in the system [24]. Locker is a common vari-
ant used in most IoT ransomware, locking the entire device
and denying access. However, the ransomware attacks that
occurred from the late of 2014 witnessed the CryptoLocker
ransomware attacks [25], a hybrid variant which combines
locker and crypto-ransomware [2]. In general, the IoT ran-
somware attack model is different from the generic computer
and smartphone model. IoT ransomware attack is considered
a severe threat because it is initiated against the target IoT

VOLUME 8, 2020

https://orcid.org/0000-0001-7778-0453

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

IEEE Access

device at a time and place where the devices will not be able
to reset or counter the effects of the ransomware and will be
more willing to pay the ransom. For example, hackers can
lock up any thermostat in a smart home at a high temperature
or hackers can lock smart car’s control panel with no means
to access or hackers can hack industrial IoT and lock smart
power grids or hackers can hack the drug infusion pump
and lock the drug blends to an irregular proportion, thus
demanding a huge ransom to release the lock.

These IoT ransomwares are explicitly designed for IoT
devices. IoT infrastructure is entirely dependent on other
embedded systems such as Wi-Fi Access Points (AP), exter-
nal adapters, dongles. However, there is zero assurance that
these devices are fully secured and updated [2]. According
to the report given by Forbes [21], most of the IoT gadgets
are still functional with out-of-date firmware. Deployment
of such devices possess an inherent risk to the enterprises
and leads the attacker to find the different attack surface and
vulnerabilities. Moreover, a determined attacker can easily
guess how to penetrate the attack surface and re-purpose the
devices [10].

Malware writers use many social engineering attacks
to compromise targets [7]. There are many ways through
which the ransomware enters into a system. For instance,
i) malicious advertisements lure the users into the hijacked
or compromised websites which, when visited leads to the
ransomware infection, ii) Spear Phishing emails can be used
for invoking ransomware; the mail comes along with the
malicious link or attachments containing the payloads for
affecting the system. Hence, most attackers use social engi-
neering attacks such as Spear Phishing emails to attract the
victim by sending fake news or messages that appear to come
from a legal source (company or person) [7]. Such emails are
designed to have malicious links that, when clicked, down-
load the ransomware. Further, the malicious links are posted
on social media, legal websites, and when the users view the
particular web page, the malicious attachments embedded in
the link get downloaded. Ransomware downloaded through
such links will break into the system by exploiting the vul-
nerabilities and start the encryption process. iii) Download-
ers such as drive-by-download, water holing, malvertising,
removable media, and botnets are also used to propagate the
ransomware. Malware developers are frequently finding their
attack vector to infect the victim. There are various ways
in which the attackers take control of the user systems and
encrypt all files. The attacker mainly exploits the human
weakness to take down the system [11].

Based on the facts mentioned above, this paper focuses
on the cryptographic techniques used by contemporary ran-
somwares, and the experimental analysis confirms that most
of the ransomwares are utilizing asymmetric cryptographic
techniques [10]. This cryptographic technique utilizes two
different keys for encryption and decryption. Hence, the ran-
somware utilizing asymmetric schemes residing on a vic-
tim’s machine needs an external connection with the C&C
server to register for the keys to start the encryption process.

VOLUME 8, 2020

Blocking the communication process can make the ran-
somware inactive due to the missing keys, and without
the valid keys, the encryption process cannot be initiated.
Taking this into account, deploying Software Defined Net-
working (SDN) infrastructure can provide an additional
security measure to block the ransomware communica-
tion by identifying the network traffic flow and apply-
ing the control rules in real-time to block such suspicious
traffic.

SDN’s main functionality was with a Layer 2 switch,
which forwards all the DNS traffic to the controller. The flow
was initially crafted and added so that the controller starts
monitoring from the first packet in the flow. This feature
results in the inspection, evaluation, and comparison of all
the DNS queries (request) with the blacklisted and whitelisted
DNS database used by the ransomware command and control
(C&C). Any query that matches the blacklisted DNS leads to
the rejection of the response, and the response never reaches
the infected host. Thus, the encryption will not be started.
Furthermore, the flow is also verified with the whitelisted
DNS for further processing. If the domain is not listed in
both the Blacklist and whitelist, no actions are performed.
However, this is an exceptional case, and it is not near possible
due to the frequent DNS update [13].

Further, a Honeypot agent (Honeyfolder) modeled using
SoLA is installed as a monitoring agent in all the hosts in
the network to monitor all the user activities and file system
activities to detect ransomware.

The main objective of this paper is to propose a novel IDH
using CEP, which collects an enormous amount of data from
various sources such as Honeyfolder, SDN network and hosts,
Audit Watch, Firewall (IP Tables). Then convert the data
into event instance and process the events in the CEP engine
by applying aggregation rules to determine the malware
behavior, attack pattern, and respond promptly. In general,
distributed security systems in enterprises produce a massive
amount of data. Predicting abnormal events from data streams
is very complex and requires enormous processing power.
In order to analyze, predict, and detect the abnormal events
from the complex data streams, CEP is used. Previous work
(Ranjan et al. [8]) on CEP based Hybrid IDS discusses how
CEP based IDS can be used for real-time intrusion detection.
However, issues like malware propagation, privilege escala-
tion, ransomware post attacks are not addressed in the previ-
ous work. In this paper, a complete solution to handle multiple
event streams from different scenarios such as user activities,
ransomware activities, user privilege escalation, suspicious
internal activities is modeled using event expressions and
validated in real-time. This paper proposes a robust IDH
for ransomware detection and mitigation with the following
contributions.

o Implementation of Honeyfolder using SoLA to detect
ransomware activities with no loss of user data in
post-attack conditions.

o SoLA is the first algorithm that utilizes the behavior of
a leopard.

169945

IEEE Access

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

« Implementation of an efficient rule engine for process-
ing data into event streams and aggregating the events
to determine ransomware behavior, attack patterns, and
decision makings on time.

o Deploying SDN infrastructure for providing an addi-
tional security measure to block the ransomware com-
munication by identifying the suspicious network traffic
flow.

o Design and implementation of multi-security systems
(IDS (Snort), Firewall (Pfsense), Honeypot (Dionaea),
Honeyfolder, Audit watch, SDN Controller)), and effec-
tively utilizing CEP engine to make decisions.

o Consideration of multiple data sources (Honeyfolder,
AuditWatch, SDN controller, firewall) to detect and dis-
tinguish the ransomware activities from user activities.

The organization of this paper is as follows: Section 2 details
the background information about Honeypot, CEP, Existing
Social behavior algorithms. Section 3 explains the social
behavior of the leopard, which is modeled and utilized in this
paper. Section 4 presents the proposed Intrusion Detection
Honeypot. In Section 5, the experimental setup, configura-
tion, and data set collection are explained. Section 6 exhibits
the experimental results and analyze the performance of the
proposed IDH with the state of the art Honeypot models.
Finally, the paper is concluded in section 7.

