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ABSTRACT This paper mainly investigates the finite-time synchronization and stability issue of a class of
master-slave multi-linked memristor-based neural networks (MMNNs) with mixed time-varying delays via
different state-feedback controllers. Based on some synchronization analytical techniques and Lyapunov
functional method, sufficient criteria are obtained to ensure that the master-slave MMNNs systems can
realize finite-time synchronization under the Filippov-framework. Three different controllers are designed
to synchronize the MMNNs systems, and the settling time of finite-time synchronization is estimated in
advance. The correctness and the feasibility of the proposed synchronization criteria are confirmed by three
simulation examples.

INDEX TERMS Finite-time synchronization, multi-linked memristor-based neural networks (MMNNs),
adaptive controller, time-varying delays.

I. INTRODUCTION
The memristor, firstly postulated by Chua [1], is a nonlin-
ear two-terminal electronic element indicating the relation-
ship between flux-linkage and charge. The resistance of the
memristor can be adjusted by the charge and magnetic flux.
Compared with common resistor, memristor has two distinct
advantages. Firstly, its resistance varies with the amount
of current passing through, and remains unchanged until a
reverse current is received. Secondly, one can calculate the
amount of charge by measuring its resistance, thus it can act
asmemory resistor. Besides, thememristor exhibits switching
state-dependent characteristic and has nonvolatile memory
storage, and shares many similarities with synapses which
form the brain neural networks. Hence, the memristor can
easily achieve synaptic behavior and simulate the dynamic
behavior of neuronal synapses.

The basic functions of biological brain, such as learning,
memorizing and forgetting, mainly depend on the plasticity
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of synapses, especially the ability of changing the plasticity of
synapses, which is highly correlated with the previous action
potential history [2]. At the same time, memristor is a kind
of nonlinear resistor with memory function, whose resistance
value can be changed by controlling the change of current,
this is very similar to synapses.

In 2008, the HP labs fabricated the first memristor [3],
after that, the researchers began to reconstruct the tradi-
tional artificial neural networks by replacing resistors with
memristors, forming variable connection weights, and got
the memristor-based neural networks (MNNs) [4] which
was more consistent with the biological brain neural net-
works. Hence, MNNs is an promising tool to simulate the
biological brain neural networks. MNNs can adapt to new
data and models more quickly and significantly improve
the computing, parallel and adaptive ability of neural net-
works. Many scholars have devoted themselves to the study
of dynamical behavior ofMNNs, such as synchronization [5],
stability and stabilization [6], [7], passivity [8]–[12],
dispassvity [13], [14], etc. Up to now, many scholars have
proposed many kinds of memristor-based neural networks
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models, such as reaction-diffusion memristor-based neu-
ral networks [5], [8], [12], [15], inertial memristor-based
neural networks [9], [10], Hopfield memristor-based neu-
ral networks [7], Cohen-Grossberg memristor-based neural
networks [16]–[18], fractional-order memristor-based neu-
ral networks [19]–[23], etc. Synchronization and stabiliza-
tion are considered to be the most important dynamical
behavior of MNNs. In general, the synchronization issue of
MNNs can be transformed into the stabilization issue
of MNNs. Many scholars have studied the synchronization
of MNNs, and many excellent kinds of synchronization and
stabilization have been proposed, such as lag synchroniza-
tion [24]–[26], exponential synchronization [27]–[30], decay
synchronization [31], [32], asymptotic synchronization [33],
[34], finite-time synchronization [35]–[37], etc. And many
significant and excellent results have been reported. For
example, exponential synchronization of MNNs was inves-
tigated in [24], [27], [30], [38], [39], the synchronization of
fractional-order MNNs has been studied in [19], [20], [22],
[33], and the synchronization of memristor-based bidirec-
tional associative memory neural networks was investigated
in [39]–[41].

In order to shorten the convergence time of synchronization
between master-slave MNNs systems, many effective syn-
chronization methods have been introduced,such as pinning
control, intermitent control, finite-time synchronous control.
Finite-time synchronous control method was firstly intro-
duced in 1961 [42], with which the convergence time can
be calculated in advance. Therefore, it has advantages in
various practical engineering applications. It is of significant
importance to study the finite-time synchronization control
of MNNs. There have been numerous investigations about
finite-time synchronization of MNNs, such as, finite-time
synchronization of fractional-order MNNs has been studied
in [20], [43], finite-time synchronization of delayed MNNs
has been investigated in [44]–[46], finite-time synchroniza-
tion of bidirectional associative memory MNNs has been
studied in [23], [43], [47], etc.

Meanwhile, as we all know, there exist time delays
in various applications, owning to the hardware imple-
mentation exists in engineering applications and transmit-
ter delays in biological neural networks, etc. Delay can
affect system stability, therefore, it is of significant impor-
tance to study the MMNs involving various time delays.
Multi-linked memristor-based neural networks (MMNNs)
introduced in [48] can be regarded as a combination of
several single-linked MNNs, with each edge having its own
transmission delay. Therefore, MMNNs is more consistent
with biological brain neural network and has a stronger
ability in modeling various real-world applications com-
pared with single-linkedMNNs.Many scholars pay consider-
able attention to investigating the finte-time synchronization
and stabilization of MNNs involving various time delays.
And many excellent results have been reported, please see
work [47], [49] and the references therein. However,
there exist only few related literatures reporting the

synchronization and stabilization control of MMNNs, please
see [46], [48]. In [46], Qin et al. studied finite-time projec-
tive synchronization of multi-linked memristor-based neural
network involving leakage delays. Therefore, the finite-time
synchronzation issue onMMNNs is far from being fully stud-
ied, and there is little research on MMNNs with time-varying
delays.

Motivated by the above discussions, this paper aims
to investigate the finite-time synchronization problem of
MMNNs involving both discrete time-varying delays and
distributed time-varying delay by adopting different control
strategies.

Our main contributions are:
(1) Three different controllers are designed. The first one

is a linear and delay-independent state-feedback controller,
the second one is a non-linear adaptive and delay-independent
state-feedback controller, and the last one is a nonlinear
and delay-dependent state-feedback controller. Our proof
procedures adopted are simple to implement in practical
applications.

(2) Three different Lyapunov-Krasovskii functionals are
designed. Sufficient criteria are derived to ensure that the
master-slave MMNNs systems can realize finite-time syn-
chronization under the Filippov-Framework.

(3) The correctness and the feasibility of the acquired
criteria are verified by three simulation examples.

Notation. For simplicity, the following symbols are to be
adopted. R, Rn, Rn1×n2 represent the set of real number,
n-dimensional Euclidean space, and a collection of matri-
ces with dimension of n1×n2, respectively. The sign of
T denotes the transposition operation of a vector or matrix.
C([−τ, 0],Rn) represents a Banach space of continuous func-
tions mapping the interval of [−τ, 0] into Rn. co[W̆, Ŵ]
represents the closure of convex hull formed by the matrices
or numbers W̆ and Ŵ . For a matrix or vector W, ‖W‖1,
‖W‖∞, denote its 1−norm,∞−norm, respectively.

II. PRELIMINARIES AND MMNNs MODELS
A. DESCRIPTION OF MMNNs SYSTEMS
In this paper, we focus on studing the master-slave syn-
chronization problem ofmulti-linkedmemristor-based neural
networks (MMNNs) with mixed time-varying delays consist-
ing of n nodes, and there exist m different links between
any two nodes of the MMNNs systems. The master-slave
MMNNs systems can be described by the following two
differential equations.

