
Received August 29, 2020, accepted September 9, 2020, date of publication September 14, 2020,
date of current version September 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023681

A Bootstrapping Soft Shrinkage Approach and
Interval Random Variables Selection Hybrid
Model for Variable Selection in
Near-Infrared Spectroscopy
HASAN ALI GAMAL AL-KAF 1, NAYEF ABDULWAHAB MOHAMMED ALDUAIS 2, (Member, IEEE),
ABDUL-MALIK H. Y. SAAD 3, (Member, IEEE), KIM SENG CHIA4, (Member, IEEE ),
ABDULQADER M. MOHSEN5, (Senior Member, IEEE), HITHAM ALHUSSIAN 6, (Senior Member, IEEE ),
AMMAR ABDO MOHAMMED HAIDAR MAHDI 5,7, AND WAN SAIFUL-ISLAM WAN SALAM 7
1Department of Computer and information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
2Faculty of Computer Science and Information Technology (FSKTM), Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Malaysia
3School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM), Nibong Tebal 14300, Malaysia
4Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia
5Department of Computer Science, University of Science and Technology, Sana’a, Yemen
6Center for Research in Data Science (CERDAS), Institute of Autonomous Systems (IAS), Universiti Teknologi PETRONAS, Seri Iskandar 32610 Malaysia
7Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Malaysia

Corresponding author: Abdul-Malik H. Y. Saad (abdulmalik@usm.my)

This work was supported by the Universiti Sains Malaysia (USM).

ABSTRACT High dimensionality problem in spectra datasets is a significant challenge to researchers and
requires the design of effective methods that can extract the optimal variable subset that can improve the
accuracy of predictions or classifications. In this study, a hybrid variable selection method, based on the
incremental number of variables using bootstrapping soft shrinkage method (BOSS) and interval random
variable selection (IRVS) method is proposed and named BOSS-IRVS. The BOSS method is used to
determine the informative intervals, while the IRVS method is used to search for informative variables in the
informative interval determined by BOSSmethod. The proposed BOSS-IRVSmethod was tested using seven
different public accessible near-infrared (NIR) spectroscopic datasets of corn, diesel fuel, soy, wheat protein,
and hemoglobin types. The performance of the proposed method was compared with that of two outstanding
variable selection methods i.e. BOSS and hybrid variable selection strategy based on continuous shrinkage
of variable space (VCPA-IRIV). The experimental results showed clearly that the proposed method BOSS-
IRVS outperforms VCPA-IRIV and BOSS methods in all tested datasets and improved the percentage of the
prediction accuracy, by 15.4 and 15.3 for corn moisture,13.4 and 49.8 for corn oil, 41.5 and 50.6 for corn
protein, 12.6 and 5.6 for soy moisture, 0.6 and 6.3 for total diesel fuel, 19.9 and 14.3 for wheat protein, and
5.8 and 20.3 for hemoglobin.

INDEX TERMS Hybrid variable selection, model population analysis, weighted bootstrap sampling, partial
least squares, near infrared spectroscopy.

I. INTRODUCTION
In recent years, near-infrared (NIR) spectroscopy has gained
wide acceptance in different fields such as agriculture and the
petrochemical and pharmaceutical industries by virtue of its
advantages in recording spectra for solid and liquid samples.

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masini .

NIR spectra typically consist of broad, weak, non-specific,
and overlapped bands and some irrelevant variables [1].
These unrelated variables could lead to wrong or inefficient
prediction results. To overcome this problem, a process of
multivariate analysis for NIR spectroscopy should be fol-
lowed as shown in Figure 1. The first step is to have NIR
samples as X and the properties of interest as y. Then a pre-
processing technique is used to remove physical phenomena
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in the spectra [2]. Next, the important variables are extracted
using a variable section method. Finally, a multivariate cal-
ibration model is used to build the relationship between the
selected variables and the properties of interest to predict the
values of the interesting properties. Variable selection is a
critical step in multivariate calibration of NIR spectroscopy.
This is because the variable selection step reduces the curse
of dimensionality, which results in speeding-up the operating
model, providing a better interpretation of a model by select-
ing the informative variables, and improving the prediction
performance by eliminating uninformative variables [3].

Deng et al. proposed a new and effective single variable
selection method named BOSS [4]. This method showed
a significant improvement of prediction accuracy on three
NIR spectroscopic datasets and outperforms partial least
square (PLS), Monte Carlo uninformative variable elim-
ination (MCUVE), competitive adaptive reweighted sam-
pling (CARS) and genetic algorithm coupled with partial
least square (GA-PLS). The advantages of the BOSS method
can be summarized in three aspects—first, the use of soft
shrinkage, which lowers the risk of eliminating essential vari-
ables. Second, a fair comparison of variables compensates
for the influence of collinearity on the regression coefficients
because of the use of weighted bootstrap sampling (WBS).
Third, the use of model population analysis (MPA), which
extracts the information from a large population of sub-
models instead of one model to obtain more reliable results
by considering the combined effects among variables [4].
Despite these advantages, the BOSS has drawbacks which
can be summed up into three aspects as well. First, the BOSS
ignores the high correlation among consecutive variables.
Second and due to the use of bootstrap sampling that is inap-
propriate for the dependent data, the BOSS selects fewer vari-
ables, which causes missing some informative wavelengths.
Third, it cannot avoid over-fitting problem BOSS uses RC,
which is susceptible to noises [5], [6].

Most recently, three different methods have been devel-
oped and out-performed BOSS method. The first method is
a modification of the bootstrapping soft shrinkage approach
named new computational method stabilized bootstrapping
soft shrinkage approach (SBOSS) [5], in which variables are
selected by the index of stability of regression coefficients
instead of regression coefficients absolute value. Second,
fisher optimal subspace shrinkage (FOSS) [6] that splits vari-
ables into some intervals by the information from regression
coefficients PLS model, then the weighted block bootstrap
sampling (WBBS) is used to select intervals, and the mean
of the absolute values of regression coefficients of the cor-
responding interval determines the weights of sub-intervals.
Third, significant multivariate competitive population anal-
ysis (SMCPA) that combines the ideas of substantial multi-
variate correlation (SMC) and MPA, and employs WBS is
an improved version of bootstrap sampling with different
weights on sampling objects and exponential decline func-
tion (EDF) competition method used to force the elimina-
tion of uninformative or redundancy variables [7]. For corn

and wheat protein datasets, both methods select informative
intervals including the BOSS. However, the BOSSwas unsta-
ble, and only a few variables are selected compared with
other high-performance methods that were more accurate and
selected more variables in these crucial intervals.

In terms of the selection of spectra intervals, all models
except FOSS (i.e. BOSS, SBOSS, and SMCPA) have not
considered this method, although it can provide a reason-
able interpretation. Thus, using this method in the proposed
model is expected to improve the accuracy as the vibrational
spectral band relating to the chemical group generally has a
width of 4–200 cm−1 [6]. Besides, none of these approaches,
including FOSS, searches for optimal combinations in spe-
cific informative intervals.