II. LITERATURE SURVEY

This section gives a clear insight into the state of the art tech-
nologies such as Honeypot and CEP along with their essential
background. Further, this paper gives a brief discussion on the
nature-inspired computing and Lion Optimization algorithm.

A. HONEYPOT

Honeypot is a mechanism to capture the attack strategy used
by the attacker. It does not prevent or mitigate the attack. The
honey pot’s job is to remain silent and pretend itself as a real
environment and trap the attacker. Honeypots are deployed in
such a way that the attackers consider it a productive system
and attack it. It collects information about the attacker by their
movements and giving the details required by the attacker.
The sole purpose of Honeypot is to collect information about
the attack and attackers rather than preventing it. There are
two types of Honeypots, research, and production honey pots.
Production Honeypot is used to collect information about
the attacker and mitigate the organization’s risks, whereas
the research Honeypots are used to gather information as
much as possible. This information is exploited to understand
the vulnerabilities in the existing environment and build a
better defense system. Any data to and from Honeypot is
suspicious; the reason is the Honeypot has no productive
resources, i.e., if the honey pot is accessed, it is considered
unauthorized access. The information from Honeypot is of
high value, which can be used to develop a high-security
system.

169946

Eliot et al. [3] discussed Honeypot’s real-time deployment
in an internal organization’s network. In their work, they pre-
sented the various types of Honeypots and their advantages.
They claimed that the Honeypot deployment behind a firewall
could be more successful in the production environment. The
installation of a Honeypot in an external peripheral mode to
defend against the advanced persistent threats proposed by
Tian et al. [4].

Fan er al. [5] proposed a novel honeypot architecture
called HoneyDOC to support all-round honeypot design and
implementation. HoneyDOC consists of collaborative mod-
ules such as decoy, captor, and orchestrator. Shi et al. [6] pro-
posed a blockchain-based Honeypot, which uses a dynamic
mechanism of combining the functionalities of Low and High
interaction Honeypot. Their work consists of a real system
in time architecture that is widely used to capture real-time
attacks. Further, their Honeypot possesses dynamic property,
which shows up the present location and other services run
in the Honeypot. Each port-level access is logged using
blockchain, and independent analysis on various attacks was
also carried out. However, their work focuses only on the
network type attacks, and they do not address the real problem
of malware-based attacks. To address the above-discussed
issues, an efficient Honeypot with IDS is desirable. This
paper proposes a robust IDH, and the results confirm that the
proposed IDH is effective in terms of accuracy in detection
and attracting the attacker with less false positives.

B. NATURE INSPIRED COMPUTING

The problem statements tackled by engineering solutions
involve many moving variables. The goal of the engineer
solutions is to optimize the results by loosely generalizing a
few of such variables and appropriately apply heuristics to
make the solution simpler in the approach to achieve high
precision and efficiency. A standard way of doing it is to break
it down into subproblems and arrive at the required solution
from a bottom-up approach. This approach requires a great
deal of experience in multidisciplinary techniques that can
otherwise be complex and optimize the way the solutions are
compiled. For instance, if we are building a car, the job is not
just to build something that moves but also to facilitate other
criteria such as safety, comfort, optimal space, ease of usage,
which involves several trade-offs that need to be optimized
depending on the design and the requirements that need to be
met, which in itself can be quite complicated. An important
point to note here is that no design is perfect, and optimization
is a general ongoing process which is out in motion anytime
a new technology or sub-branch of science is learned and
attempted to be put to use.

Many engineering applications have optimization prob-
lems that are complex to solve. These problems have expo-
nentially growing search space that increases with time.
Therefore, the meta-heuristic algorithms must be used rather
than the traditional optimization methods to solve these
problems. The meta-heuristic algorithms have excellent

VOLUME 8, 2020

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

IEEE Access

performance in recognizing patterns, tuning neural networks,
clustering, processing image and videos, scheduling, etc.

Nature has been the greatest inspiration for humans to solve
many complex engineering problems. The life and behav-
ior of various animals have been mapped to solve specific
problems. For example, the Genetic algorithm was inspired
by nature’s evolution process. Particle Swarm Optimization
(PSO) algorithm was inspired by the social behavior of birds
searching for food. Ant colony optimization (ACO) was a
metaheuristic algorithm inspired by the foraging behavior
of ants. Marriage in Honey Bee Optimization (MBO) imi-
tates the reproduction process in the honey bee colony. The
monkey Search algorithm was inspired by the monkey in
search of food resources, the behavior of cats inspired the
Cat Swarm algorithm, and The Cuckoo Search algorithm was
developed based on the reproduction process of Cuckoos. The
Water flow-like algorithm mimics the water flowing process.
Dolphin Partner Optimization was inspired by the behavior
of dolphins. The firefly algorithm imitates the social behavior
of fireflies. Bacterial Foraging algorithm was inspired by the
foraging of bacteria. The Fish School Search simulates the
clubbable behavior of oceanic fish. The bat-inspired algo-
rithm was developed from the echolocation behavior of bats.
The pollination characteristics of flowering plants inspired
the flower pollination algorithm. Wolf Search algorithm mim-
ics the behavior of Wolves. The Social Spider Optimization
algorithm was developed from the social behavior of Spiders.
Forest Optimization Algorithm was inspired by the life span
of different kinds of trees in the forest. The Lion Optimization
algorithm was developed from the social organization and
behavior of Lions [9].

C. LION OPTIMIZATION ALGORITHM (LOA)

The LOA [9] is based on the social behavior and orga-
nization of the lions that exhibit high cooperation levels.
Lions have two types of social organization, namely, residents
and nomads. Residents live in groups, whereas the nomads
are independent. The lion optimization algorithm’s essential
operation is the territorial defense and territorial takeover,
which is used to find the worst solution by using the new
solutions. The existing bio-inspired optimization algorithms
incur more computational time, which is not suitable for
malware detection since the execution time plays a significant
role in malware detection. From the literature review, it is
observed that the existing ACO, LOA, throws uncertainty in
its convergence time. Hence, there is a need for an innovative
and standardized algorithm to obtain the best solutions with
less computational time.

Therefore, this paper proposes a new bio-inspired algo-
rithm (SoLA) which provides the best solution in less time.
The most important operations of SOLA are territorial defense
and territorial take over where the new best solutions replace
the old solutions. Also, it has a 1:N ratio, which helps to
find the malicious process easily since the malicious process
always occupies the first position in the territory. Whereas in

VOLUME 8, 2020

other algorithms, a separate method should be devised to do
the same.