The master MMNNs system is described as

żk (t) = −γkzk (t)+
n∑
s=1

wks(zk (t))hs(zs(t))

+

n∑
s=1

m∑
l=1

v(l)ks(zk (t))gs(zs(t−τl(t)))

+

n∑
s=1

cks(zk (t))
∫ t

t−%(t)
fs(zs(x))dx+Jk (t),

t ≥ 0, k = 1, 2, . . . , n, (1)
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The corresponding slaveMMNNs system can be expressed
as

ẏk (t) = −γkyk (t)+
n∑
s=1

wks(yk (t))hs(ys(t))

+

n∑
s=1

m∑
l=1

v(l)ks(yk (t))gs(ys(t−τl(t)))

+

n∑
s=1

cks(yk (t))
∫ t

t−%(t)
fs(ys(x))dx+Jk (t)

+µk (t), t ≥ 0, k = 1, 2, . . . , n, (2)

where zk (t), yk (t) represent state variables of the kth neuron
of the master-slave MMNNs systems (1) and (2), respec-
tively; γk represents the rate of neuron self-inhibition; h(·),
g(·) and f (·) stand for activation functions without and
with time-varying delays; τl(t) denotes discrete time-varying
delay, l = 1, 2, . . . ,m, which satisfies 0 ≤ τl(t) ≤ τ ;
%(t) represents distributed delay satisfying 0 ≤ %(t) ≤ %M ;
µi(t) is the controller to be determined later; Jk (t) is the
external input;wks(·), v(l)ks(·), and cks(·) represent memristive
connection weights which satisfy

wks(zk (t)) =
Mks

Ck
×signks,

v(l)ks(zk (t)) =
M∗

(l)ks

Ck
×signks,

cks(zk (t)) =
M∗∗

ks

Ck
×signks, signks =

{
1, k 6= s,
−1, k = s,

where k = 1, 2, . . . , n. Here, Ck denotes the value of the k-
th capacitor, Mks, M∗

(l)ks, M
∗∗
ks denote the memductances

of memristors Rks, R∗(l)ks, R
∗∗
ks , respectively. Moreover, Rks

represents the memristor between hs(zs(t)) and zk (t), or the
memristor between hs(ys(t)) and yk (t), R∗(l)ks represents the
memristor between gs(zs(t−τl(t)) and zk (t), or the memristor
between gs(ys(t−τl(t)) and yk (t),R∗∗ks represents the memris-
tor between

∫ t
t−%(t) fs (zs(x)) dx and yk (t), or the memristor

between
∫ t
t−%(t) fs (ys(x)) dx and zk (t). Jk (t) represents the

external input. According to the characteristics of the mem-
ristors, we set the connection weights as follows:

wks(xk (t)) =


w∗ks, |xk (t)| ≤ fk ,

invariant, |xk (t)| = fk ,

w∗∗ks , |xk (t)| > fk ,

v(l)ks(xk (t)) =


v∗(l)ks, |xk (t)| ≤ fk ,

invariant, |xk (t)| = fk ,

v∗∗(l)ks, |xk (t)| > fk ,

cks(xk (t)) =


c∗ks, |xk (t)| ≤ fk ,

invariant, |xk (t)| = fk ,

c∗∗ks , |xk (t)| > fk ,

where k, s = 1, 2, . . . , n, l = 1, 2, . . . ,m, xk (t) repre-
sents zk (t) or yk (t), and fk is a positive constant, denoting

the switching jumps thresholds. The invariant value means
unchanged, w∗ks, w

∗∗
ks , v

∗

(l)ks, v
∗∗

(l)ks, c
∗
ks and c∗∗ks are known

constants.
The initial values of MMNNs systems (1) and (2) are

ψ(s) = (ψ1, ψ2, . . . , ψn(s))T ∈ C([−τ, 0],Rn), and φ(s) =
(φ1(s), φ2(s), . . . , φn(s))T ∈ C([−τ, 0],Rn), respectively,
where τ = max

1≤l≤m
{τl(t), %(t)}.

In order to simplify proof process, we make the following
notation:

ŵij = max{w∗ij, w
∗∗
ij }, w̆ij = min{w∗ij,w

∗∗
ij },

w̃ij = max{|w∗ij|, |w
∗∗
ij |}, v̂(l)ij = max{v∗(l)ij, v

∗∗

(l)ij},

v̆(l)ij = min{v∗(l)ij, v
∗∗

(l)ij}, ṽ(l)ij = max{|v∗(l)ij|, |v
∗∗

(l)ij|},

ĉij = max{cij, c∗∗ij }, c̆ij = min{c∗ij, c
∗∗
ij },

c̃ij = max{|c∗ij|, |c
∗∗
ij |}.

We can write them in matrix forms, and get W̆ = (w̆ks)n×n,
V̆l =

(
v̆(l)ks

)
n×n, C̆ = (c̆ks)n×n, Ŵ =

(
ŵks
)
n×n, V̂l =(

v̂(l)ks
)
n×n, Ĉ =

(
ĉks
)
n×n, W̃ = (w̃ks)n×n, Ṽl =

(
ṽ(l)ks

)
n×n,

C̃ = (c̃ks)n×n.
According to the above descriptions, we can conclude

that MMNNs systems (1) and (2) are switching systems
with discontinuous right-hand side. Therefore, based on
set-valued mapping and differential inclusions principle [50],
the MMNNs systems (1) and (2) can be expressed in the
following differential inclusions forms,

żk (t) ∈ −γkzk (t)+
n∑
s=1

co [wks(zk (t))] hs(zs(t))

+

n∑
s=1

m∑
l=1

co
[
v(l)ks(zk (t))

]
gs(zs(t−τl(t)))

+

n∑
s=1

co [cks(zk (t))]
∫ t

t−%(t)
fs(zs(x))dx+Jk (t), (3)

and

ẏk (t) ∈ −γkyk (t)+
n∑
s=1

co [wks(yk (t))] hs(ys(t))

+

n∑
s=1

m∑
l=1

co
[
v(l)ks(yk (t))

]
gs(ys(t−τl(t)))

+

n∑
s=1

co [cks(yk (t))]
∫ t

t−%(t)
fs(ys(x))dx+µ(t)+Jk (t), (4)

for k = 1, 2, . . . , n,, and co[wij(·)], co[v(l)ij(·)], co[cij(·)]
are the closure of convex hull generated by the sets [wij(·)],
[v(l)ij(·)], [cij(·)], respectively. Their values are given by

co[wks(xi(t))] =


w∗ks, |xk (t)| ≤ fk ,

[w̆ij, ŵij], |xk (t)| = fk ,

w∗∗ks , |xk (t)| > fk ,

co[v(l)ks(xk (t))] =


v∗(l)ks, |xk (t)| ≤ fk ,

[v̆(l)ks, v̂(l)ks], |xk (t)| = fk ,

v∗∗(l)ks, |xk (t)| > fk ,
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co[cks(xk (t))] =


c∗ks, |xk (t)| ≤ fk ,

[c̆ks, ĉks], |xk (t)| = fk ,

c∗∗ks , |xk (t)| > fk ,

here xk (t) represents zk (t) or yk (t).
Hence, there exist measurable functions ẃks(t) ∈ co

[wks(zk (t))], v́(l)ks(t) ∈ co[v(l)ks(zk (t))], ćks(t) ∈

co[cks(zk (t))], ẁks(t) ∈ co
[
w̆ks, ŵks

]
, v̀(l)ks(t) ∈

co
[
v̆(l)ks, v̂(l)ks

]
and c̀ks(t) ∈ co

[
c̆ks, ĉks

]
, such that

żk (t) = −γkzk (t)+
n∑
s=1

ẃks(t)hs(zs(t))

+

n∑
s=1

m∑
l=1

v́(l)ks(t)gs(zs(t−τl(t)))

+

n∑
s=1

ćks(t)
∫ t

t−%(t)
fs(zs(x))dx+Jk (t), t ≥ 0. (5)

And

ẏk (t) = −γkyk (t)+
n∑
s=1

ẁks(t)hs(ys(t))

+

n∑
s=1

m∑
l=1

v̀(l)ks(t)gs(ys(t−τl(t)))

+

n∑
s=1

c̀ks(t)
∫ t

t−%(t)
fs(ys(x))dx+µk (t)+Jk (t), (6)

for k = 1, 2, . . . , n.
The synchronization issue between MMNNs systems (1)

and (2) can be transformed into the corresponding stability
problem, the error system between MMNNs systems (1)
and (2) is defined as ek (t) = yk (t)−zk (t), then we can get

ėk (t) = ẏk (t)−żk (t) = −γkek (t)

+

n∑
s=1

(ẁks(t)−ẃks(t))hs(ys(t))+
n∑
s=1

ẃks(t)Hs(es(t))

+

n∑
s=1

m∑
l=1

(v̀(l)ks(t)−v́(l)ks(t))gs(ys(t−τl(t))