Therefore, in this study, a new hybrid model is proposed
based on the BOSS method. However, the proposed hybrid
model works by incrementing the number of variables being
selected rather than decreasing them. To the best of the
authors’ knowledge, there is no such hybrid model in the lit-
erature based on increasing the number of variables, but there
are many developed hybrid models based on reducing the
number of variables such as a hybrid VCPA-IRIV model [9],
competitive adaptive reweighted sampling-successive projec-
tions algorithm (CARS-SPA)[10], and a combination strat-
egy of random forest and backpropagation network (RF-
BPN) [11]. The mentioned methods have their own mer-
its and unique characteristics. The decreased-number-based
variable selection methods attempt to utilize the features of
other methods by making an effective combination. However,
the overall performance can be reduced significantly if the
preliminary method does not successfully select the key vari-
ables [12]. The proposed hybrid method follows the same
concept by taking the advantage of the BOSS method that
successfully proved to select important intervals: however
the BOSS method selects fewer variables and does not select
optimal combinations, so we used IRVS to addmore variables
in these intervals to have an excellent performance. Besides,
we focus on the importance of interval as proved to be more
robust and more interpretable, so we develop our model that
increases the numbers in those informative intervals. The
disadvantage of the increased number of variable selection
methods that we don’t know what is the optimal number of
variables that need to be increased. Therefore, there is a need
to tune the parameter to decide the optimal number.

The novelty in this research is the following:
1-There is no previous hybrid variable selection method

in NIR spectroscopy based on increasing the number of
variables. However, most of the studies use a hybrid model
to eliminate variables. This paper introduces a new hybrid
method based on the incremental approach.

2- The number of datasets used in the evaluation of the
proposed hybrid model (i.e. 7 NIR datasets) is considerably
large, which led to a proper evaluation. The used NIR datasets
are corn datasets with moisture, oil and protein properties,
hemoglobin, diesel fuel with total aromatics properties, soy
with moisture properties, and wheat protein datasets.
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FIGURE 1. The process of multivariate analysis for near infrared spectroscopy.

3- Investigating the proposed hybrid methods with two
high-performance model include hybrid VCPA-IRIV and
BOSS.

4- Providing a comprehensive review of different variable
selection methods in terms of the ability to select informative
intervals and the performance of the models and numbers of
the chosen variable.

The remainder of this paper is divided into the following
sections. Related studies are described in Section II, followed
by a detailed description of the proposed hybrid method in
Section III. The datasets used in this study are described in
Section IV. The experimental work and obtained results are
presented in Section V. Finally, the conclusion of this study
is presented in Section VI.

II. RELATED WORKS
During the last several decades, a large number of vari-
ous mathematical strategies for variable selection have been
employed in NIR spectroscopy.

Li-Li Wang has classified the single variable selection
methods and interval variable selection methods into a dif-
ferent classification [13]. The only variable selection meth-
ods have been classified into classic stepwise methods,
variable raking-based strategy, penalty-based strategy, MPA,
heuristic algorithm-based strategy, and some other meth-
ods include successive projection algorithm (SPA) and unin-
formative variable elimination (UVE). On the other hand,
the interval selection method is classified into; (1) clas-
sic methods including interval PLS (iPLS) and its variants,
(2) moving windows PLS (MWPLS), and its variants; (3)
penalty-basedmethods include elastic net combinedwith par-
tial least squares regression (EN-PLSR), iterative rank PLS
regression coefficient screening (EN-IRRCS) and group PLS
(gPLS); (4) sampling-based methods include iPLS-Bootstrap
and Bootstrap variable importance in projection (Bootstrap-
VIP); (5) correlation-based method include sure indepen-
dence screening and interval PLS (SIS-iPLS); finally, (6)
projection-based methods include interval successive projec-
tions algorithm (iSPA).

The MPA method has been widely used as it shows
a promising prediction ability. The MPA has been clas-
sified into single variable model population analysis and

interval model population analysis. The former includes
random frog (RF) [14], iteratively retains informative
variables (IRIV) [15], variable iterative space shrinkage
approach (VISSA) [16], iteratively variable subset optimiza-
tion (IVSO) [17], CARS [18], stability competitive adap-
tive reweighted sampling (SCARS) [19], sampling error
profile analysis LASSO (SEPA-LASSO) [20], BOSS [4]
and SBOSS[5]; while the latter includes interval random
frog (iRF) [21], interval variable iterative space shrinkage
approach (iVISSA)[22], interval combination optimization
(ICO) [23] and fisher optimal subspace shrinkage (FOSS) [6].

Moreover, selecting the variables on near-infrared spec-
troscopy by utilizing models that hybridize two or more
different techniques was recommended in [12]. In particu-
lar, the UVE method was used in [24] to filters the noise
variables: then the SPA method was used to achieve an
excellent selection. It is known as the UVE-SPA-MLR hybrid
model. Another hybrid model called iPLS-mIPW combined
two methods, i.e., iPLS with mIPW [25]. In iPLS-mIPW, the
informative intervals were obtained using the iPLS method
initially. Then further variables selection was performed
using mIPW. Additionally, to select critical wavelengths in
NIR spectra, the random forest was hybridized with the
BP network by Chen et al. [11]. In the proposed model,
some informative wavelengths initially selected using ran-
dom forest. Then a new comprehensive variable group is
produced, using BP network, with minimum errors. Recently,
a VCPA-based hybrid model was proposed by Yun et al. [9].
In this model, VCPA was hybridized with the genetic algo-
rithm (GA) and IRIV separately. Firstly, VCPA was used to
continuously shrink and optimize the variable space from big
to small. After that, additional optimization was performed,
on the variables remained by VCPA, using IRIV and GA.

Table 1 shows the comparison between previous methods
in terms of selecting informative intervals and the perfor-
mance of themethods and the number of the variable selected.

III. PROPOSED MODEL
In this section, a description of the proposed hybrid method
named bootstrapping soft shrinkage approach and inter-
val random variable selection (BOSS-IRVS) is provided in
detail. It combines both the choice of informative intervals
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TABLE 1. Comparison between previous methods in terms of selecting informative intervals and the performance of the methods and numbers of the
variable selected.
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TABLE 1. (Continued.) Comparison between previous methods in terms of selecting informative intervals and the performance of the methods and
numbers of the variable selected.

using the BOSS method, as illustrated in Section A, and an
interval variable selection method, as shown in Section B.

Then, a brief description of the compared methods and the
model validation is given in Section C and D, respectively.
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Algorithm 1 Selection of Informative Intervals Using BOSS
1: Input data: X[N, P], y [N+1]
2: Set the maximum number of iterations (NI), bootstrap
resample size (N), number of variables (P), and number of
subsets (K ).
3: Set a sampling method for BSS.
4: Generate K subsets using BSS: all the variables are with
equal weights (w).
5: Assign equal weights (w) for the generated variables.
6: Set RMSEV to zeros.
7: retained_variables=P.
8: j=1
9: While (j<=100 OR retained_sebsets > 1)
begin
10: Build KPLS sub-models using the subsets obtained.
11: Calculate RMSEV of the sub-models.
12: Extract best models with the lowest RMSEV.
13: Calculate regression coefficients for each extracted
model.
14: Change all the elements in the regression vectorRV to
absolute value.
15: Normalize each RV to have unit length.
16: Sum up the normalized RV to obtain new Ws for
variables using equation (1).
17: Apply WBS according to the new Ws for variables to
generate new subsets.
18: Extract the unique variables to build up the sub-models.
19: Calculate the average (avg) of the extracted variables.
20: Determine the number of replacements in WBS using
avg.
21: Compute and retain the variables with the most consid-
erableabsolute value of regression coefficients
end while
22: Apply 5-fold cross-validation
to analyze the N variable subsets statistically.
23: Choose the Variable subset with minimum RMSEV as
the optimal variable subset.
24. Run the BOSS twenty times to select informativeinter-
vals.

Besides, Figure 2 shows an illustration of the proposed
model.