D. COMPLEX EVENT PROCESSING (CEP)
CEP is used for processing the event data from multiple
sources and helps in discovering complex events by analyz-
ing and correlating the other events. The goal of CEP is to
identify meaningful events and respond to them as quickly
as possible [11]. CEP provides highly expressive rules using
first-order logic, having the features of representing the tem-
poral relations. The CEP is a scalable, flexible technique for
constructing refined data, and it aims at data correlation to
identify pre-defined patterns. It also contains tools for pro-
cessing continuous and timely events from different sources
and extracts high-level knowledge events from lower-level
events, which are referred to as complex events. CEP has an
inference engine that takes decisions based on a rule base
and working memory. Rule base contains all the rules, and
working memory keeps records about the recent states in the
system. Whenever a feature extracted packet arrives, it goes
to the inference engine for its identification; if it is detected as
an attack, the administrator would be notified at the earliest.
CEP is used to convert all pre-existing knowledge about
ransomware and their behavior within a domain to generic
rule based on blacklists/white lists, moving averages, known
behavioral patterns, outliers, and transition events. CEP is
capable of inspecting multi-gigabit traffic because of the
Distributed CEP engine (DCEP)), which uses computing
intelligence and resources to meet changing demand for event
processing. DCEP integrates the event processing network
with more number of nodes, which reduces the load and
makes the whole system more robust and reliable. A detailed
explanation of the CEP and its related engines are given in the
paper [11]. However, there is no existing mechanism found in
the literature which utilizes the CEP engine for Honeypot.
From the literature review, it is found that detecting and
identifying ransomware attacks in post-attack conditions are
trivial and risky. Traditional analysis techniques like sand-
boxes, AVs, application firewalls concentrate on techniques
like static and dynamic analysis, which are unsuccessful in
distinguishing the ransomware activities from user activities.
From the recent studies, it has been witnessed that the SDN
deployment strategies can improvise the ransomware miti-
gation by blocking the communication between the infected
host and C&C servers. However, the contemporary ran-
somware incorporates sophisticated malware intelligence in
their design to evade the perimeter defenses. It is also found
that the single source of features is not capable of detecting
ransomware. This motivation leads to the development of a
robust security system to mitigate ransomware. Hence this
paper proposes a robust IDH. CEP has a substantial impact on
information systems designed with decentralized data, which
is being used in many places, including finance, manufac-
turing, etc. The large-scale real-time stream processing has
become more critical and demanding with the evolution of
technologies such as big data and IoT. CEP allows faster

169947

IEEE Access

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

processing and aggregation of data from different security
systems, which are the essential attributes in identifying
real-time suspicious processes, making the overall detection
of suspicious activity simpler and efficient and supporting
complex operations like time windows and temporal query
patterns.

lll. SOCIAL BEHAVIOUR OF LEOPARD

Leopards are solitary and predominantly nocturnal in nature
among the socially inclined wild cat species. Leopards have
a strong dimorphism with two types of social organization:
i) Residents ii) Migrants. Resident males are dominant males
who live within a territory, along with very few females.
A male leopard territory can have overlapping territories of
2 or 3 female leopards. Generally, the territory is marked
using urinal scents, defecation, vocalization, and scratch-
ing trees or small plants. The size of the territory range
depends on the prey availability and habitat. Migrant males
are roaming males who are independent adult cubs or weak
resident males defeated by other migrants. Pairs are seen only
during reproductions. Unlike other wild cats, leopards are
opportunistic hunters who are solitary in nature. The most
important characteristics of leopards are territorial defense
and take over. The migrant leopard fights with the resident
males and takes over the territory if it wins. When applied to
the Ransomware mitigation system, these characteristics pro-
vide better solutions by replacing the old solutions. SoLA is
more comfortable to implement, and the solution is definitely
obtained.

A. INITIALIZATION

In the proposed SoLA, the leopards are initial solutions gen-
erated randomly, which are either malicious processes (male
leopard) or user processes (female leopard). The leopards
are partitioned into residents and migrants in such a way
that half of the leopards are residents, and the other half are
migrants. The residents are represented as territories that have
one malicious process and n user processes. Any leopards
outside the territory are migrants, and it may include both
male and female leopards.

B. FITNESS CALCULATION

The fitness of all the resident and migrant leopards is calcu-
lated. Each process has a list of features, as shown in Table 1.
The process features are extracted, and the score is calculated
based on the thresholds. Each feature is compared with the
particular threshold, and if it is greater than the threshold,
a score is generated. Adaptive thresholds and scores are used
for this purpose.

C. TERRITORIAL DEFENCE

The fitness of the male on territory and other females is
compared. If the male is found to have lower fitness than
females, then the male is removed from the territory, and it
is made as a migrant.

169948

TABLE 1. Process features.

S. No Features

1 CPU consumption

2 Memory Consumption

3 Read bytes

4 Write bytes

5 Active time of the process
6 Owner of the process

7 File renamed

Gateway Server

(ol

Firewall

I ’ Audit Watch | | Honey folder

P4
L S
¢?¢ Log Database

CEP Engine

SDN
SDN Controller

Alert X =

Rule base

FIGURE 1. The proposed IDH architecture.

D. TERRITORIAL TAKEOVER

The fitness of the migrants and the resident males are com-
pared, and if the male has lower fitness than a migrant, then
the migrant is made as the dominant in the territory, and the
resident male removed from the territory.

E. CONVERGENCE

The algorithm is made to run for 20secs continuously, and
the results are provided to the CEP engine to make the final
decision about the process.

IV. INTRUSION DETECTION HONEYPOT (IDH)
This section presents the design of the proposed IDH.

A. SYSTEM ARCHITECTURE
Figure 1 presents the architecture of the proposed IDH. The
proposed IDH has a default Low interaction Honeypot server
and a Network IDS deployed at the Chokepoint on the net-
work. The Honeypot server and IDS captures all the traffic
and analyze them. In case of any direct attacks (malicious
links, website redirect), the IDS and Honeypot detect and
report the behavior of the attack to the firewall. CEP engine
correlates various events from hosts and networks, Honeypot
agents, SDN controller, Audit Watch, logs, etc. Based on the
CEP result and scores, the malicious process is identified and
killed.

Present-day malware writers are continually improv-
ing the evasion scheme in their malware to bypass the

VOLUME 8, 2020

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

IEEE Access

existing defenses. Recent ransomware attacks reveal that
these malwares compromise all the internet-connected
devices, including desktops, smartphones, and IoT devices.
In order to address these issues, a post-attack detection model
using Honeypot has been proposed. The key idea of the IDH is
to create decoy folders with the dummy files in each partition
of the disk in such a way that it meets the requirements of the
ransomware to encrypt so that the attacker first tries to encrypt
the decoy folder. The Decoy folder is randomly generated
with the random files of types (documents, media, files) and
allowed for the initial compromise in case of the ransomware
attacks. Each host system has a Honeypot agent installed and
running on them. The Honeypot agents are designed based on
SoLA.

In general, the ransomware encryption process includes
reading the file, encrypting the file, writing the file, and
deleting the encrypted file. Hence the encryption process
carried out by the ransomware is modeled as the states
S={S;...S4}, namely read, encrypt, write and delete. When
there is a transition from one state to another in the decoy
folder as an IO activity, it checks whether it is user activity
or ransomware activity. When a file is read and encrypted,
it marks it as suspicious activity and checks specific param-
eters like 10 frequency (how frequent the file is read and
written, how frequent it is renamed), and scores are calculated
based on the Jaccard similarity measure [12]. Based on the
score, the decision is made (user or ransomware activity). The
result is sent to the CEP engine and firewall. Besides, the host
systems are configured and connected to the real world using
an SDN network. The SDN network is advantageous to the
traditional network because the SDN allows users to manage
and control the network programmatically.