+

n∑
s=1

m∑
l=1

v́(l)ks(t)Gs(es(t−τl(t))

+

n∑
s=1

(c̀ks(t)−ćks(t))
∫ t

t−%(t)
fs(ys(x))dx

+

n∑
s=1

ćks(t)
∫ t

t−%(t)
Fs(es(x))dx+µk (t), t ≥ 0, (7)

for k = 1, 2, . . . , n.
Or,

ė(t) = ẏ(t)−ż(t) = −0e(t)+(Ẁ (t)−Ẃ (t))h(y(t))

+Ẃ (t)H (e(t))+
m∑
l=1

(V̀l(t)−V́l(t))g(y(t−τl(t)))

+

m∑
l=1

V́l(t)G(e(t−τl(t)))

+(C̀(t)−Ć(t))
∫ t

t−%(t)
f (y(x))dx

+Ć(t)
∫ t

t−%(t
F(e(x))dx+µ(t), t ≥ 0, (8)

where e(t) = (e1(t), e2(t), . . . , en(t))T , H (e(t)) = h(y(t))−
h(z(t)), F(e(t)) = f (y(t))−f (z(t)), G(e(t−τl(t))) = g(y(t−
τl(t)))−g(z(t−τl(t))); And Ẃ (t) = (ẃks(t))n×n, Ẁ (t) =
(ẁks(t))n×n, V́l(t) = (v́(l)ks(t))n×n, V̀l(t) = (v̀(l)ks(t))n×n,
Ć(t) = (ćks(t))n×n, C̀(t) = (c̀ks(t))n×n. Besides, the error
system (8) takes the initial value ϕ(s) = ψ(s)−φ(s) ∈
C([−τ, 0],Rn).
The results of this paper are based on one definition, two

important lemmas and three assumptions, as follows:
Assumption 1: The functions h(u), g(u) and f (u) are

assumed to be bounded. Then for any u ∈ Rn, there always
exist positive constants ξhk , ξ

g
k and ξ fk , for k = 1, 2, . . . , n,

which satisfy |hk (uk )| ≤ ξhk , |gk (uk )| ≤ ξ
g
k , and |f (uk )| ≤

ξ
f
k . We denote ξh = max

1≤k≤n

{
ξhk

}
, ξg = max

1≤k≤n

{
ξ
g
k

}
,

ξ f = max
1≤k≤n

{
ξ
f
k

}
, 4h

=
(
ξh1 , ξ

h
2 , . . . , ξ

h
n
)T
∈ Rn, 4g

=(
ξ
g
1 , ξ

g
2 , . . . , ξ

g
n
)T
∈ Rn and 4f

=

(
ξ
f
1 , ξ

f
2 , . . . , ξ

f
n

)T
∈ Rn.

Assumption 2: The functions h(x), g(x) and f (x) are
assumed to be Lipschitz continuous in x ∈ Rn. Then for any
uk , vk ∈ Rn, there exist positive constants ιhk , ι

g
k and ι

f
k , such

that |hk (uk )−hk (vk )| ≤ ιhk |uk−vk |, |gk (uk )−gk (vk )| ≤ ι
g
k |uk−

vk |, and |fk (uk )−fk (vk )| ≤ ιhk |uk−vk |, where 1 ≤ k ≤ n.
And we denote that Lh = max

1≤k≤n

{
ιhk

}
, Lg = max

1≤k≤n

{
ι
g
k

}
, and

L f = max
1≤k≤n

{
ι
f
k

}
.

Assumption 3: %(t) and τl(t), l = 1, 2, . . . ,m are continu-
ously differential functions, which satisfy 0 ≤ %̇(t) ≤ %D <
1, 0 ≤ τ̇l(t) ≤ τD < 1. Here %D, τD are two known positive
constants.
Lemma 1 [51]: If V(t) is a continuous function, and takes

values between 0 and∞, and satisfies

V̇(t) ≤ −ρVς (t), ∀t ≥ t0, V(t0) ≥ 0,

where ρ > 0, 0 < ς < 1 are positive canstants. Then we can
get

V1−ς (t) ≤ V1−ς (t0)−ρ(1−ς )(t−t0), t0 ≤ t ≤ t∗,

and V(t) ≡ 0, ∀t ≥ t∗, where t∗ can be calculated by

t∗ = t0+
V1−ς (t0)
ρ(1−ς )

.

Lemma 2 [52]: Let ν1, ν2, . . . , νn ≥ 0, where n is a postive
integer, and 0 < ε ≤ 1, then we conclude:

n∑
ι=1

νει ≥

(
n∑
ι=1

νι

)ε
.
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Definition 1: The MMNNs (2) is regarded to be synchro-
nized with the MMNNs (1) in finite time, if under certain
appropriately designed controller(s), there exists a constant
t∗ > 0, such that lim

t→t∗
e(t) = (0, 0, . . . , 0)T , and when

t ≥ t∗, e(t) ≡ (0, 0, . . . , 0)T always holds, and t∗ is called
the settling time.

III. MAIN RESULTS
In this paper, three different controllers are designed in this
section to realize finite-time synchronization between the
MMNNs systems (1) and (2). Meanwhile, based on some
synchronization analytical techniques, sufficient criteria are
derived to ensure that the synchronization can be acquired in
finite time.

A. LINEAR AND DELAY-INDEPENDENT STATE-FEEDBACK
CONTROLLER
We adopt the following linear and delay-independent state-
feedback controller

µ(t) = −$e(t)−ζ sign(e(t)), (9)

where $ = ($1,$2, . . . ,$n), ζ = (ζ1, ζ2, . . . , ζn) are two
vectors to be determined later. And

sign(e(t)) = (sign(e1(t)), sign(e2(t)), . . . , sign(en(t)))T

$k > 0, ζk > 0, for k = 1, 2, . . . , n.
Theorem 1: Assuming that Assumptions 1-3 hold, and we

denote$ = min
1≤k≤n

{$k}, and ζ = min
1≤k≤n

{ζk}. if$ , ζ satisfy

the following conditions:

$ ≥
(
−γ+Lh‖W̃‖1+%ML f ‖C̃‖1+

Lg

1−τD

m∑
l=1

‖Ṽl‖1
)
,

ζ >
(
ξh‖Ŵ−W̆‖∞+ξg

( m∑
l=1

‖V̂l−V̆l‖∞
)

+%M ξ
f
‖Ĉ−C̆‖∞

)
,

where γ = min
1≤k≤n

{γk}. Then, after applying the controller (9)

to the MMNNs system (2), the MMNNs systems (2) and (1)
can achieve synchronization in finite time t∗1 , given by

t∗1 =
V(0)
�

, (10)

where � = ζ−ξh‖Ŵ−W̆‖∞−ξg
(

m∑
l=1
‖V̂l−V̆l‖∞

)
−

%M ξ
f
‖Ĉ−C̆‖∞ > 0.

Proof: By utilizing the Generalized Lyapunov Construc-
tion method, we adopt the Lyapunov functional as follows:

V(t) = V1(t)+V2(t)+V3(t), (11)

where

V1(t) = ‖e(t)‖1,

V2(t) =
Lg

1−τD

m∑
l=1

‖Ṽl‖1

∫ t

t−τl (t)
‖e(x)‖1dx,

V3(t) = L f ‖C̃‖1

∫ 0

−%M

∫ t

t+ϑ
‖e(x)‖1dxdϑ. (12)

Based on Chain rule introduced in [53], we can con-
clude that V(t) is a C-regular function, we can calculate
the the derivatives of the functions V1(t), V2(t) and V3(t),
respectively.