A. INFORMATIVE INTERVALS SELECTION USING
BOSS METHODS
The BOSS approach is designed to choose informative inter-
vals, and that happens with the existence of collinearity. In a
suitable shrinkage manner, data from regression coefficients
are used by this approach [26]–[29]. Two types of sampling
methods are used, including Bootstrap sampling (BSS) and
Weighted Bootstrap (WBS).

The purpose of the sampling method is to produce a ran-
dom combination of variables and to construct sub-models
of the system. Thus, two methods are coupled and used,

FIGURE 2. illustration of the BOSS-IRVS model.

including MPA [25] and PLS regression [29], to extract the
information from the sub-models. The BOSSmethod has five
main steps to select the informative intervals illustrated as
follows.

Step 1: BSS is used to produce K subsets on a variable
space. The variables chosen for BSS are extracted from each
dataset, and the redundant variables are excluded. Thus, only
the unique variables have remained. The replacement num-
ber, in BSS, is identical to the total number of variables P.
Therefore, the number of variables chosen is roughly 0.632P
in each subset. Here, all variables must be treated equally so
that they can be picked into subsets with the same probability,
i.e., equal weights (w) are set for all variables.

Step 2: The subsets obtained are used to construct K PLS
sub-models. Then, the prediction error is calculated based on
RMSEV, and a percentage of the lowest RMSEV models is
selected, representing the best models (e.g., 10 percent).

Step 3: Regression coefficients (RC) are computed and
adjusted to the absolute value of all elements on the regression
vector and normalize each regression vector to unit length for
any extracted model. Subsequently, equation (1) is used to
obtain new weights for variables by summing up the normal-
ized regression vector.

wi =
K∑
A=1

bi,A (1)

where wi is the new weight for ith variable, K denotes the
number of sub-models and bi,A represents the absolute nor-
malized regression coefficient value for the ith variable in the
Ath sub-model.

Step 4: The WBS generates new subsets using WBS
according to the variables’ new weights. As in BSS, the vari-
ables chosen are extracted in each dataset to construct the
sub-models, and the redundant variables are excluded. The
average number of variables calculated in Step 3 is used to
determine the number of replacements in WBS. Therefore,
in the new subsets, the number of variables is 0.632 times
of those previously determined [4]. The aim behind this step
is to guarantee that the variables with larger absolute values
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FIGURE 3. Boxplot of 20 times for investigating the effect of number of
populations on moisture corn dataset (a) RMSEC (b) RMSEP.

of regression coefficients are likely to be selected in the best
sub-models.

Step 5: Repeat Step 2-4 until a number of variables in the
new subsets are 1, then return the optimal subset, which has
the lowest RMSEV.

Step 6: Repeat the BOSS method twenty times to select
informative intervals.

B. SELECTION OF INFORMATIVE VARIABLES IN
INFORMATIVE INTERVALS
After applying the BOSS method to NIR datasets to select
informative intervals by Algorithm 1, the output of this algo-
rithmwill act as the input for Algorithm 2. The later algorithm
will select informative variables in the informative intervals.
The selection of informative variables is affected by three
parameters that need to be tuned carefully. These parameters
are:

(i) The number of populations (np):
To select an adequate number of populations, three cases

of 50, 100, 500 populations were investigated. For example,
50 populations combine 50 individuals in which each indi-
vidual combines the variables selected in Algorithm 1 and the
interval random variables method, which search for informa-
tive variables in informative intervals. Five hundred popula-
tions were chosen as the optimized number of populations
based on 20 replicated results shown in Figure 3. Therefore,
500 population was set in this work. From Figure 3 (a), it
should be noted that when the 50 generations have been used,
the value of RMSEC varies from 3.1 to 3.9, which is an
indication of underfitting, as shown in Figure 3. (b). However,
with 500 generations, both values of RMSEC and RMSEP
are dropped to the lowest level, which avoids overfitting
and gives the best performance compared with 50 and 100
populations.

(ii) The way of selecting random variables:
The first choice is to choose random variables gradually or

to select random variables at one time. Selection of random
variables gradually means to select specific random variables

FIGURE 4. Boxplot of 20 times for investigating the effect of selecting six
random variables by one-time and gradual selection method on moisture
corn dataset, where (a) is RMSEC and (b) is RMSEP results.

FIGURE 5. Boxplot of 20 times for investigating the effect of selected
3 variables,6 variables, 9 variables on moisture corn dataset (a) RMSEC
(b) RMSEP.

in each run while selecting random variables at one time
means to select all the random variables in only one run.
Every random variable has small random interval from the
big interval selected by BOSS. Figure 4 proves that the grad-
ual selection of random variables is the optimal approach,
which avoids overfitting. From the same figure, it can be
seen that selecting random variables at one time leads to low
RMSEC and high RMSEP, while gradual selection leads to
low RMSEP.

(iii) The number of informative variables selected (nv):
To select an adequate number of added informative vari-

ables, three cases of 3, 6, 9 variables were investigated.
Among the three numbers tested shown in Figure 5, it can be
realized that the three variables have the worst RMSEC value,
while the nine variables have the best values. However, with
nine variables being selected, the RMSEP is high. As a com-
promise, the 6 number of variables is chosen as it produces
the lowest RMSEP value and an acceptable RMSEC value.

168042 VOLUME 8, 2020



H. A. G. Al-Kaf et al.: BOSS Approach and Interval Random Variables Selection Hybrid Model

FIGURE 6. The frequency of selected variables within 20 times on the Corn Moisture dataset: (A) VCPA-IRIV, (B) BOSS, (C) proposed
method selected three variables (D) proposed methodsselected six variables.

The pseudocode of the proposed algorithm is presented
in Algorithm 2. In the beginning, five hundred random
populations are generated. Each individual in the population
combines input variables and three random variables from
the informative intervals. The input is the variables selected
in Algorithm 1. For each individual, RMSEC value is cal-
culated, and the individual with the lowest RMSEC value is
selected. These steps are repeated until ny random variables
have been selected. For each round, the input is updated
by adding the three variables chosen from the previous
round.

Algorithm 2 Search for Informative Variables in Informative
Intervals

25: Input: Variable selected by BOSS
26: Output: Select informative variables in informative
intervals
27: r = 0 // r is the # of random variables selected
28: While (r 6=nv)
29: Begin
30: Determine the intervals selected by BOSS in
Algorithm1
31: Generate 500 random population (np)
32: Individual = Input + three random variables from
intervals
selected by BOSS
33: Calculate RMSEC of each individual
34: Select the individual that has the lowest RMSEC
35: Input = the individual that has lowest RMSEC
36: r = r + 3
37: End while

C. AN OUTLINE OF THE HYBRID VCPA-IRIV
COMPARED METHODS
The VCPA-based hybrid variable selection technique was
recently proposed by Yun et al. The concept of continuous
shrinkage of variable space is the fundamental idea of the
original VCPA method. The proposed hybrid VCPA method
has two main phases. In the first phase, a modified VCPA
was used to shrink the variable space continuously from big
to small and optimizes it. For further optimization, the IRIV
method was applied in the second phase.

D. MODEL VALIDATION
With 5-fold cross-validation and test sets, the predictive abil-
ity of the models is assessed by the root mean squared error
of training (RMSEC), the root mean squared error of cross-
validation (RMSEV), the root mean squared error of predic-
tion (RMSEP), the coefficient of determination of training
(Q2_C), the coefficient of determination of cross-validation
(Q2cv) and the coefficient of determination of test set (Q2_T ).