B. HONEY AGENT (HONEYFOLDER)

The Honey agent is modeled using SoLA and installed on
each host and performs continuous host monitoring. The
Honeypot agent is managed by the Honeypot server using
the CEP engine. The four states of SoLA are modeled as
Read, Encrypt, Write, and Delete. The possible state tran-
sitions are, Read-Encrypt, Read-Write, Read-Delete, Write-
Delete, Encrypt-Delete, Encrypt-Write, Write-Delete. The
honey agent continuously monitors the decoy folders, and
whenever there is a transition from one state to another
in SoLA, it checks whether the action is user activity or
ransomware activity. Parameters like Read frequency, Write
frequency are considered, and a score is generated. If the
score crosses a particular threshold, the process is identified
and alerted to the firewall to kill that process.

1) SOCIAL LEOPARD ALGORITHM (SoLA)

Initially, the solutions are randomly divided into Partitions
and Migrants. Each partition has one malicious and N user
processes. The fitness of each process is calculated and
compared with all other processes in the partition and the
migrants. Adaptive scoring is used to calculate the fit-
ness, where the thresholds are adaptively changed on each

VOLUME 8, 2020

iteration based on the system’s state. Calculated fitness will
help identify the malicious processes that will be sent to the
CEP engine for final processing.

2) NEED FOR ADAPTIVE THRESHOLDS AND SCORES

Since the SoLLA algorithm is designed to run on each system
in the network, the Static threshold and scoring mechanism
may not work because each system may have varying spec-
ifications. For example, the CPU consumed in a single-core
processor is higher than that of a multicore processor since
it uses the parallel execution of threads in different cores.
Similarly, in the static scoring mechanism, the score will be
calculated repeatedly for the same feature again and again,
which will result in false positives, which leads to the Adap-
tive Thresholds and scoring mechanism.

3) ADAPTIVE THRESHOLD
Each processor may have many threads running in different
logical processors. The CPU consumed by each thread is
extracted, and the total CPU used by the process is calculated
by adding all the values. Similarly, the CPU that is currently
used by the system is calculated by adding the CPU consump-
tion of all active processes. The threshold is calculated using
the formula,

(Overall CPU used by single process / Total CPU used in
the system) * 100

The threshold is calculated for every iteration by setting the
max value as the primary threshold in each iteration.

4) ADAPTIVE SCORING

Initially, the score is distributed equally for all the features
(1/ total no of features). On every deduction of a malicious
process, the probabilities of the features responsible for the
same are increased. The maximum probability of a feature is
limited to 30%, and the minimum probability of a feature is
limited to 5%. Hence the disadvantage of focusing on a single
feature is eliminated.

5) HOW SoLA WORKS?

Once the Ransomware Mitigation System (RMS) identifies
the access in the decoy folders, it extracts the features of
the process that accessed the folder. The features include the
CPU consumption, Memory consumption, Bytes read, Bytes
written, Attribute change, Owner of the process, etc. The
features are extracted and stored in the array named ip. The
ip array and the size N of the array are given as the input to
the SoLA algorithm.

The SoLA algorithm (Figure 2) splits the input array to
Partition P and Migrant Mi arrays. The index of the element
is stored in the P and Mi arrays. The first half of the input
array forms the Partition array, and the second half forms
the Migrant array. The structure of P is a matrix, with each
row representing each territory. The first element of each row
represents the malicious process (male leopard), and the other
elements represent the user processes. (Female leopards).

169949

IEEE Access

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

Input: (ip, N)

Output: List of PID

Begin
Generate initial solutions L of length N
Split N/2 samples as P and others as M;
Each P has M and U of ratio 1: N

Fori=1toP,
Compute Fy; = fit (x;)
End

Fori=1to M;,
Compute F,,,, = fit (x;)
End
While true
Fori=1toP,
If FU} > Fas
Swap Fy; and F,,,
Swap M and M;
MU
End if
End
Fori=1to M;,
If le > Fyr
M «— M,
End if
IfF,< 1y
M, +— M
End if
End
End
End

FIGURE 2. Social Leopard algorithm (SoLA).

Each row has the malicious and user process in the ratio
of 1: N.

The fitness of each process in the P and M arrays are calcu-
lated. The Adaptive scoring algorithm calculates the score for
each process based on the Adaptive threshold, which will be
later discussed in the chapter. Once the score is generated for
each process, it is compared with those of other processes.
The fitness F of user process U is compared with that of
malicious process M. If the fitness of U is less than that of
M, then the user process is made malicious, and the malicious
process is made as to the U. Similarly, all the processes in all
territories are compared.

The fitness of Migrant process M is compared with the user
Process U. If the U < M;j, the migrant is made as to the User
process, and it is placed inside the territory. The user process
is removed from the territory and made as a migrant. The user
process with low fitness is also removed from the territory.
The same process would be continued for more iteration.
The convergence of the SOLA algorithm is 20secs. The SoLA
algorithm marks the malicious process and sends it to the CEP
engine for every 20secs.

Adaptive Threshold: For the feature extraction process,
the RMS extracts the features and stores them in the array.
For example, the list of all threads of a process is stored in

169950

N O B s

Output Adapters

a t
Working

Complex Event Processing Engine }—
memory

Event Cloud/ Event Stream
Simple Event Complex Event

‘ Event Collection Subsystem ‘

Entropy
(AuditWatch) IF Tubks

Event Sensors

Rule Base

’ Honeyfolder ’ SDN Controller

FIGURE 3. CEP for IDH.

the array Agg. The processor information and CPU usage
per thread are stored in Ap and Ay arrays, respectively.
The overall CPU Ocp, used by the process is calculated by
summing all values in the array Acp. Similarly, the Tepy (CPU
currently used by the system) is calculated. The threshold is
calculated using the formula,

(Ocpu/Tepu)*100

where Ocpy is the overall CPU used by the single process, and
Tcpu is the overall CPU used by all active processes. Simi-
larly, for memory usage, the threshold is calculated using,

(Omem/Tmem)™ 100

where Open, 1s the overall memory used by the single process,
and Tmem is the overall memory used by all active processes.

The maximum threshold in each iteration is fixed as the
CT. The extracted CPU is checked, whether it is in the range
of CT — a and CT + «. Where « = 10 (constant). Since
the auto-tuning feature is not available in the proposed IDH,
we set the alpha value to 10, which is the highest tuned
and hardened value. Similarly, the same process is used to
calculate the memory threshold of MT. The thresholds vary
in every iteration based on the system’s state.

C. COMPLEX EVENT PROCESSING FOR IDH
Figure 3 shows the flow of events generated by different
systems. The events are aggregated to form a convoluted
event that signifies a pattern or behavior of interest. The
events considered in this paper are listed as follows.
o State transition when there is an action in the Honey
folder.
o Entropy (Audit Watch) estimation indicating the
File/Folder changes.