Calculating the derivative of V1(t) along the trajectory
of (8) leads to

V̇1(t) = signT (e(t))
[
−0(t)+(Ẁ (t)−Ẃ (t))h(y(t))

+Ẃ (t)H (e(t))+
m∑
l=1

(V̀l(t)−V́l(t))g(y(t−τl(t)))

+

m∑
l=1

V́l(t)G(t−τl(t))+(C̀(t)−Ć(t))
∫ t

t−%(t)
f (y(x))dx

+Ć(t)
∫ t

t−%(t
F(e(x))dx−µ(t)

]
. (13)

Obviously,

signT (e(t)) (−0(t)) = −
n∑

k=1

sign(ek (t))(−γkek (t))

= −

n∑
k=1

γk |ek (t)| ≤ −γ ‖e(t)‖1. (14)

From Assumption 2, we can conclude that

signT (e(t))Ẃ (t)H (e(t))

=

n∑
k=1

n∑
s=1

sign(ek (t))ẃks(t)Hs((es(t)))

≤

n∑
k=1

n∑
s=1

|ẃks(t)|ιhk |es(t)| ≤ L
h

n∑
k=1

n∑
s=1

|ẃks(t)||es(t)|

≤ Lh‖W̃‖1‖e(t)‖1, (15)

Similarly, we can conclude

signT (e(t))
m∑
l=1

V́l(t)G(e(t−τl(t)))

≤ Lg
m∑
l=1

‖Ṽl‖1‖e(t−τl(t))‖1, (16)

and

signT (e(t))Ć(t)
∫ t

t−%(t)
F(e(x))dx

≤ L f ‖C̃‖1

∫ t

t−%(t)
‖e(s)‖1ds

≤ L f ‖C̃‖1

∫ t

t−%(t)
‖e(s)‖1ds. (17)

Based on Assumption 1, we can obtain

signT (e(t))(Ẁ (t)−Ẃ (t))h(y(t))

=

n∑
k=1

n∑
s=1

sign(ek (t))(ẁks(t)−ẃks(t))hs(ys(t))
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≤

n∑
k=1

n∑
s=1

|ẁks(t)−ẃks(t)||sign(ek (t))|ξhs

≤ ξh‖Ŵ−W̆‖∞
n∑

k=1

χk , (18)

Similar to (18), we conclude that

signT (e(t))
m∑
l=1

(V̀l(t)−V́l(t))g(y(t−τl(t)))

=

n∑
k=1

n∑
s=1

m∑
l=1

sign(ek (t))(v̀(l)ks(t)−v́(l)ks(t))

· gs(ys(t−τl(t)))

≤

n∑
k=1

n∑
s=1

m∑
l=1

|v̂(l)ks−v̆(l)ks|ξgs |sign(ek (t))|

≤

n∑
k=1

n∑
s=1

m∑
l=1

|v̂(l)ks−v̆(l)ks|ξgs χk

≤ ξg

(
m∑
l=1

‖V̂l−V̆l‖∞

)
n∑

k=1

χk , (19)

Similarly,

signT (e(t))(C̀(t)−Ć(t)
∫ t

t−%(t)
f (y(x))dx

=

n∑
k=1

n∑
s=1

sign(ek (t))(c̀ks(t)−ćks(t))·∫ t

t−%(t)
f (y(x))ds

≤

n∑
k=1

n∑
s=1

|ĉks−c̆ks||sign(ek (t))|
∫ t

t−%(t)
ξ fs ds

≤

n∑
k=1

n∑
s=1

(ĉks−c̆ks)χk

∫ t

t−%M
ξ fs ds

≤ %M ξ
f
‖Ĉ−C̆‖∞

n∑
k=1

χk . (20)

On the other hand, we have

signT (e(t))µ(t)

=

n∑
k=1

sign(ek (t))(−$kek (t)−ζksign(ek (t)))

=

n∑
k=1

(
−$k |ek (t)|−ζk |sign(ek (t))|2

)
≤ −$‖e(t)‖1−ζ

n∑
k=1

χk , (21)

where we define

χk = ((signek (t)))2 =

{
0, when ek (t) = 0,
1, else,

which means that χk = 0 if ek (t) = 0, otherwise χk = 1.

Then we can get

V̇1(t) ≤ −γ ‖e(t)‖1+ξh‖Ŵ−W̆‖∞
n∑

k=1

χk

+Lh‖W̃‖1‖e(t)‖1+ξg
(

m∑
l=1

‖V̂l−V̆l‖∞

)
n∑

k=1

χk

+Lg
m∑
l=1

‖Ṽl‖1‖e(t−τl(t))‖1

+%M ξ
f
‖Ĉ−C̆‖∞

n∑
k=1

χk+L f ‖C̃‖1

∫ t

t−%(t)
‖e(s)‖1ds

−$‖e(t)‖1−ζ
n∑

k=1

χk

=

(
−γ+Lh‖W̃‖1−$

)
‖e(t)‖1

+Lg
m∑
l=1

‖Ṽl‖1‖e(t−τl(t))‖1+
(
ξh‖Ŵ−W̆‖∞

+ξg

(
m∑
l=1

‖V̂l−V̆l‖∞

)
+%M ξ

f
‖Ĉ−C̆‖∞−ζ

) n∑
k=1

χk

+L f ‖C̃‖1

∫ t

t−%M
‖e(s)‖1ds. (22)

According to Assumptions 2 and 3, we can calculate the
derivatives of V2(t) and V3(t), and obtain

V̇2(t) =
Lg

1−τD

m∑
l=1

(
‖Ṽl‖1‖e(t)‖1

−‖Ṽl‖1‖e(t−τl(t))‖1(1−τ̇l(t))
)

≤
Lg

1−τD

m∑
l=1

(
‖Ṽl‖1‖e(t)‖1

)
−Lg

m∑
l=1

(
‖Ṽl‖1‖e(t−τl(t))‖1

)
, (23)

and

V̇3(t) = L f ‖C̃‖1

∫ 0

−%M

‖e(t)‖1ds

−L f ‖C̃‖1

∫ 0

−%M

‖e(t+s)‖1ds

≤ %ML f ‖C̃‖1‖e(t)‖1−L f ‖C̃‖1

∫ t

t−%M
‖e(s)‖1ds. (24)

Therefore, according to (22), (23), and (24), we can get that

V̇(t) = V̇1(t)+V̇2(t)+V̇3(t) ≤
(
−γ+Lh‖W̃‖1

+%ML f ‖C̃‖1+
Lg

1−τD

m∑
l=1

‖Ṽl‖1−$
)
‖e(t)‖1

+

(
ξh‖Ŵ−W̆‖∞+ξg

(
m∑
l=1

‖V̂l−V̆l‖∞

)

+%M ξ
f
‖Ĉ−C̆‖∞−ζ

) n∑
k=1

χk . (25)
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We can easily conclude that

V̇(t) ≤ −h̄‖e(t)‖1−�
n∑

k=1

χk , (26)

where

h̄ = −
[
−γ+Lh‖W̃‖1+%ML f ‖C̃‖1

+
Lg

1−τD

m∑
l=1

‖Ṽl‖1−$
]
.

According to Theorem 1, it concludes that

V̇(t) ≤ −h̄‖e(t)‖1−�
n∑

k=1

χk ≤ −�

n∑
k=1

χk . (27)

There are mainly two cases concerning the value of
n∑

k=1
χk .

Case 1: Only when e(t) ≡ 0, which means that ek (t) =

0, k = 1, 2, . . . , n, we can get
n∑

k=1
χk = 0. According

to Definition 2.3, we can conclude that the MMNNs (2) is
synchronized with the MMNNs (1).
Case 2: if e(t) 6= 0, which means that there exists at least

one item e∗(t) satisfying e∗(t) 6= 0, then we conclude that
n∑

k=1
χk ≥ 1. We can conclude from (29) that

V̇(t) ≤ −�
n∑

k=1

χk ≤ −� < 0, (28)

In this case, taking integral operation on both sides of
the inequality (28) between regions (0, t), where t > 0,
we further conclude that

V(t) ≤ V(0)−�t. (29)

The inequality V(t) ≥ 0 always holds according to the
definition of V(t). Since V̇(t) < 0, it can be concluded that
when t = t∗1 ≥

V(0)
�
,V(t) ≡ 0, which means ek (t) ≡ 0,

thus χk = (sign(ek (t)))2 ≡ 0. Therefore, we can infer that
n∑

k=1
χk ≡ 0. Further, we obtain

|e(t∗)|1 = 0 and ‖e(t)‖1 ≡ 0, ∀t ≥ t∗1 ,

where t∗1 =
V(0)
�

.
According to Definition 1, we can conclude that the

slave MMNNs system (2) can synchronize with the master
MMNNs system (1) under the controller (9) during the set-
tling time, given by t∗1 =

V(0)
�

.
The proof of Theorem 1 is finished.
Corollary 1: For master-slave MMNNs systems (1)

and (2), if there exists only one link between any two nodes
of the systems, which means m = 1, the MMNNs systems
degenerate into single-linkedMNNs systems. Under this con-
dition, if$ and ζ meet the following requirements:

$ ≥ −γ+Lh‖W̃‖1+
Lg

1−τD
‖Ṽ1‖1+%ML f ‖C̃‖1,

ζ > ξh‖Ŵ−W̆‖∞+ξg‖V̂1−V̆1‖∞+%M ξ f ‖Ĉ−C̆‖∞.

then MNNs systems (1) and (2) with m = 1 can gain
finte-time synchronization within a calculated time, which
can be calculated in advance by utilizing (10) with m = 1.