RMSEC =

√√√√√Ntrain∑
I=1

(
yi − ŷ

)2
Ntrain

(2)

Q2
C =

Ntrain∑
I=1

(
yi − ŷ

)2
Ntrain∑
I=1

(yi − ȳi)2
(3)

where yi, ŷ, and ȳi are the experimental, predicted, and the
average of predicted properties, respectively. Ntrain is the
number of calibration samples in the training set. TheRMSEP
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and RMSEV are computed similarly as RMSEC, whileQ2_T
and Q2CV are computed as and Q2_C , but with different
Ntrain values that are changed with the testing sample for
RMSEP and Q2_T only.

IV. DATASETS
In this study, seven NIR datasets have been used to evaluate
the BOSS-IRVS, which are datasets of diesel, soy, wheat
protein, corn, and hemoglobin. The important details of these
datasets are summarized below.

A. CORN DATASETS
From http:/www.eigenvector.com/data/Corn/index.html, four
NIR corn datasets were collected. In each dataset, there are
80 corn samples measured by m5 NIR spectrometers. Also,
there are 700 wavelength points of 2 nm intervals in the range
of 1100-2498 nm for each spectrum. The properties of interest
were used are oil, protein, and the content of moisture. The
samples were divided, in each of the 80 corn samples, equally
into a 60 training set and a 20 independent test set.

B. DIESEL FUELS DATASET
This dataset has been downloaded from the website
http:/www.eigenvector.com/data/SWRI/index.html. The range
of wavelength points is between 750-1550 nm at intervals
of 2 nm for each spectrum, including 401 points. Only one
property of interest is considered, which is the total aromatics,
while the remaining properties are removed. The 20 high-
leverage samples and one of the two random samples were
used for each dataset to create the training set. The other
group was used as an independent test set, leading in total
dataset sample partitions 138 and 118 for training and testing,
respectively.

C. SOY DATASETS
Spectrometer NIR was used to measure the samples of soy
flour [33]. There are 175 wavelengths in each spectrum, with
8 nm in the range of 1104 and 2496 nm. The moisture content
was considered as properties of interest. According to the ref-
erence [33], each dataset contains 54 samples, split between
the training set (40 samples) and the test set (14 samples).

D. WHEAT DATASET
This NIR dataset [34] contains 100 wheat samples. The
spectrum was reported at intervals of 2 nm from 1100 to
2500 nm with a spectrum of 701 points. The property of
interest y is the protein value. Owning the problem of ‘large
p, small n’ [35]. [36], an acceptable window size compresses
the original spectrum into a limit of 200 frames [37]. This
dataset is reduced to 175 variables by limiting window size
to 4, and each of the original four variables is averaged. Out
of 100 samples, 80 was used for training and 20 for testing.

E. HEMOGLOBIN DATASET
Using the IDRC shootout 2010 software, Karl Norris [38]
has produced this dataset that has been used by Mohd

Nazrul Idrus [39]. With the spectrometer of NIR Systems
6500, the blood samples have been analyzed. The blood
hemoglobin reference was measured by a high-volume hema-
tology analyzer. All spectra have 700 variables of 2 nm inter-
val in the range between 1100 and 2498 nm. To evaluate the
model, the dataset is divided into 173 sets and 194 unseen data
sets, respectively, for training, and blind testing to measure
the model’s predictive accuracy.

V. RESULTS AND DISCUSSIONS
To assess the performance of the BOSS-IRVS, some high-
performance wavelength selection methods, including BOSS
and VCPA-IRIV, are used for comparison. All codes were
applied in Matlab. The datasets are centered. In this study, the
calibration set is used for building the model and performing
the variable selection. The independent test set is then used
to validate the calibration model. Several evaluation metrics,
such as the RMSEV, Q2_cv, RMSEC, Q2_C , RMSEP, and
Q2_T , are used to measure the performance of the intro-
duced model. At the same time, the maximum number of
latent variables (mnLV) and the number of selected variables
(nVAR) are also calculated. Each method is repeated 20 times
to ensure the reproducibility and stability of the evaluation.
The parameter setting for VCPA-IRIV are as follows: α = 20
which is the mean number of each BMS sampling, EDF_run
= 50 which is the number of exponentially decreasing func-
tion (EDF) run, BMS_run = 1000 which is the number of
BMS run, σ = 0.1 which is the ratio of the best minus worst
models of K sub-models, L = 100 which is the number of
the left variables in the final run of EDF, A_max = 10 which
is the maximal principle component to extract for PLS,
fold = 5 which is the group number of cross-validation, and
method= center which is the pretreatment method. In respect
to the last three setting parameters, BOSS has similar settings
as VCPA-IRIV. Last, the number of bootstrap used in BOSS,
num_bootstrap is set to 1000.

A. CORN DATASET
The results of variable selection methods, i.e. VCPA-IRIV,
BOSS and BOSS-IRVS, on moisture, oil, and protein prop-
erties of corn datasets are summarized in Table 2. The results
show that, on the three datasets, the BOSS-IRVS outper-
formed the prediction ability of the BOSS and the hybrid
model of VCPA-IRIV. In detail, using BOSS-IRVS, the val-
ues of RMSEP for moisture datasets are improved from
3.2328e-04 to 2.8804e-04 when three variables are added and
to 2.7360e-4 when six variables are added. For the oil dataset,
the values of RMSEP are improved from 0.0347 to 0.0197,
and 0.0174 with three variables and six variables are added,
respectively. For the protein dataset, the values of RMSEP
are improved from 0.0322 to 0.0192 and 0.0159 when three
variables and six variables are added, respectively. In terms of
the VCPA-IRIV model. The RMSEP values are 3.2341e-04,
0.0201, and 0.0272 for moisture, oil, and protein respectively;
while for BOSS-IRVS model, they are 2.7360e-04, 0.0174,
and 0.0159.
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TABLE 2. Results for the Corn datasets. nVAR: number of variables; mnLVs: max number of latent variables; RMSEC: root mean-square error of calibration
RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of determination of calibration; Q2_C;
Q2_CV: coefficient of determination of cross-validation; Q2_Tcoefficient of determination of test set.

The variables selected by different selection methods on
moisture datasets are shown in Figure 6. The wavelengths
chosen by BOSS, VCPA-IRIV, and BOSS-IRVS models
are located in two intervals and selected the two wave-
lengths of 1908 nm and 2108 nm. These two wavelengths
are regarded as the key wavelength by Li et al. [9], [20],
which correspond to the water absorption and the combi-
nation of O-H bonds according to the literature [22]. The
number of the variable selected by the BOSS is 3.8, which
indicates that the BOSS algorithm misses important vari-
ables and ignores the high correlation among consecutive
variables. The BOSS-IRVS improved the BOSS prediction
ability by adding six important variables. The VCPA-IRIV
selects 5.5 variables which are the same as the BOSS-IRIV
model when three variables are added. However, the variables
selected by the BOSS-IRVS model give better performance
compared to the variables selected by VCPA-IRIV and the
reason is that the variable combinations of the BOSS-IRVS
are better than the variable combinations of VCPA-IRIV.
For oil dataset, From the Figure 7, it can be observed that
VCPA-IRIV, BOSS and BOSS-IRVS methods select infor-
mative spectra intervals near 1700 nm (region 1) and 2300 nm
(region 2), which correspond to the second and first overtones
of the C-H stretching mode and the combination of C-H
vibrations [8]. The VCP-IRIV shows a good concentration on
the two intervals compared with the BOSSmethod, which the
variables selected by BOSS is unstable since it uses bootstrap
sampling. The BOSS-IRVS combines the variables selected

by the BOSS and added six variables in the informative inter-
vals selected by BOSS, which lead to outperforming VCPA-
IRIVmodel. The BOSS has the lowest variables selected then
both VCPA-IRIV and BOSS-IRVS models have the same
number of the variable selected. For the protein dataset, From
Figure 8, we could observe that VCPA-IRIV, BOSS, and
the BOSS-IRVS methods select the combination of several
groups that are chemical meaningful for data analysis of
spectrum [5]. All the methods selected the intervals around
1680, 1800 and 2180 nm. It can be noticed that these selected
intervals cover a wide range linking to the complicated struc-
ture of the protein, e.g. C-H, O-H andN-H bondwith different
vibration pattern, complex microenvironment of the three
bonds, and the interaction of them [4]. The lowest number is
selected by BOSS followed by the BOSS-IRVS model with
three added variables, and then both the VCPA-IRIV and the
BOSS-IRVS with six added variables have nearly the same
variables selected. The BOSS-IRVS selects important vari-
ables near to intervals 1800 and 2180, which outperformed
the BOSS and VCPA-IRIV.