VOLUME 8, 2020

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

IEEE Access

Event :User
{
Timestamp: time of occurence;
Source_id: source_of occurence;
Metadata: SDN controller
{
Protocol: Cpenflow;
ip: src;
ip: dest;
}
Metadata: Honeyfolder
{
Protocol: HMM;
User action: Read/Write/Delete;
}
Metadata: Entropy
{
Method: Shannon;
File Hash: MD5;
MA¥, ENTROPY: 8;
MIN ENTRCOPY: 6;
MagIc Number: Bytes;
}
Metadata: Firewall
{
Protocol: Cpenflow;
ip: BLACELIST;
ip: WHITELIST;

}

FIGURE 4. General event structure.

o Timestamps of all the event occurrences.

« Network features (UNSW-NB15 dataset [20]) captured
by the SDN controller.

« Host features captured by the Honey agent.

« Rules fired by the firewall (pfsense).

« Events generated by the other security systems.

o All the events and actions performed by the Honey-
folder, Firewall, Audit Watch, SDN controller, etc.

The events are processed by an Event processing model,
which is adapted from the previous work of Author 4 [11].

Event Collection (Level 0): Events from various sources
such as Honeyfolder, Firewall, Audit Watch, SDN controller
along with timestamps arrive as a stream to the CEP engine.
Event Collection subsystem reads the input from different
sources and the events.

Event Refinement and Pre-Processing (Level 1): 1t is the
first step in CEP where events from various sources are
checked for missing values, noise, and other discrepancies
and filtered. Primary feature extraction, normalization, and
selection are performed in this stage. Events from different
sources are transformed into a compatible format to be pro-
cessed by CEP Engine. A general event structure is given
in Figure 4.

Situation Refinement (Level 2): In this stage, the event is
classified as normal or abnormal events based on the range
of values for each event. In IDH, it refers to the aggregation
of values such as missing net flow in the controller flow
table, blocked processes, diverse entropy range, firing fire-
wall rules, etc.

Threat assessment (level 3): This stage correlates the event
from level 1 and level 2 using logical, spatial, and tem-
poral constructs to form a complex event that models the

VOLUME 8, 2020

rule “System misbehavior Detection”
when
Number($timestamp:timestamp, $logon:intValue, $StatusFlag:Boolean,
intValue=1 && StatusFlag=ON);
EntryPoint entrystr=session.getEntryPoint(“Logon details™);
from Duration(Feature($timestamp>8 && timestamp<22,
StatusFlag:Boolean, $logon:intValue);
from System-entry($PID, $Service:SMB,”Logon details™,
Validate($timestamp&&$StatusFlag&&$logon));
from SDN-Openflow(Feature($timestamp>8 && timestamp<22,
StatusFlag:Boolean, $flowtable:Mismatch);
from entropy(Feature($timestamp timestamp,$Hash:-MD5.$Max_entopy=>6
&& FirewallStatusFlag: ON, $MAGICBYTESStatusFlag: Unknown);
from Firewall(Feature($timestamp:timestamp, $PID, $Protocol: TCP,
$PORT:445, $Service: SMB);
then
respond($Systementry:True, $FireRule:True, $FirewallStaus:ON)
Kill($ProcessID, $IP)
print (“Alert- Suspicious Activity Found™)
print (“Possibility of Wannacry™);
end

FIGURE 5. Sample event expression model (Wannacry).

ransomware attack, thereby differentiating the user and ran-
somware activities.

Process Refinement: Process refinement step is carried out
to tune and update the decision variable to improvise the
system’s performance. A sample complex event scenario is
modeled using event expression and discussed below.

Example 1: System misbehavior detection!

When a legitimate user’s system misbehaves and attempts
the following actions.

1) Software trying to perform communication with other
servers (Remote, TOR) located in different locations.

2) Software accessing unauthorized system via network
(SMB).

3) Software sending bulk mails/ copying/ deleting bulk
data.

4) Software trying to escalate the privilege.

5) Software trying to encrypt the files.

The intricate pattern formulated for Figure 5 is given
below.

During ((coincides (E1, E4) “coincides (E2, E3)),
timestamp)

The rule for the above-mentioned intricate pattern is given
in Figure 6.

D. RANSOMWARE DETECTION USING IDH

Consider the scenario of CryptoLocker ransomware. The
various processes involved in CryptoLocker are given as fol-
lows. Infection: Assume that a CryptoLocker compromises
the victim through a spear-phishing email or an exploit kit.
The exploit kit targets the unpatched security vulnerabilities
of the software running on the victim device. The angular
exploit kit is a well-known method for the CryptoLocker
to gain execution. Angular exploit kit focuses more on the
vulnerabilities found in network services and authentication.
Behavior & Implants: Upon the successful execution, Cryp-
toLocker implants their variants and maintains consistent per-
sistence in their behavior. Delivery: The malware executables

169951

IEEE Access

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

Event :El

{
Timestamp: 20:08:10;
Source _id: PC-VIRUS/NETLAB;
Metadata: SDN controller

{

Protocol: Openflow;
SRC_IP: 192.168.182.130;
DST_IP: iugssfsopdp9ifjaposdfjhgosurijfacwrwergwea.com;
57g7spgrzlojinas.onion;awwnhwh1z52maqm?7.onion
}

}
Event : E2

{
@Timestamp

Metadata: Honeyfolder

{
Protocol: HMM;

Location: C:\Windows\ tasksche.exe;cscript.exe
User action: READ, Encrypt, WRITE,DELETE;

}
Event: E3

{
@Timestamp

Metadata: Honeyfolder

{
File Hash: ff81d72a277{f5a3d2e5a4777eb28b7b;

MAX ENTROPY: 9;

MIN_ENTROPY: 8;

Magic Bytes : Unknown;
}

}
Event: E4

{
@Timestamp

Metadata: Firewall

{
Protocol: TCP;

IP: SRC _IP;

PORT: 445,

PID: 5320;

Process : cscript.exe;

}
FIGURE 6. Sample CEP rule for detecting Wannacry.

are delivered through separate encrypted channels in order to
bypass the traditional defenses.

Note: ! Likewise, any number of CEP rules can be formed
for any variants.

Files & Folders: Most of the ransomwares place their
executables in the temporary file folders (AppData/Roaming,
Temp. Left off point: Most of the malware adds where it
left off points to continue their encryption process from the
left off point if the infected device is rebooted. Encryption:
Current CryptoLocker uses a secure encryption cipher such
as AES 256. In order to initiate the encryption process, most
of the malware communicates with C2 servers requesting the
key. System tags: If the infection is high, malware tags the
infected system using a unique identifier so that C2 servers
can differentiate the different victims. Finally, the Cryp-
toLocker encrypts all the files using the unique extensions.