Proof: The proof process is similar to that of Theorem 1,
hence, we omit the proof process.
Remark 1: Corollary 1 can be viewed as a simple case of

Theorem 1 since there is only one link between any two nodes
of the MMNNs systems, or, in other words, they are MNNs
systems which have been studied in [49], [54]. The expo-
nential synchronization of delayed MNNs was investigated
in [24].

B. NON-LINEAR ADAPTIVE AND DELAY-INDEPENDENT
STATE-FEEDBACK CONTROLLER
In this subsection, we design an adaptive and non-linear state-
feedback controller to realize the finite-time synchronization
between MMNNs systems (1) and (2), the following con-
troller is utilized

uk (t) = −$ ∗k (t)ek (t)−ζ
∗
k (t)sign (ek (t)) , (30)

for k = 1, 2, . . . , n, $ ∗k (t), ζ
∗
k (t) are time-varying param-

eters. The adaptive laws of $ ∗k (t), ζ
∗
k (t) are designed as

follows:

$̇ ∗k (t) = $
∗
k |ek (t) |,

ζ̇ ∗k (t) = ζ
∗
k |sign (ek (t)) |,

where $ ∗k , ζ
∗
k , for k = 1, 2, . . . , n are unknown positive

constants to be determined later.
Remark 2: The controller (30) also appears in Ref. [18],

[37], [45], etc. Compared with the regular feedback controller
(i.e. µ(t) = −ke(t)), the controller (30) has two adaptive
control parameters and is more flexible to use. We can also
find a similar form of controller (30) in Refs. [15], [34], [41],
[55], etc. However, these research results either deal with
asymptotic control, or deal with different networks models.
In comparison, the model in this paper is more general.
In addition, adaptive control can modify its own charac-
teristics to adapt to the dynamic characteristics of objects.
Therefore, here we choose adaptive control.
Theorem 2. Based on Assumptions 1, 2, and 3, and if the

control gains$ ∗k , ζ
∗
k meet the following conditions

$ ∗k ≥

n∑
s=1

Lhw̃sk+Lg
n∑
s=1

m∑
l=1

ṽ(l)sk
1−τD

+L f %M
n∑
s=1

c̃sk−γk ,

and

ζ ∗k > ξh
n∑
s=1

(
ŵks−w̆ks

)
+ξg

n∑
s=1

m∑
l=1

(
v̂(l)ks−v̆(l)ks

)
+%M ξ

f
n∑
s=1

(
ĉks−c̆ks

)
, k = 1, 2, . . . , n, (31)

then when the controller (30) is exerted on the slave MMNNs
system (2), it can be synchronized with the MMNNs sys-
tem (1) during the settling time, given by

t∗2 =
V(0)
�∗

,
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where �∗ = min
1≤k≤n

{
�∗k

}
, and

�∗k = ζ
∗
k−

(
ξh

n∑
s=1

(
ŵks−w̆ks

)
+ξg

n∑
s=1

m∑
l=1

(
v̂(l)ks−v̆(l)ks

)
+%M ξ

f
n∑
s=1

(
ĉks−c̆ks

))
,

and

V(0) =
[ n∑
k=1

|ek (0)|+
n∑

k=1

n∑
s=1

∫ 0

−%M

L f c̃ks

∫ 0

ϑ

|es(x)|dxdϑ

+

n∑
k=1

n∑
s=1

m∑
l=1

ṽ(l)ksLg

1−τD

∫ t

t−τ0
|es(x)|dx

+

n∑
k=1

1
2$ ∗k

(
$ ∗k (0)−$

∗
k
)2
+

n∑
k=1

1
2ζ ∗k

(
ζ ∗k (0)−ζ

∗
k
)2 ]

.

Proof: Under the controller (30), we construct the fol-
lowing Lyapunov-Krasovskii functional

V(t) = V1(t)+V2(t)+V3(t)+V4(t), (32)

where

V1(t) = |e(t)|,

V2(t) =
n∑

k=1

n∑
s=1

m∑
l=1

Lgṽ(l)ks
1−τD

∫ t

t−τl (t)
|es(x)|dx,

V3(t) =
n∑

k=1

n∑
s=1

∫ 0

−%(t)
c̃ksL f

∫ t

t+ϑ
|es(x)|dxdϑ,

V4(t) =
n∑

k=1

1
2$ ∗k

(
$ ∗k (t)−$

∗
k
)2
+

n∑
k=1

1
2ζ ∗k

(
ζ ∗k (t)−ζ

∗
k
)2
.

(33)

Based on the Chain rule introduced in [53], along the
trajectory of (8), the derivative of V1(t) can be calculated as

V̇1(t) = signT (e(t))ė(t)

= signT (e(t))[−0e(t)+(Ẁ (t)−Ẃ (t))h(y(t))

+Ẃ (t)H (e(t))+
m∑
l=1

(V̀l(t)−V́l(t))g(y(t−τl(t)))

+

m∑
l=1

V́l(t)G(e(t−τl(t)))+Ć(t)
∫ t

t−%(t)
F(e(x))dx

+(C̀(t)−Ć(t))
∫ t

t−%(t)
f (y(x))dx

+µ(t)]. (34)

From Assumption 2, we can get that

signT (e(t))Ẃ (t)H (e(t))

≤

n∑
k=1

n∑
s=1

sign(ek (t))ẃks(t)hs(es(t))

≤

n∑
k=1

n∑
s=1

|ẃks(t)|ιhs |es(t)|

≤ Lh
n∑

k=1

n∑
s=1

w̃sk |ek (t)|. (35)

Similar to (35), we can conclude that

signT (e(t))
m∑
l=1

V́l(t)G (e (t−τl(t)))

=

n∑
k=1

n∑
s=1

m∑
l=1

sign (ek (t)) v́(l)ks(t)gs(es(t−τl(t)))

≤

n∑
k=1

n∑
s=1

m∑
l=1

sign (ek (t)) v́(l)ks(t)ιgs |es (t−τl(t)) |

≤ Lg
n∑

k=1

n∑
s=1

m∑
l=1

ṽ(l)ks|es (t−τl(t)) |, (36)

and

signT (e(t))Ć(t)
∫ t

t−%(t)
F(e(x))dx

=

n∑
k=1

n∑
s=1

sign (ek (t)) ćks(t)
∫ t

t−%(t)
fs (es(x)) dx

≤

n∑
k=1

n∑
s=1

c̃ks

∫ t

t−%(t)
ιfs |es(x)|dx

≤ L f
n∑

k=1

n∑
s=1

c̃ks

∫ t

t−%(t)
|es(x)|dx. (37)

According to Assumption 1, we otain

signT (e(t))
(
Ẁ (t)−Ẃ (t)

)
h(y(t))

=

n∑
k=1

n∑
s=1

sign (ek (t))
(
ẁks(t)−ẃks(t)

)
hs(ys(t))

≤

n∑
k=1

n∑
s=1

(
ŵks−w̆ks

)
|sign (ek (t)) |ξhs

≤ ξh
n∑

k=1

n∑
s=1

(
ŵks−w̆ks

)
χk . (38)

Similar to (38), we can get

signT (e(t))
m∑
l=1

(
V̀l(t)−V́l(t)

)
g
(
y
(
t−τl(t)

))

=

n∑
k=1

n∑
s=1

m∑
l=1

sign(ek (t))
(
v(l)ks(t)−v́(l)ks(t)