Furthermore, from Figure 6, it can be seen that the pro-
posed model had high stability variables since it focuses
on specific important intervals. In more detail, all variables
selected by BOSS in the first step of the proposed model are
considered informative variables. Then, the selected BOSS
variables are used as input for the IRVS algorithm, which
means that the IRVS algorithm chooses the same variables
selected by BOSS and adds the six selected incremental
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FIGURE 7. The frequency of selected variables within 20 times on the Corn oil dataset: (A) VCPA-IRIV, (B) BOSS, (C) proposed method
selected three variables (d) proposed method selected 6 variables.

FIGURE 8. The frequency of selected variables within 20 times on the Corn protein dataset: (A) VCPA-IRIV, (B) BOSS, (C) proposed
method selected three variables (D) proposed method selected six variables.

variables to them. The process is repeated 20 times until the
optimal incremental number of variables is reached. As a
result, the variables selected in the first step will always have
the highest frequency of 20.

From Table1, with respect to moisture dataset, there are
many methods that succeed to select informative intervals
include CARS, MCUVE, OHPL, SCARS, SPEA-LASSO,
BOSS and VCPA-IRIV. However, some methods have lower
performance compared to other methods due to various rea-
sons. For instance, select uninformative variables in other
intervals such as in iRF and LASSOmethods, or low concen-
trate when choosing variables in informative intervals such as

in CARS. Furthermore, although the methods succeeded to
select important intervals, it chooses many variables, includ-
ing uninformative variables such as in OHPL. Moreover,
the combinations of variables are different, which the reason
why some methods outperformed other methods that select
the same informative intervals, such as SPEA-LASSO out-
performed SCARS. Our hybrid method succeeded to select
a lower number and good concentration in the informative
intervals by select informative variables in informative inter-
vals. For the oil dataset, some methods succeed to select
informative intervals but select uninformative variables such
as CARS, GA-PLS and VIP-GA. GA-pills and VCPA-IRIV
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TABLE 3. Results for the Soy moisture dataset. nVAR: number of variables; mnLVs: max number of latent variables; RMSEC: root mean-square error of
calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of determination of calibration;
Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_T coefficient of determination of test set.

FIGURE 9. The frequency of selected variables within 20 times on the soy dataset: (A) VCPA-IRIV, (B) BOSS, (C) proposed method
selected three variables (D) proposed method selected six variables.

succeed to select informative variables; however VCPA-IRIV
chooses the optimal number of variables and has a good com-
bination of variables which outperformed GA-iPLS. FOSS
method has a good performance by succeeding to concentrate
in informative intervals and choose informative variables in
theses informative intervals. Our hybrid method succeeded
to select a lower number of variables and select informative
variables in informative intervals. For the protein dataset,
CARS and GA-PLS select important intervals; however, they
also select uninformative intervals. The selection of unin-
formative intervals reduces the performance of both CARS
and GA-PLS. VISSA and iVISSA methods have low perfor-
mance because they select variables around all spectra. ICO
method outperformed CARS, MC-UVE, VISSA and iVISSA
because of the low number of variables and succeeded to
select variables in informative intervals. A recent paper called
SBOSS outperformed SCARS, BOSS, CARS, GA-PLS, and
MCUVE. The SBOSS has a low variable with a good selec-
tion of variables in the informative interval.

B. SOY MOISTURE DATASET
The results of variable selection methods on soy datasets are
shown in Table 3. A clear ranking of the VCPA-IRIV, BOSS,

and the BOSS-IRVS models are as follows. The BOSS-IRVS
are followed by BOSS and VCPA-IRIV. The RMSEP for the
BOSS-IRVS method with six added variables, the BOSS-
IRVS with three added variables, BOSS and VCPA-IRIV
are 0.8610, 0.8701, 0.9126, and 0.9854, respectively. More-
over, the proposed BOSS-IRVS showed the best Q2_T with
0.9306 compared with 0.9126 and 0.9091 for BOSS and
VCPA-RIV, respectively. Figure 9 shows that all the meth-
ods select two informative intervals around 1900 nm and
2100 nm, which are selected commonly by four methods.
They correspond to the water absorption and the combination
of O-H bonds [22]. The VCPA-IRIV selects some variables
around 1550 and 2450, and the BOSS method selects inter-
vals around 2450. The BOSS-IRVS method selects variables
around 2100 which improves the accuracy of the model.
Table 3 and Table1 show the performance of BOSS-IRVS
method and other variable selection methods on the soy
moisture dataset. Most of these methods select informative
intervals; however, some methods select other intervals, such
as CARS, MC-UVE, and GA-PLS. Also, some methods
select more variables such as MC-UVE, siPLS, MW-PLS,
and iRF which show low accuracy compared with a low
number of variables such as BOSS and VCPA-IRIV and the
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TABLE 4. Results for the total diesel fuel properties dataset. nVAR: number of variables; mnLVs:max number of latent variables; RMSEC: root
mean-square error of calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of
determination of calibration; Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_T coefficient of determination of test set.

FIGURE 10. The frequency of selected variables within 20 times on the total diesel fuel properties dataset: (A) VCPA-IRIV, (B)
BOSS, (C) proposed method selected three variables (D) proposed method selected six variables.

BOSS-IRVS methods. The proposed hybrid models select a
good combination and an optimal number of variables that
achieved higher accuracy.

C. TOTAL DIESEL FUELS DATASET
The results of variable selection methods on total diesel
fuel datasets are displayed in Table 4 and Figure 10.
It shows a clear ranking of prediction ability for all
the methods; the BOSS-IRVS with six variables added,
the VCPA-IRIV method, BOSS-IRVS with three variables
added, and the BOSS method. The values of RMSEP
are 0.5965 for the BOSS-IRVS with six added variables,
0.6004 for VCPA-IRV, 0.6026 for BOSS-IRVS with three
added variables, and 0.6366 for BOSS.Wavelengths that have
been selected by all methods are concentrate in the region
of 1000–1100 nm, 1200–1300 nm, and 1450–1550 nm
which indicate the importance of these intervals. Moreover,
the VCPA-IRIV and BOSS have selected variables around
different intervals include intervals between 800 and 900 and
between 1300 and 1400. BOSS-IRVS models have selected
their variables around these informative intervals which
improve the BOSS method significantly. From Table 3 and
Table 1, it can be seen that MC-UVE, GA-PLS have a higher

number of variables compared to BOSS, CARS, VCPA-IRIV,
and proposed hybrid model. The methods that have a low
number of variables have a good performance.