Consider the above-discussed scenario to detect and mit-
igate the CryptoLocker. As discussed earlier, the proposed

169952

IDH consists of Honeyfolder, AuditWatch, and CEP engine
as a core module. According to the above-discussed exam-
ple scenario, the victim mistakenly opens the spear-phishing
email and gets infected by the CryptoLocker. All the File
systems used for experimentation are single partitioned and
configured with Honeyfolder by some random files (likely
to attract but contain bogus files such as backup archives,
documents, videos, photos). From the experimental analy-
sis, it is found that some of the ransomwares use asym-
metric cryptography in order to make the threat harder to
beat. Hence pre-configured SDN infrastructure helps to fil-
ter out the suspicious traffic and disrupt the communication
between the CryptoLocker and C2 server without starting
the encryption process. If the ransomware uses symmet-
ric cryptography, the key is hardcoded within the malware,
which allows itself to initiate the encryption process. In this
case, Honeyfolder lures the CryptoLocker to perform its
action in the Honeyfolder. When the CryptoLocker starts to
encrypt the files, the Honeyfolder sends an alert regarding
the suspicious process and halts the process. Furthermore,
to verify the process, the AuditWatch calculates the entropy
value [22] for encrypted folders and sends the entropy value
to the CEP engine. CEP engine correlates the values from
the Honeyfolder, AuditWatch, and SDN application and gen-
erates an alert based on an advanced set of rules that pro-
vides a high degree of output accuracy. Thus, the proposed
IDH successfully halts the ransomware process with minimal
loss.

V. EXPERIMENTAL SETUP

A scenario of a small-scale network with 4 Raspberry Pi
(Pi 4 with 4 GB RAM running in Raspbian OS) and a server
is considered for the experimentation (proof-of-concept).
The clients’ infrastructure is networked using Edge core
4610-30T SDN switch running in the Open Network Oper-
ating System (ONOS), and the POX controller is utilized.
Open flow protocol is used to control and monitor the traffic
from the clients. Besides, the packet flow in the network
is compared to the flow table. Based on the results, the
necessary action, such as flow entry matching or forwarding
to the controller is performed. The entire experimental setup,
as given in Figure 7 is protected by the Snort IDS, Dionaea
Honeypot, and a software-based firewall (pfsense).

A. SERVER CONFIGURATION

The proposed IDH is experimentally tested in a secured
testbed using a dedicated server with Software Guard Exten-
sion (SGX) enabled Intel Xeon (6th Gen) processor, 28 GB
RAM, 2 TB Hard drive running on Ubuntu Server. The con-
figuration includes Dynamic monitoring and behavior Anal-
ysis (DBA), which involves the runtime monitoring of the
malware execution. All the network interfaces are intercon-
nected, and the network flow is verified by the SDN controller
(adapted from the [13] [19]). The experimental setup for SDN
carried out in [13] is utilized and deployed using Edge-core
4610-30T hardware switch.

VOLUME 8, 2020

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

IEEE Access

Hosts with Honeypot Agents Installed
Firewall
—

Honeypot Server

Host and network

features

o

Partition

Audit watch |

‘/ Complex Event

. Processing ,‘ /XL\
rules /—\V
_J" esee
[Alert] Soin

FIGURE 7. Experimental setup and deployment architecture of IDH.

Decoy Folders

*® Network ® Ransomware

DNS Request (x 100)

@timestamp

FIGURE 8. DNS request - Ransomware vs. Normal.

B. RANSOMWARE SAMPLES

Nearly 1000 samples were downloaded from
[15]-[18]. From the downloaded samples, 50 samples were
modified. All the modified samples belong to the differ-
ent variants of the ransomware. Besides, a self-developed
ransomware named Blackwolf is used to validate the pro-
posed IDH. Blackwolf is sophisticated ransomware, and upon
the successful execution, the below-mentioned actions are
performed:

o A start-up entry to load the malware on every boot (OS).

o Blackwolf is designed in such a way that it can digitally
sign itself with a valid digital certificate.

o A secured remote connection is established between the
victim and the C&C server.

« Blackwolf utilizes GMAIL as a Command and Control
server to evade the existing security systems.

« Blackwolf infiltrates the encryption key through Gmail.

o Blackwolf tracks all the user activities in the victim
machine.

« Blackwolf employs obfuscation techniques and implants
its new version upon every successful infection.

C. CEP ENGINE

WSO2 CEP engine with the Python-based library called
peak-rules is used along with the support of multimethod
dispatch.

VOLUME 8, 2020

= Network ® Ransomware activities ? Q
l

o8
B0°© Bpo.qp e "

&,

e

/

[c S " |

@timestamp (min)

FIGURE 9. Ransomware activities detected by IDH.

@ packetbeatexe

theat.exe

@ chrome.exe

Count

@timestamp per 30 seconds

FIGURE 10. CPU usage per process - attack scenario.

VI. RESULTS AND DISCUSSION

A ransomware dataset structure [18] is taken into considera-
tion, and an automation python script is executed to extract all
the features as listed in the dataset. Besides, some of the host
and network features [8] are also considered. Figure 8 shows
the test bed’s network statistics during ransomware attacks,
where the samples send multiple DNS requests at a partic-
ular time interval. Figure 9 shows the ransomware activities
at a particular timestamp. The experimental analysis, found
that more than 200 private proxies, and 100+ onion sites
are utilized for ransomware communication. However, all of
the above-stated domain traffics is filtered and blacklisted
by the SDN controller. If any infected host is trying to
communicate with any of the blacklisted domains, the con-
troller automatically blocks the communication and alerts the
system.

169953

IEEE Access

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

rrecision

1.0
]
09 »
b
08
07 o
® 06 o
Qo
]
® 05
04
03
0.2
0.1
0.0
R R N

Samples

-@- Du et al. [20] -&- Proposed IDH -@- Cabaj et al.[14]

(a)

Recall

©- Leeetal. [23]

Score

D S T M S S (NS A R N

Samples

-@-Duetal. [20] -@- Proposed IDH —-@- Cabaj et al.[14]

(b)

Accuracy

0'92 1o} o
0.8

0.7

©- Leeetal. [23]

0.6

Score

0.5

0.4

03

0.2

0.1

0.0
ENTE S R SR SR R N R SR LR, SN SRS

Samples

-@- Du et al. [20] -@- Proposed IDH -~ Cabaj et al.[14]

©)

FIGURE 11. Performance plot - a) Precision b) Recall c) Accuracy.

©- Lee et al. [23]

The experimental analysis reveals that, on average, a sin-
gle infected host tries to contact 60 different domains to
establish C&C communication. This results in verifying the
contacted domains, and if the contacted domain is found
to be malicious, all the traffic from the contacted domain
is denied before the infected host receives the encryption
key.

169954

60

55

50

45

40

35

30

Time (s)

25

20

Processors

FIGURE 12. Execution time of various processors.

The average round trip time taken by the infected host
to download the encryption key was 10.7s (based on the
analyses), whereas the SDN reaction time to deny the sus-
picious traffic is about 1.7s. Hence it is proved the SDN
based solutions are feasible and the features such as DNS
response, DNS incoming bytes and outgoing bytes, DNS
requests, DNS requests at specific timestamps, Total count of
traffic rate generated by the infected hosts, DNS timestamps,
etc., are considered to be the essential features to analyze the
malware communication. Further, for host monitoring, a self-
developed shell script is used to monitor CPU usage, mem-
ory usage, file system activities, processes, registry entries.
Figure 10 shows the results of CPU usage per process during
ransomware activities.