)
·gs

(
y
(
t−τl(t)

))
≤

n∑
k=1

n∑
s=1

m∑
l=1

(
v̂(l)ks−v̆(l)ks

)
|sign (ek (t)) |ξgs

≤ ξg
n∑

k=1

n∑
s=1

m∑
l=1

(
v̂(l)ks−v̆(l)ks

)
χk . (39)
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And we have

signT (e(t))
(
C̀(t)−Ć(t)

) ∫ t

t−%(t)
f (y(x))dx

=

n∑
k=1

n∑
s=1

sign (ek (t))
(
c̀ks(t)−ćks(t)

)
fs(ys(x))dx

≤

n∑
k=1

n∑
s=1

(
ĉks−c̆ks

) ∫ t

t−%(t)
ξ fs dx

≤

n∑
k=1

n∑
s=1

(
ĉks−c̆ks

)
χk

∫ t

t−%M
ξ fs dx

≤ %M ξ
f

n∑
k=1

n∑
s=1

(
ĉks−c̆ks

)
χk . (40)

On the other hand, we have

signT (e(t)) [−0e(t)+µ(t)]

=

n∑
k=1

sign (ek (t))
[
−γkek (t)−$ ∗k (t)ek (t)

−ζ ∗k (t)sign (ek (t))
]

=

n∑
k=1

[
−γk |ek (t)|−$ ∗k (t)|ek (t) |−ζ

∗
k (t)χk

]
. (41)

Similarly, we calculate the derivatives of V2(t), V3(t),
V4(t) as follows:

V̇2(t) =
n∑

k=1

n∑
s=1

m∑
l=1

ṽ(l)ksLg

1−τD
(|es(t)|

−|es(t−τl(t))|(1−τ̇l(t)))

≤ Lg
n∑

k=1

n∑
s=1

m∑
l=1

ṽ(l)sk
1−τD

|ek (t)|

−Lg
n∑

k=1

n∑
s=1

m∑
l=1

ṽ(l)ks|es (t−τl(t)) |, (42)

V̇3(t) =
n∑

k=1

n∑
s=1

∫ 0

−%(t)
c̃ksL f (|es(t)|−|es(t+ϑ)|) dϑ

≤ L f %M
n∑

k=1

n∑
s=1

c̃sk |ek (t)|

−

n∑
k=1

n∑
s=1

c̃ksL f
∫ t

t−%(t)
|es(x)|dx, (43)

V̇4(t) =
n∑

k=1

1
2$ ∗k

($ ∗k (t)−$
∗
k )$̇ (t)

+

n∑
k=1

1
2ζ ∗k

(
ζ ∗k (t)−ζ

∗
k
)
ζ̇ ∗k (t)

=

n∑
k=1

(
$ ∗k (t)−$

∗
k
)
|ek (t)|+

n∑
k=1

(
ζ ∗k (t)−ζ

∗
k
)
χk . (44)

Then from (34)-(44), we can obtain

V̇ (t) = V̇1(t)+V̇2(t)+V̇3(t)+V̇4(t)

≤

n∑
k=1

( n∑
s=1

Lhw̃sk+Lg
n∑
s=1

m∑
l=1

ṽ(l)sk
1−τD

−$ ∗k

+L f %M
n∑
s=1

c̃sk−γk

)
|ek (t)|

+

n∑
k=1

(
ξh

n∑
s=1

(
ŵks−w̆ks

)
+%M ξ

f
n∑
s=1

(
ĉks−c̆ks

)
+ξg

n∑
s=1

m∑
l=1

(
v̂(l)ks−v̆(l)ks

)
−ζ ∗k

)
χk

= −

n∑
k=1

h̄∗k |ek (t)|−
n∑

k=1

�∗kχk , (45)

where

h̄∗k = −
[ n∑
s=1

Lhw̃sk+Lg
n∑
s=1

m∑
l=1

ṽ(l)sk
1−τD

−$ ∗k

+L f %M
n∑
s=1

c̃sk−γk

]
.

According to Theorem 2, we get the conclusion as follows

V̇(t) ≤ −
n∑

k=1

�∗χk < 0. (46)

Apparently, the inequality (46) is similarity to (27), so the
proving procedure behind is quite similar, so we omit the
following proof process.
Remark 3: The synchronization criteria provided in Theo-

rems 1 and 2 are both in the numerical form. We can further
consider utilizing the linear matrix inequality (LMI) method
to calculate them and study the synchronization problem of
the delayed nonlinear system with which the synchronization
criteria are much less conservative.

C. NON-LINEAR AND DELAY-DEPENDENT
STATE-FEEDBACK CONTROLLER
In this subsection, we adopt a non-linear delay-dependent
controller, given by

µ(t) = −sgn(e(t))P|e(t)|−
m∑
l=1

sgn(e(t))Ql |e(t−τl(t))|

−sgn(e(t))H
∫ t

t−%(t)
|e(x)|dx−sgn(e(t))X

−κsgn(e(t))|e(t)|ρ, (47)

for l = 1, 2, . . . ,m, κ > 0 and 0 < ρ < 1
are two known constants, X ∈ Rn is a vector to be
determined. Here we denote sgn(e(t)) = diag(sign(e1(t)),
sign(e2(t)), . . . , sign(en(t))) and |e(t)|ρ = (|e1(t)|ρ,
|e2(t)|ρ, . . . , |en(t)|ρ)T . P, H, Ql ∈ Rn×n are unknown
matrices to be determined later.
Remark 4: The design of controller (47) is derived from

the structure of the MMNNs model. It contains more free
parameters, which is conducive to achieve the synchroniza-
tion effect of the master-slave MMNNs systems (2) and (1).
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Theorem 3: Suppose that the Assumptions 1 - 3 hold, and
there exist n×n-matrices P, Ql, H, and an appropriately
designed vector X , such that

−0+LhW̃−P ≤ 0,

LgṼl−Ql ≤ 0,

L f C̃−H ≤ 0,

−X
(
Ŵ−W̆

)
4h
+%M

(
Ĉ−C̆

)
4f

+

m∑
l=1

(
V̂l−V̆l

)
4g
≤ 0,

where l = 1, 2, . . . ,m, Lh, Lg, L f , 4h, 4g and 4f are
described in Assumption 1. Then theMMNNs system (2) can
be synchronized with (1) under the controller (47) during the
settling time t∗3 , given by

t∗3 =
2 (V(0))

1−ρ
2

k(1−ρ)
, (48)

where V(0) = 1
2e

T (0)e(0).
Proof: Construct the following Lyapunov func-

tional V(t)

V(t) =
1
2
eT (t)e(t). (49)

Computing the derivative ofV(t) along the trajectory of (8)
leads to

V̇(t) = eT (t)ė(t) = eT (t)
[
−0e(t)+(Ẁ (t)−Ẃ (t))h(y(t))

+Ẃ (t)H (e(t))+
m∑
l=1

(V̀l(t)−V́l(t))g(y(t−τl(t)))

+

m∑
l=1

V́l(t)G(e(t−τl(t)))+Ć(t)
∫ t

t−%(t
F(e(x)dx

+(C̀(t)−Ć(t))
∫ t

t−%(t)
f (y(x))dx+µ(t)

]
. (50)

We can easily conclude

eT (t) [−0e(t)] = −|e(t)|T0|e(t)|. (51)

From Assumption 2, it follows

eT (t)Ẃ (t)H (e(t)) ≤ |e(t)|T |Ẃ (t)|Lh|e(t)|

≤ Lh|e(t)|T W̃ |e(t)|. (52)

Similarly, we can get

eT (t)
m∑
l=1

V́l(t)G(e(t−τl(t)))

≤ |e(t)|T
m∑
l=1

|V́l(t)|Lg|e(t−τl(t))|

≤ |e(t)|TLg
m∑
l=1

Ṽl |e(t−τl(t))|. (53)

And we have

eT (t)Ć(t)
∫ t

t−%(t)
F(e(x))dx

≤ L f |e(t)|T C̃
∫ t

t−%(t)
|e(s)|ds. (54)

From Assumptions 1 and 3, it implies that

eT (t)
(
C̀(t)−Ć(t)

) ∫ t

t−%(t)
f (y(x))dx

≤ |e(t)|T
(
Ĉ−C̆

) ∫ t

t−%(t)
4f ds

≤ |e(t)|T%M
(
Ĉ−C̆

)
4f . (55)

Similar to (55), we have

eT (t)
m∑
l=1

(
V̀l(t)−V́l(t)

)
g(y(t−τl(t)))

≤ |e(t)|T
m∑
l=1

(
V̂l−V̆l

)
4g. (56)

And

eT (t)(Ẁ (t)−Ẃ (t))h(y(t)) ≤ |e(t)|T
(
Ŵ−W̆

)
4h. (57)

On the other hand, we have

eT (t)µ(t)

= −|e(t)|TP|e(t)|−
m∑
l=1

|e(t)|TQl |e(t−τl(t))|

−|e(t)|TH
∫ t

t−%(t)
|e(s)|ds−|e(t)|TX−κ|e(t)|T |e(t)|ρ .