D. WHEAT PROTEIN DATASET
From Table 5 and Figure 11, BOSS-IRVS can be seen clearly
achieving better results compared with VCPA-IRIV and
BOSS. The values of RMSEP and Q2_Tof the BOSS-IRVS
are, respectively, 0.1789 and 0.9119 compared to 0.2089 and
0.8779 for BOSS, and 0.2235 and 0.8602 for VCPA-IRIV.
The BOSS-IRVS with three added variables outperforms the
BOSS-IRVS with six added variables which the reason for
overfitting. The value of RMSEC for BOSS-IRVS with six
added variables has low RMSEC and high RMSEP compared
with the BOSS-IRVS with three added variables.

The variables around 1104-1400nm can be selected by
all methods which indicate the importance of this region
which corresponds to the first overtone of the O-H stretch
bond vibration [7]. The VCPA-IRIV select other variables
in intervals around 1800 and between 2200 and 2400. The
BOSS and the BOSS-IRVS concentrated on this region which
shows better performance than VCPA-IRIV. The proposed
method combines the variables select by BOSS and add only
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FIGURE 11. The frequency of selected variables within 20 times on the wheat protein dataset: (A) VCPA-IRIV (B) BOSS,
(C) proposed method selected three variables (D) proposed method selected six variables.

TABLE 5. Results for the wheat protein dataset. nVAR: number of variables; mnLVs: max number of latent variables; RMSEC: root mean-square error of
calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of determination of calibration;
Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_T coefficient of determination of test set.

TABLE 6. Results for hemoglobin dataset. nVAR: number of variables; mnLVs: max number of latent variables; RMSEC: root mean-square error of
calibration RMSEV: root-mean-square error of cross-validation; RMSEP: root-mean-square error of prediction; coefficient of determination of calibration;
Q2_C; Q2_CV: coefficient of determination of cross-validation; Q2_T coefficient of determination of test set.

three variables selected on the important intervals and showed
a significant improvement of the prediction accuracy—the
lowest variables selected by BOSS followed by VCPA-
IRIV and BOSS-IRVS method. Table 5 and Table 1 showed
the proposed hybrid method and previous different variable
selection methods on the wheat protein dataset. We ana-
lyzed that, MC-UVE and CARS method select infor-
mative variable; however, it selects another variable in
uninformative intervals. IVSO and GA-PLS-LRC method

select informative intervals and concentrate their variables
in these informative variables which lead to a good perfor-
mance. IVSO outperformed PLS, CARS andMC-UVEwhile
GA-PLS-LRC outperformed GA-PLS. A recent paper called
SMCPA showed a good concentration with a low number of
variables and outperformed BOSS, VCPA, and CARS. Our
proposed hybrid method proved that adding three informative
variables in informative intervals could improve the result
significantly.
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FIGURE 12. The frequency of selected variables within 20 times on the hemoglobin dataset: (A) VCPA-IRIV (B) BOSS, (C) proposed
method selected three variables (D) proposed method selected six variables.

E. HEMOGLOBIN DATASET
From Table 6, it is clear that the BOSS-IRVS can achieve
better results compared with VCPA-IRIV and BOSS in
terms of RMSEP and Q2_T. The values of the RMSEP are
0.4114, 0.4270, 0.4368, and 0.5167 for BOSS-IRVS when
six added variables, the BOSS-IRVS when three added vari-
ables, VCPA-IRIV and BOSS respectively. The values of
Q2_Test are 0.9788, 0.9772, 0.9760, and 0.9663 for BOSS-
IRVS for six added variables, BOSS-IRVS for three added
variables, VCPA-IRIV, and BOSS methods respectively.
Figure 12 showed that the intervals between 1600 and 1800,
and between 2200 and 2400 are select by all methods.
VCPA-IRIV and BOSS selected between 1200 and 1400.
The BOSS-IRVS method added six variables only in inter-
vals between 1600 and 1800 and between 2200 and 2400.
The selection of these variables improved the result of the
BOSS method significantly and outperformed VCPA-IRIV.
All three methods select two intervals indicating the impor-
tance of these intervals. In addition, the BOSS-IRVS select
fewer variables compared to VCPA-IRIV. However, the
BOSS-IRVS outperformed the VCPA-IRV, the percentage
of improvement for the hemoglobin dataset is 5.8 for
VCPA-IRIV. Besides, when only six variables added to the
BOSS, the result improved significantly to 20.3 %.

VI. CONCLUSIONS AND FUTURE WORKS
To conclude, a new hybrid strategy for variable selection has
been proposed (BOSS-IRVS) in this study. The hybrid strat-
egy takes full advantage of BOSS as proved to select infor-
mative intervals and uses interval random variables selection
to search informative variables in the informative interval
selected by BOSS. It solves the problem of BOSS’s tendency
to select fewer variables, and also improve the predictive
accuracy. Seven NIR datasets were used to investigate the

improvement of this hybrid strategy. The results show that
the hybrid strategy significantly improved themodel’s predic-
tion performancewhen comparedwith two high-performance
methods (BOSS and VCPA-IRIV). It is worth pointing out
that the proposed hybrid strategy is general and can be
coupled with some other optimization or variable selection
methods for further optimization. Although it was employed
on the kind of NIR dataset in this study, it could be applied to
other kinds of high dimensional data, such as genomics, pro-
teomics, metabolomics, QSAR, and others. In future work,
we will consider applying our proposed model in high perfor-
mance variable selection method such as FOSS, SOBSS and
SMCPA. Besides, we will consider the computational cost in
the performance evaluation.

REFERENCES
[1] M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and J. Pagès,

‘‘NIR calibration in non-linear systems: Different PLS approaches and
artificial neural networks,’’ Chemom. Intell. Lab. Syst., vol. 50, no. 1,
pp. 75–82, 2000, doi: 10.1016/S0169-7439(99)00048-9.

[2] Å. Rinnan, F. V. D. Berg, and S. B. Engelsen, ‘‘Review of the most
common pre-processing techniques for near-infrared spectra,’’ TrAC
Trends Anal. Chem., vol. 28, no. 10, pp. 1201–1222, Nov. 2009, doi:
10.1016/j.trac.2009.07.007.

[3] I. Guyon and A. Elisseeff, ‘‘An introduction to variable and feature
selection,’’ J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003, doi:
10.1162/153244303322753616.

[4] B.-C. Deng, Y.-H. Yun, D.-S. Cao, Y.-L. Yin, W.-T. Wang, H.-M. Lu,
Q.-Y. Luo, and Y.-Z. Liang, ‘‘A bootstrapping soft shrinkage approach for
variable selection in chemical modeling,’’ Analytica Chim. Acta, vol. 908,
pp. 63–74, Feb. 2016, doi: 10.1016/J.ACA.2016.01.001.

[5] H. Yan, X. Song, K. Tian, J. Gao, Q. Li, Y. Xiong, and S. Min,
‘‘A modification of the bootstrapping soft shrinkage approach for spectral
variable selection in the issue of over-fitting, model accuracy and variable
selection credibility,’’ Spectrochimica Acta A, Mol. Biomolecular Spec-
trosc., vol. 210, pp. 362–371, Mar. 2019, doi: 10.1016/j.saa.2018.10.034.

[6] Y.-W. Lin, B.-C. Deng, L.-L. Wang, Q.-S. Xu, L. Liu, and Y.-Z. Liang,
‘‘Fisher optimal subspace shrinkage for block variable selection with appli-
cations to NIR spectroscopic analysis,’’ Chemometric Intell. Lab. Syst.,
vol. 159, pp. 196–204, Dec. 2016, doi: 10.1016/j.chemolab.2016.11.002.