A. DISCUSSION
The samples are tested sequentially, and the entire experimen-
tation takes more than 1.5 hours to process the samples as
a whole (1000 downloaded samples + 50 modified samples
4+ 200 benign samples). From the experimental results, it is
found that the IDH is capable of detecting all the downloaded,
modified samples, and the Blackwolf ransomware samples.
The performance of the IDH is compared with the state of
the art Honeypot and ransomware detection systems [19]
is shown in Figure 11. In order to measure the efficiency
of the proposed IDH and Honeypot, ransomware detection
systems [13], [19], [22], the same number of samples is
tested and validated in both the proposed IDH and Honeypot,
ransomware detection systems [13], [19], [22]. A confusion
matrix is constructed based on the results obtained, and the
performance is evaluated based on the accuracy (a ratio
of correctly predicted ransomwares to the total number of
samples), precision (a ratio of correctly predicted positive
ransomwares to the total predicted positive ransomwares) and
Recall (a ratio of correctly predicted positive ransomwares to
the total number of samples).

It is observed that the proposed IDH outperforms the
existing Honeypot and ransomware detection systems [13],

VOLUME 8, 2020

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

IEEE Access

TABLE 2. Acronyms and Abbreviations.

IoT Internet of Things

IDPS Intrusion Detection and Prevention
System

IDS Intrusion Detection System

AV Anti-virus

IDH Intrusion Detection Honeypot

SoLA Social Leopard Algorithm

CEP Complex Event Processing

AP Access Points

C&C command and control

SDN Software Defined Networking

PSO Particle Swarm Optimization

ACO Ant colony optimization

MBO Marriage in Honey Bee
Optimization

LOA Lion Optimization algorithm

D-CEP Distributed CEP engine

ONOS Open Network Operating System

SGX Software Guard Extension

DBA Dynamic monitoring and behavior

Analysis

[19], [22] in terms of detection accuracy. Figure 12 shows
that the proposed IDH is cost-efficient and capable of
running in a minimal configuration, and the time taken
for ransomware detection is reasonable when deployed in
IoT platform.

VIl. CONCLUSION

This paper proposed a novel IDH. The proposed IDH utilizes
the CEP technique to correlate the host features, network
features, and various events from other systems such as Audit
watch and firewall, thus producing the aggregated results with
better accuracy. Further, the proposed IDH can be deployed
in the production environment at ease. The results show that
the Honeyfolder deployed for monitoring file system (host)
activities is highly effective at drawing attention to the host’s
ransomwares. Further, it is found that the utilization of SDN
infrastructure significantly improves network protection by
applying simple control rules. The experimental evaluation
also confirms that the proposed IDH is efficient in restricting
the ransomware activities without a minimal data loss. There
are more possibilities to extend the proposed IDH model to
investigate ransomware attacks on healthcare implants and
other internet-connected gadgets such as connected toys, etc.
In the future, we planned to enhance the proposed IDH with
transfer learning ability to optimize the load on the resource-
constrained devices. Furthermore, the auto-tuning feature
will also be added to the proposed IDH.

REFERENCES

[1] A.L. Young and M. Yung, ““On ransomware and envisioning the enemy of
tomorrow,” Computer, vol. 50, no. 11, pp. 82-85, Nov. 2017.

VOLUME 8, 2020

[2]

3

[t

[4

=

[5]

[6

—

[7

—

[8

[91

(10]

(11]

[12]

(13]

(14]

[15]
[16]
[17]
(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

A. O. Almashhadani, M. Kaiiali, S. Sezer, and P. O’Kane, “A multi-
classifier network-based crypto ransomware detection system: A case
study of locky ransomware,” IEEE Access, vol. 7, pp.47053—-47067,
2019.

N. Eliot, D. Kendall, and M. Brockway, ““A flexible laboratory environment
supporting honeypot deployment for teaching real-world cybersecurity
skills,” IEEE Access, vol. 6, pp. 34884-34895, 2018.

W. Tian, X. Ji, W. Liu, G. Liu, J. Zhai, Y. Dai, and S. Huang, “‘Prospect
theoretic study of honeypot defense against advanced persistent threats in
power grid,” IEEE Access, vol. 8, pp. 64075-64085, 2020.

W. Fan, Z. Du, M. Smith-Creasey, and D. Fernandez, “HoneyDOC: An
efficient honeypot architecture enabling all-round design,” IEEE J. Sel.
Areas Commun., vol. 37, no. 3, pp. 683-697, Mar. 2019.

L. Shi, Y. Li, T. Liu, J. Liu, B. Shan, and H. Chen, “Dynamic distributed
honeypot based on blockchain,” IEEE Access, vol. 7, pp. 72234-72246,
2019.

S. Sharmeen, Y. A. Ahmed, S. Huda, B. S. Kocer, and M. M. Hassan,
“Avoiding future digital extortion through robust protection against ran-
somware threats using deep learning based adaptive approaches,” IEEE
Access, vol. 8, pp. 24522-24534, 2020.

R. Mohan, V. Vaidehi, A. Krishna A, M. M, and S. S. Chakkaravarthy,
“Complex event processing based hybrid intrusion detection system,” in
Proc. 3rd Int. Conf. Signal Process., Commun. Netw. (ICSCN), Mar. 2015,
pp. 1-6.

M. Yazdani and F. Jolai, “Lion optimization algorithm (LOA): A nature-
inspired Metaheuristic algorithm,” J. Comput. Design Eng., vol. 3, no. 1,
pp. 24-36, Jan. 2016.

M. Al-Hawawreh, F. D. Hartog, and E. Sitnikova, “Targeted ransomware:
A new cyber threat to edge system of brownfield industrial Internet
of Things,” IEEE Internet Things J., vol. 6, no. 4, pp.7137-7151,
Aug. 2019.

R. Pathak and V. Vaidehi, “Complex event refinement by statistical aug-
mentation model,” Int. J. Intell. Inf. Technol., vol. 11, no. 2, pp. 55-69,
2015.

D. Wu and J. M. Mendel, “Similarity measures for closed gen-
eral Type-2 fuzzy sets: Overview, comparisons, and a geometric
approach,” [EEE Trans. Fuzzy Syst., vol. 27, no. 3, pp.515-526,
Mar. 2019.

K. Cabaj and W. Mazurczyk, “Using software-defined networking for
ransomware mitigation: The case of CryptoWall,” IEEE Netw., vol. 30,
no. 6, pp. 14-20, Nov. 2016.

E. Berrueta, D. Morato, E. Magana, and M. Izal, “A survey on detec-
tion techniques for cryptographic ransomware,” IEEE Access, vol. 7,
pp. 144925-144944, 2019.