(58)

From (51) to (58), we conclude

V̇(t) ≤ |e(t)|T
(
−0+LhW̃−P

)
|e(t)|

+|e(t)|T
m∑
l=1

(
LgṼl−Ql

)
|e(t−τl(t))|

+|e(t)|T
(
L f C̃−H

) ∫ t

t−%(t)
|e(s)|ds

−κ

n∑
k=1

|ek (t)|ρ+1+|e(t)|T
((

Ŵ−W̆
)
4h

+%M

(
Ĉ−C̆

)
4f
+

m∑
l=1

(
V̂l−V̆l

)
4g
−X

)
. (59)

According to Theorem 3, Lemma 2, and (59) we can get

V̇(t) ≤ −κ
n∑

k=1

|ek (t)|ρ+1 ≤ −κ· 2
ρ+1
2 (V(t))

ρ+1
2

≤ −κ(V(t))
ρ+1
2 . (60)

From (60) and Lemma 1, we can conclude that under the
controller (47), the MMNNs systems (2) and (1) can obtain
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finite-time synchronization during the settling time t∗3 , which
can be calculated by using (48).

Hence, the proof of Theorem 3 is completed.
Corollary 2: For master-slave MMNNs systems (2)

and (1), if m = 1, the MMNNs systems degenerate into
single-linked MNNs systems. Under this condition, if P ,Q1,
H and X meet the following requirements:

P ≥ LhW̃−0, Q1 ≥ LgṼ1, H ≥ L f C̃,
X
(
Ŵ−W̆

)
4h
−%M

(
Ĉ−C̆

)
4f
−

(
V̂1−V̆1

)
4g
≥ 0,

then MNNs systems (1) and (2) with m = 1 can gain
finte-time synchronization within a calculated time, which
can be calculated by using (48) with m = 1.

Proof: The proof process is similar to that of Theorem 3,
hence, we omit the proof process here.
Remark 5: Corollary 2 can be viewed as a special case

of Theorem 3, since there is only one link between any two
nodes of the MMNNs systems.
Remark 6:Theorem 1 adopts a linear and delay-independent

state-feedback controller, Theorem 2 uses a non-linear adap-
tive and delay-dependent controller, Theorem 3 utilizes a
non-linear and delay-independent state-feedback controllers.
The former two controllers adopted are simpler, but they need
more assumptions in the proof procedures. The last controller
adopted is more complex, while it requires fewer hypothetical
prerequisites. Hence, the last one is more conservative.
Remark 7: Because different controllers are adopted in

deriving Theorems 1, 2, and 3, different synchronization
criteria are obtained. From these criteria, we can conclude
that because the form of controller (47) is more complex,
so the criterion of Theorem 3 is simpler than those of The-
orems 1 and 2.
Remark 8: The controllers (9), (30) and (47) contain dis-

continuous terms sign(ei(t)) or sign(e(t)) which might lead
to chatting phenomenon, which largely exists in practical
engineering application. Therefore, we must take effective
measures to avoid this situation. In this paper, we mainly
use an approximate value ei(t)

|ei(t)|+3
to replace sign(ei(t)),

in which 3 is a known small enough positive constant.
However, this replacement is not made in the process of
theoretical derivation in this paper, because it may cause
confusion.
Remark 9: Xiaoyang Liu et al. studied the finite-time syn-

chronization problem in Refs. [56], [57] and obtained some
interesting results. In Ref. [56], the problem of finite-time
consensus of multi-agent systems was investigated, and a
centralized switching consensus protocol was designed to
realize the finite-time consensus. The finite-time synchro-
nization problem of nonlinear coupled neural networks was
investigated by designing a new switching pinning controller
in Ref. [57]. The above results used switching control, and in
this paper we use adaptive state-feedback control. In addition,
the research models are different.

IV. NUMERICAL SIMULATIONS
Consider the following master MMNNs system:

żk (t) = −γkzk (t)+
2∑
s=1

wks(zk (t))hs(zs(t))

+

2∑
s=1

2∑
l=1

v(l)ks(zk (t))gs(zs(t−τl(t)))

+

2∑
s=1

cks(zk (t))
∫ t

t−%(t)
fs(zs(x))dx+Jk , t ≥ 0, (61)

The corresponding slave MMNNs system is given as

ẏk (t) = −γkyk (t)+
2∑
s=1

wks(yk (t))hs(ys(t))

+

2∑
s=1

2∑
l=1

v(l)ks(yk (t))gs(ys(t−τl(t)))

+

2∑
s=1

cks(yk (t))
∫ t

t−%(t)
fs(ys(x))dx

+Jk (t)+µk (t), t ≥ 0. (62)

k = 1, 2, and we set f1 = f2 = 1, and the weights of wks(·),
v(l)ks(·), and cks(·) for s = 1, 2 are given by

w11(x1(t)) =

{
−3.28, |x1(t)| > 1,
1.99, |x1(t)| ≤ 1,

w12(x1(t)) =

{
0.95, |x1(t)| > 1,
−1.2, |x1(t)| ≤ 1,

w21(x2(t)) =

{
0.25, |x2(t)| > 1,
−0.85, |x2(t)| ≤ 1,

w22(x2(t)) =

{
−1.78, |x2(t)| > 1,
2.26, |x2(t)| ≤ 1,

v(1)11(x1(t)) =

{
0.88, |x1(t)| > 1,
−1.92, |x1(t)| ≤ 1,

v(1)12(x1(t)) =

{
1.15, |x1(t)| > 1,
−1.24, |x1(t)| ≤ 1,

v(1)21(x2(t)) =

{
−1.68, |x2(t)| > 1,
1.56, |x2(t)| ≤ 1,

v(1)22(x2(t)) =

{
1.45, |x2(t)| > 1,
−1.8, |x2(t)| ≤ 1,

v(2)11(x1(t)) =

{
0.88, |x1(t)| > 1,
−1.99, |x1(t)| ≤ 1,

v(2)12(x1(t)) =

{
−1.15, |x1(t)| > 1,
−2.24, |x1(t)| ≤ 1,

v(2)21(x2(t)) =

{
−0.68, |x2(t)| > 1,
0.56, |x2(t)| ≤ 1,
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v(2)22(x2(t)) =

{
0.95, |x2(t)| > 1,
−1.17, |x2(t)| ≤ 1,

c11(x1(t)) =

{
−1.88, |x2(t)| > 1,
−0.89, |x2(t)| ≤ 1,

c12(x1(t)) =

{
−0.98, |x2(t)| > 1,
1.15, |x2(t)| ≤ 1,

c21(x2(t)) =

{
2.56, |x2(t)| > 1,
−1.76, |x2(t)| ≤ 1,

c22(x2(t)) =

{
−2.35, |x2(t)| > 1,
−0.85, |x2(t)| ≤ 1

where xk (t) represents zk (t) or yk (t).
We choose the following activation functions, f (z) =

h(z) = g(z) = |z+1|−|z−1|2 , it can be concluded that |h(z)| =
|f (z)| = |g(z)| ≤ 1. According to Assumption 1, we can
get 4h

= 4g
= 4f

= (1, 1)T . Besides, we can calculate
the derivatives of h(z), g(z) and f (z), and get ḣ(z) = ġ(z) =
ḟ (z) = 1