168050 VOLUME 8, 2020

http://dx.doi.org/10.1016/S0169-7439(99)00048-9
http://dx.doi.org/10.1016/j.trac.2009.07.007
http://dx.doi.org/10.1162/153244303322753616
http://dx.doi.org/10.1016/J.ACA.2016.01.001
http://dx.doi.org/10.1016/j.saa.2018.10.034
http://dx.doi.org/10.1016/j.chemolab.2016.11.002


H. A. G. Al-Kaf et al.: BOSS Approach and Interval Random Variables Selection Hybrid Model

[7] Y. Wang, Z. Jia, and J. Yang, ‘‘An variable selection method of the
significance multivariate correlation competitive population analysis for
near-infrared spectroscopy in chemical modeling,’’ IEEE Access, vol. 7,
pp. 167195–167209, 2019, doi: 10.1109/ACCESS.2019.2954115.

[8] J.-H. Jiang, R. J. Berry, H. W. Siesler, and Y. Ozaki, ‘‘Wavelength interval
selection in multicomponent spectral analysis by moving window par-
tial least-squares regression with applications to mid-infrared and near-
infrared spectroscopic data,’’ Anal. Chem., vol. 74, no. 14, pp. 3555–3565,
Jul. 2002, doi: 10.1021/ac011177u.

[9] Y.-H. Yun, J. Bin, D.-L. Liu, L. Xu, T.-L. Yan, D.-S. Cao, and Q.-S. Xu,
‘‘A hybrid variable selection strategy based on continuous shrinkage
of variable space in multivariate calibration,’’ Analytica Chim. Acta,
vol. 1058, pp. 58–69, Jun. 2019, doi: 10.1016/j.aca.2019.01.022.

[10] G. Tang, Y. Huang, K. Tian, X. Song, H. Yan, J. Hu, Y. Xiong, and
S. Min, ‘‘A new spectral variable selection pattern using competi-
tive adaptive reweighted sampling combined with successive projec-
tions algorithm,’’ Analyst, vol. 139, no. 19, pp. 4894–4902, 2014, doi:
10.1039/c4an00837e.

[11] H. Chen, X. Liu, Z. Jia, Z. Liu, K. Shi, and K. Cai, ‘‘A combination
strategy of random forest and back propagation network for variable
selection in spectral calibration,’’ Chemometric Intell. Lab. Syst., vol. 182,
pp. 101–108, Nov. 2018, doi: 10.1016/j.chemolab.2018.09.002.

[12] Y.-H. Yun, H.-D. Li, B.-C. Deng, and D.-S. Cao, ‘‘An overview of vari-
able selection methods in multivariate analysis of near-infrared spec-
tra,’’ TrAC Trends Anal. Chem., vol. 113, pp. 102–115, Apr. 2019, doi:
10.1016/j.trac.2019.01.018.

[13] L.-L. Wang, Y.-W. Lin, X.-F. Wang, N. Xiao, Y.-D. Xu, H.-D. Li, and
Q.-S. Xu, ‘‘A selective review and comparison for interval variable selec-
tion in spectroscopic modeling,’’ Chemometric Intell. Lab. Syst., vol. 172,
pp. 229–240, Jan. 2018, doi: 10.1016/j.chemolab.2017.11.008.

[14] H.-D. Li, Q.-S. Xu, and Y.-Z. Liang, ‘‘Random frog: An efficient reversible
jump Markov chain Monte Carlo-like approach for variable selection with
applications to gene selection and disease classification,’’ Analytica Chim.
Acta, vol. 740, pp. 20–26, Aug. 2012, doi: 10.1016/j.aca.2012.06.031.

[15] Y.-H. Yun, W.-T. Wang, M.-L. Tan, Y.-Z. Liang, H.-D. Li, D.-S. Cao,
H.-M. Lu, and Q.-S. Xu, ‘‘A strategy that iteratively retains informa-
tive variables for selecting optimal variable subset in multivariate cal-
ibration,’’ Analytica Chim. Acta, vol. 807, pp. 36–43, Jan. 2014, doi:
10.1016/J.ACA.2013.11.032.

[16] B.-C. Deng, Y.-H. Yun, Y.-Z. Liang, and L.-Z. Yi, ‘‘A novel variable
selection approach that iteratively optimizes variable space using weighted
binary matrix sampling,’’ Analyst, vol. 139, no. 19, p. 4836, Jul. 2014, doi:
10.1039/C4AN00730A.

[17] W. Wang, Y. Yun, B. Deng, W. Fan, and Y. Liang, ‘‘Iteratively variable
subset optimization for multivariate calibration,’’ RSC Adv., vol. 5, no. 116,
pp. 95771–95780, 2015, doi: 10.1039/c5ra08455e.

[18] H. Li, Y. Liang, Q. Xu, and D. Cao, ‘‘Key wavelengths screening using
competitive adaptive reweighted sampling method for multivariate calibra-
tion,’’ Analytica Chim. Acta, vol. 648, no. 1, pp. 77–84, Aug. 2009, doi:
10.1016/J.ACA.2009.06.046.

[19] K. Zheng, Q. Li, J. Wang, J. Geng, P. Cao, T. Sui, X. Wang, and
Y. Du, ‘‘Stability competitive adaptive reweighted sampling (SCARS)
and its applications to multivariate calibration of NIR spectra,’’
Chemometric Intell. Lab. Syst., vol. 112, pp. 48–54, Mar. 2012, doi:
10.1016/j.chemolab.2012.01.002.

[20] R. Zhang, F. Zhang, W. Chen, H. Yao, J. Ge, S. Wu, T. Wu, and
Y. Du, ‘‘A new strategy of least absolute shrinkage and selection oper-
ator coupled with sampling error profile analysis for wavelength selec-
tion,’’ Chemometric Intell. Lab. Syst., vol. 175, pp. 47–54, Apr. 2018, doi:
10.1016/j.chemolab.2018.02.007.

[21] Y.-H. Yun, H.-D. Li, L. R. E. Wood, W. Fan, J.-J. Wang, D.-S. Cao,
Q.-S. Xu, and Y.-Z. Liang, ‘‘An efficient method of wavelength inter-
val selection based on random frog for multivariate spectral calibra-
tion,’’ Spectrochimica Acta A, Mol. Biomolecular Spectrosc., vol. 111,
pp. 31–36, Jul. 2013, doi: 10.1016/j.saa.2013.03.083.

[22] B.-C. Deng, Y.-H. Yun, P. Ma, C.-C. Lin, D.-B. Ren, and Y.-Z. Liang,
‘‘A new method for wavelength interval selection that intelligently opti-
mizes the locations, widths and combinations of the intervals,’’ Analyst,
vol. 140, no. 6, pp. 1876–1885, 2015, doi: 10.1039/c4an02123a.

[23] X. Song, Y. Huang, H. Yan, Y. Xiong, and S. Min, ‘‘A novel algorithm
for spectral interval combination optimization,’’ Analytica Chim. Acta,
vol. 948, pp. 19–29, Dec. 2016, doi: 10.1016/j.aca.2016.10.041.

[24] S. Ye, D. Wang, and S. Min, ‘‘Successive projections algorithm combined
with uninformative variable elimination for spectral variable selection,’’
Chemometric Intell. Lab. Syst., vol. 91, no. 2, pp. 194–199, Apr. 2008, doi:
10.1016/j.chemolab.2007.11.005.