Ransomware Dataset. Accessed: Feb. 22, 2020. [Online]. Available:
http://kharon.gforge.inria.fr/dataset/

Ransomware Payments in the Bitcoin Ecosystem. Accessed: Feb. 22, 2020.
[Online]. Available: https://zenodo.org/record/1238041#.XzpQs-gzbcc
Ransomware Samples. Accessed: Feb. 22, 2020. [Online]. Available:
https://github.com/fabrimagic72/malware-samples

Ransomware Dataset. Accessed: Feb. 22, 2020. [Online]. Available:
https://github.com/behas/ransomware-dataset

M. Du and K. Wang, “An SDN-enabled pseudo-honeypot strategy for
distributed denial of service attacks in industrial Internet of Things,” IEEE
Trans. Ind. Informat., vol. 16, no. 1, pp. 648-657, Jan. 2020.
Ransomware Dataset. Accessed: Feb. 22, 2020. [Online]. Available:
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/
ADFA-NB15-Datasets/

A. Bradley. The Real Cost Of Ransomware And How We Stop Paying
It. Accessed: Jun. 12, 2020. [Online]. Available: https://www.forbes.
com/sites/adambradley 1/2020/06/1 1/the-real-cost-of-ransomware-and-
how-we-stop-paying-it/#1b2f41766e51

K. Lee, S.-Y. Lee, and K. Yim, ‘“Machine learning based file entropy
analysis for ransomware detection in backup systems,” IEEE Access,
vol. 7, pp. 110205-110215, 2019.

D. Su, J. Liu, X. Wang, and W. Wang, “Detecting Android locker-
ransomware on Chinese social networks,” IEEE Access, vol. 7,
pp- 20381-20393, 2019.

F. Khan, C. Ncube, L. K. Ramasamy, S. Kadry, and Y. Nam, “A digital
DNA sequencing engine for ransomware detection using machine learn-
ing,” IEEE Access, vol. 8, pp. 119710-119719, 2020.

D. Javaheri, M. Hosseinzadeh, and A. M. Rahmani, “Detection and elim-
ination of spyware and ransomware by intercepting kernel-level system
routines,” IEEE Access, vol. 6, pp. 78321-78332, 2018.

169955

IEEE Access

S. Sibi Chakkaravarthy et al.: Design of IDH Using SoLA to Detect loT Ransomware Attacks

S. SIBI CHAKKARAVARTHY received the Ph.D.
degree from Anna University, in 2018. He was an
Assistant Professor with the Department of Com-
puter Science and Engineering, Vellore Institute of
Technology-Andhra Pradesh (VIT-AP) University,
from May 2018 to September 2018. He has been
working as an Associate Professor with the School
of Computer Science and Engineering (SCOPE),
VIT-AP, since September 2018. He is currently a
Visiting Professor and a member with the Artificial
Intelhgence Laboratory, Department of Computer Science, University Sys-
tems of New Hampshire (KSC Campus). Furthermore, he is also the Coor-
dinator for the Artificial Intelligence and Robotics (AIR) Center, VIT-AP.
He is also the Lead Engineer for the project ViSU, an advanced 3D-printed
humanoid robot developed by VIT-AP. He is also an Active Contributor of
open source community and lead writer in top security magazines such as
Pentestmag and eForensics. He is also an active reviewer in many reputed
journals, by IEEE, Springer, Elsevier, IGI Global, and Hindawi. He was
a recipient of the DST Fellowship for pursuing the Ph.D. degree at Anna
University. He is also an Associate Editor of the International Journal of
Cognitive Informatics and Natural Intelligence (1JCINI; IGI Global).

D. SANGEETHA is currently working as an Assis-
tant Professor with the Department of Information
Technology, Madras Institute of Technology, Anna
University. She was the Investigator for the spon-
sored project IRHMS and an Executive for several
funded projects in the area of sensor networks,
healthcare, and security. Her research interests
include networking, information security, health-
care security, privacy preservation, and so on.

MEENALOSINI VIMAL CRUZ received the
M.Sc. degree in physics and the M.Phil. degree,
the M.Tech. degree in computer and informa-
tion technology from State University, India, and
the Ph.D. degree in computer science engineering
from Technical University, India, in 2014. She
received a Gold Medal for her M.Tech. degree. She
is currently working as an Assistant Professor with
the Department of Computer Science, Keene State
College, USNH, USA. She has published more
than nine articles in reputed international journals and has Google index
4. As part of her Ph.D. degree, she has worked on designing a computer
aided diagnosis tool to detect breast cancer cells automatically in mammo-
grams. She has worked on designing computer-aided diagnosis algorithms
to identify skin cancer and analyze brain tissues using machine learning and
computer vision. Also, she has mentored the Chatbot development project
for her institution. Her current interest includes brain—computer interface to
analyze EEG signals using machine learning techniques. She has been serv-
ing as an editorial board member for many reputed international conferences
and journals, by IEEE and Springer. She received many external grants for
her research projects from many resources, including the NIH. Her areas of
specialization are artificial intelligence, deep learning, and data science.

169956

V. VAIDEHI received the B.E. degree in ECE
from the College of Engineering, Guindy, and
the M.E. degree in applied electronics and the
Ph.D. degree in parallel processing from the
Madras Institute of Technology, Anna University,
Chennai. She is currently a Vice Chancellor of
Mother Teresa Women’s University, Kodaikanal.
She was a Senior Professor and the Dean of
VIT University—Chennai. Previously, she was with

: the Department of Electronics Engineering, MIT,
Anna University, Chennai. She has been a Task Team Member in Micro
Satellite (ANUSAT) and an executive for several funded projects in the areas
of tracking, multi-sensor fusion, semantic intrusion detection system, and
GPRS. Her research interests include networking, parallel and distributed
processing, adaptive digital signal processing, wireless sensor networks,
video processing and analytics, image processing, and information security.

BALASUBRAMANIAN RAMAN (Member,
IEEE) received the Ph.D. degree from IIT Madras,
in 2001. He was a Postdoctoral Fellow of the
University of Missouri, Columbia, MO, USA,
from 2001 to 2002, and a Postdoctoral Associate
with The State University of New Jersey, Rutgers
University, USA, from 2002 to 2003. He was a
Visiting Professor and a member of the Computer
Vision and Sensing Systems Laboratory, Depart-
ment of Electrical and Computer Engineering,
University of Windsor, Canada, in 2009. He is currently a Professor with the
Department of Computer Science and Engineering, IIT Roorkee, Roorkee,
India. His research interests include fractional transform theory, wavelet
analysis, biometrics, content-based video retrieval, video skimming and
summarization, medical imaging, long-range imaging, and hyperspectral
imaging. He has more than 150 research publications in reputed journals
and conference proceedings. He is a member of the IEEE Society, the Uttar
Pradesh Section, and acted as a Joint Secretary of the Executive Committee
of the IEEE Uttarakhand Sub-Section, from 2011 to 2013. He was a recipient
of the BOYSCAST Fellowship from DST, India.

VOLUME 8, 2020