2 (sign(z+1)−sign(z−1)), calculating their deriva-
tives and get that their values are smaller than 1. According
to Assumption 2, we conclude that Lh = Lg = L f = 1.
The time-varying delays and distributed delay are chosen

as: τ1(t) = 0.5+0.5cos(t), and τ2(t) = %(t) = 0.5+0.5sin(t),
from which we can conclude that τ = 1, τD = 0.5, %M = 1
and %D = 0.5.
We choose J = (sin(t), cos(t))T , and the initial values are

chosen as x(0) = (0.4, 0.6)T , y(0) = (5, 2)T , t ∈ [−1, 0].
Thus, we can obtain that e(0) = (4.6, 1.4)T .
Next we give the following three simulation examples to

verify the effectiveness of Theorems 1, 2, and 3.
Example 1: This simulation is conducted to verify the

effectiveness of Theorem 1 (see III-A). When there
are no controller exerted on the MMNNs system (62),
the state curves of z1(t), y1(t), and z2(t), y2(t) are shown
in Figs. 1 and 2, respectively. Fig. 3 shows the error curves
of e1(t) and e2(t) between the MMNNs (61) and (62).
According to Theorem 1, we can get $ ≥ 20.09,

ζ > 23.69, so we take the following system parameters,
$1 = 21,$2 = 22, ζ1 = 25 and ζ2 = 24, respectively,
thus get the following controller{

µ1(t) = −21e1(t)−25sign(e1(t)),
µ2(t) = −22e2(t)−24sign(e2(t)).

(63)

We caluculate the settling time and get t∗1 = 15.555.
The state curves of z1(t), y1(t), and z2(t), y2(t) are shown
in Figs. 4 and 5, respectively. Fig. 6 describes the error state
curves of e1(t), e2(t) betweenMMNNs systems (61) and (62).
Remark 10: Comparing Figs. 6 with 3, we can obtain that

MMNNs systems (62) and (61) realize finite-time synchro-
nization during t∗1 since the error curves of e1(t), e2(t) tend
to zero in 0.5 second as shown in Fig. 6, which verify the
correctness of the criterion proposed in Theorem 1.
Example 2: This simulation is conducted to verify

Theorem 2 (see III-B). According to Theorem 2, we can

FIGURE 1. The state curves of z1(t) and y1(t) with initial value
z1(0) = 0.4, y1(0) = 5 without controller.

FIGURE 2. The state curves of z2(t) and y2(t) with initial value
z2(0) = 0.6, y2(0) = 2 without controller.

FIGURE 3. The error state curves of e1(t) and e2(t) with initial value
e(0) = (4.6, 1.4)T without controller.

get ω∗1 ≥ 16.61, ω∗2 ≥ 17.36, ζ ∗1 > 19.69, and ζ ∗2 >

20.81, so we choose ω∗1 = 17, ω∗2 = 18, ζ ∗1 = 20 and
ζ ∗2 = 21, respectively. Calculating the settling time and
get t∗2 = 754.58. The state trajectory curves of z1(t), y1(t),
z2(t), and y2(t) are described by Figs. 7 and 8, respectively.
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FIGURE 4. The state trajectory curves of z1(t) and y1(t) with initial value
z1(0) = 0.4, y1(0) = 5 under the controller (63).

FIGURE 5. The state trajectory curves of z2(t) and y2(t) with initial values
z2(0) = 0.6, y2(0) = 2 under the controller (63).

FIGURE 6. The error state curves of e1(t) and e2(t) with initial value
e(0) = (4.6, 1.4)T under the controller (63).

Fig. 9 describes the trajectory curves of the errors e1(t) and
e2(t). By analyzing Fig. 9, we conclude that MMNNs sys-
tems (62) and (61) realize synchronization during t∗2 since the
error curves of e1(t), e2(t) tend to zero in 0.5 second as shown
in Fig. 9, that verify the correctness of the method proposed
in Theorem 2.

FIGURE 7. The state curves of z1(t) and y1(t) with initial values
z1(0) = 0.4, y1(0) = 5 under the controller (30).

FIGURE 8. The state curves of z2(t) and y2(t) with initial values
z2(0) = 0.6, y2(0) = 2 under the controller (30).

Remark 11: Besides, the settling time t∗2 is so big because
we choose relatively small control gains ζ ∗1 = 20, ζ ∗2 = 21,
and obtain �∗ = 0.19, which makes the settling time
V(0)
�∗

really big. But in real-world engineering applications,
the synchronization time is very short which we can conclude
from Fig. 9. According to Theorem 2, we conclude that t∗2
is strongly associated with the model parameters and initial
conditions of MMNNs systems, and in most of the time,
it is really hard to implent because gaining all parameters in
adance is very hard.
Example 3: This simulation is carried out to verify the

effectiveness of Theorem 3 (see III-C).
According to the synchronization criterion proposed in

Theorem 3, we set the following controller parameters:

P =
(
−1.22 1.2
0.85 −0.24

)
, Q1 =

(
1.92 1.24
1.68 1.8

)
,

Q2 =

(
1.99 2.24
0.68 1.17

)
, H =

(
1.88 1.15
2.56 2.35

)
,

and

X =
(
19.69
20.81

)
.
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FIGURE 9. The error state curves of e1(t) and e2(t) with initial value
e(0) = (4.6, 1.4)T under the controller (30).

FIGURE 10. The first dimensional state trajectory curves of z1(t) and y1(t)
with initial value z1(0) = 0.4, y1(0) = 5 under the controller (47).

Furthermore, we choose κ = 1, ρ = 0.68, and calculate
the settling time and get t∗3 = 9.246. The state trajectory
curves of z1(t), y1(t), and z2(t), y2(t) are shown in Figs.
10 and 11, respectivey. Fig. 12 describes the trajectory curves
of the errors e1(t), e2(t) between the MMNNs systems (61)
and (62).
Remark 12: Comparing Figs. 12 with 3, we conclude that

MMNNs systems (62) and (61) realize synchronization dur-
ing t∗3 , since the error curves e1(t), e2(t) tend to zero in Fig. 12,
which verifies the correctness of the method proposed in
Theorem 3. Comparing Figs. 12 and 6, we can easily con-
clude that the more complex the controller is, the longer time
needed to obtain synchronization from analyzing the results
of Figs. 12 and 6. However, the controller (47) needs more
constraints while the controller (63) is much less conserva-
tive. In the actual engineering environment, it is very hard
to find the appropriate activation functions which satisfy all
the constraints, and in the neural networks, it is very hard
to mimic the actual activation functions. Hence, we have to
choose between the time cost and the conservativeness.
Remark 13: Comparing Figs. 12, 9, 6 with 3, we arrival

at a conclusion that although MMNNs systems (62) and (61)
can obtain finite-time synchronization in 15 seconds without

FIGURE 11. The second dimensional state trajectory curves of z2(t) and
y2(t) with initial values z2(0) = 0.6, y2(0) = 2 under the controller (47).

FIGURE 12. The error state curves of e1(t) and e2(t) with initial value
e(0) = (4.6, 1.4)T under the controller (47).

any controller, the convergence time is too long to satisfy
the requirements of real-world applications, such as secure
communication. When the controllers (63), (30), and (47) are
added to the MMNNs system (62), the MMNN systems (62)
and (61) can achieve synchronization within 0.5 second,
which greately shorten the convergence time and could be
applied in secure communication.

V. CONCLUSION AND FUTURE WORK
Based on the concept of master-slave, in our paper,
the synchronization and stabilization problem of the
MMNNs systems is investigated over a finite time inter-
val. We design three different state-feedback controllers
to obtain the finite-time synchronization between master
and slave MMNNs systems. The first one is a linear and
delay-dependent state-feedback controller, the second one is
a non-linear adaptive and delay-independent state-feedback
controller, and the last one is non-linear and delay-dependent
state-feedback controller. By utilizing the proposed con-
trollers, sufficient criteria are derived to ensure the finite-time
synchronization of the proposed MMNNs systems. Three
different numerical simulations are presented to validate the
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correctness and the feasibility of the obtained theoretical
criteria. Our future work will focus on the investigation of the
finite-time synchronization and stability of the multi-linked
memristor-based bidirectional associative memory (BAM)
neural networks with mixed time-varying delays.
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