[25] X. Fu, F.-J. Duan, T.-T. Huang, L. Ma, J.-J. Jiang, and Y.-C. Li, ‘‘A fast
variable selection method for quantitative analysis of soils using laser-
induced breakdown spectroscopy,’’ J. Anal. At. Spectrometry, vol. 32, no. 6,
pp. 1166–1176, 2017, doi: 10.1039/c7ja00114b.

[26] B.-C. Deng, Y.-H. Yun, and Y.-Z. Liang, ‘‘Model population analysis in
chemometrics,’’ Chemometric Intell. Lab. Syst., vol. 149, pp. 166–176,
Dec. 2015, doi: 10.1016/J.CHEMOLAB.2015.08.018.

[27] L. P. Brás, M. Lopes, A. P. Ferreira, and J. C. Menezes, ‘‘A bootstrap-based
strategy for spectral interval selection in PLS regression,’’ J. Chemomet-
rics, vol. 22, nos. 11–12, pp. 695–700, Nov. 2008, doi: 10.1002/cem.1153.

[28] H.-D. Li, Y.-Z. Liang, Q.-S. Xu, and D.-S. Cao, ‘‘Model population
analysis for variable selection,’’ J. Chemometrics, vol. 24, nos. 7–8,
pp. 418–423, Jul. 2010, doi: 10.1002/cem.1300.

[29] H. Ali Gamal Al-Kaf, A. M. Mohsen, and K. Seng Chia, ‘‘Improved
model population analysis in near infrared spectroscopy,’’ in Proc. 1st
Int. Conf. Intell. Comput. Eng. (ICOICE), Dec. 2019, pp. 1–9, doi:
10.1109/ICOICE48418.2019.9035177.

[30] R. Zhang, F. Zhang, W. Chen, H. Yao, J. Ge, S. Wu, T. Wu, and
Y. Du, ‘‘A new strategy of least absolute shrinkage and selection oper-
ator coupled with sampling error profile analysis for wavelength selec-
tion,’’ Chemometric Intell. Lab. Syst., vol. 175, pp. 47–54, Apr. 2018, doi:
10.1016/J.CHEMOLAB.2018.02.007.

[31] Y.-H. Yun, W.-T. Wang, M.-L. Tan, Y.-Z. Liang, H.-D. Li, D.-S. Cao,
H.-M. Lu, and Q.-S. Xu, ‘‘A strategy that iteratively retains informa-
tive variables for selecting optimal variable subset in multivariate cal-
ibration,’’ Analytica Chim. Acta, vol. 807, pp. 36–43, Jan. 2014, doi:
10.1016/J.ACA.2013.11.032.

[32] Y.-H. Yun, D.-S. Cao, M.-L. Tan, J. Yan, D.-B. Ren, Q.-S. Xu, L. Yu,
and Y.-Z. Liang, ‘‘A simple idea on applying large regression coefficient
to improve the genetic algorithm-PLS for variable selection in multi-
variate calibration,’’ Chemometric Intell. Lab. Syst., vol. 130, pp. 76–83,
Jan. 2014, doi: 10.1016/j.chemolab.2013.09.007.

[33] M. Forina, G. Drava, C. Armanino, R. Boggia, S. Lanteri, R. Leardi,
P. Corti, P. Conti, R. Giangiacomo, C. Galliena, and R. Bigoni, ‘‘Trans-
fer of calibration function in near-infrared spectroscopy,’’ Chemom.
Intell. Lab. Syst., vol. 27, no. 2, pp. 189–203, 1995, doi: 10.1016/0169-
7439(95)80023-3.

[34] J. H. Kalivas, ‘‘Two data sets of near infrared spectra,’’ Chemometrics
Intell. Lab. Syst., vol. 37, pp. 255–259, Jun. 1997.

[35] E. Candes and T. Tao, ‘‘The dantzig selector: Statistical estimation when
p is much larger than n,’’ Ann. Statist., vol. 35, no. 6, pp. 2313–2351,
Dec. 2007, doi: 10.1214/009053606000001523.

[36] H. Zou and T. Hastie, ‘‘Regularization and variable selection via the elastic
net,’’ J. Roy. Stat. Soc., B (Stat. Methodol.), vol. 67, no. 2, pp. 301–320,
Apr. 2005, doi: 10.1111/j.1467-9868.2005.00503.x.

[37] R. Leardi, ‘‘Application of genetic algorithm—PLS for feature selec-
tion in spectral data sets,’’ J. Chemometrics, vol. 14, nos. 5–6,
pp. 643–655, 2000, doi: 10.1002/1099-128X(200009/12)14:5/6<643::
AID-CEM621>3.0.CO.2-E.

[38] B. Igne, P. Dardenne, D. Honigs, J. T. Kuenstner, K. Norris, Z. Shi, and
M. Westerhaus, ‘‘The 2010 IDRC software shoot-out at a glance,’’ NIR
news, vol. 21, no. 8, pp. 14–16, Dec. 2010, doi: 10.1255/nirn.1216.

[39] M. N. E. M. Idrus, K. S. Chia, H. M. Sim, and H. A. G. Al-Kaf,
‘‘Artificial neural network and savitzky golay derivative in predicting blood
hemoglobin using near-infrared spectrum,’’ Int. J. Integr. Eng., vol. 10,
no. 8, pp. 112–119, Dec. 2018, doi: 10.30880/ijie.2018.10.08.017.

HASAN ALI GAMAL AL-KAF received the
B.Eng. degree in electronic engineering from Uni-
versiti Tun Hussein Onn Malaysia, Malaysia, and
the master’s degree in electrical engineering from
Universiti Tun Hussein Onn Malaysia, Malaysia.
He has authored four papers for journals and con-
ference proceedings. His main areas of research
interests are artificial intelligence, machine learn-
ing, data mining, variable selection methods, and
near-infrared spectroscopy

VOLUME 8, 2020 168051

http://dx.doi.org/10.1109/ACCESS.2019.2954115
http://dx.doi.org/10.1021/ac011177u
http://dx.doi.org/10.1016/j.aca.2019.01.022
http://dx.doi.org/10.1039/c4an00837e
http://dx.doi.org/10.1016/j.chemolab.2018.09.002
http://dx.doi.org/10.1016/j.trac.2019.01.018
http://dx.doi.org/10.1016/j.chemolab.2017.11.008
http://dx.doi.org/10.1016/j.aca.2012.06.031
http://dx.doi.org/10.1016/J.ACA.2013.11.032
http://dx.doi.org/10.1039/C4AN00730A
http://dx.doi.org/10.1039/c5ra08455e
http://dx.doi.org/10.1016/J.ACA.2009.06.046
http://dx.doi.org/10.1016/j.chemolab.2012.01.002
http://dx.doi.org/10.1016/j.chemolab.2018.02.007
http://dx.doi.org/10.1016/j.saa.2013.03.083
http://dx.doi.org/10.1039/c4an02123a
http://dx.doi.org/10.1016/j.aca.2016.10.041
http://dx.doi.org/10.1016/j.chemolab.2007.11.005
http://dx.doi.org/10.1039/c7ja00114b
http://dx.doi.org/10.1016/J.CHEMOLAB.2015.08.018
http://dx.doi.org/10.1002/cem.1153
http://dx.doi.org/10.1002/cem.1300
http://dx.doi.org/10.1109/ICOICE48418.2019.9035177
http://dx.doi.org/10.1016/J.CHEMOLAB.2018.02.007
http://dx.doi.org/10.1016/J.ACA.2013.11.032
http://dx.doi.org/10.1016/j.chemolab.2013.09.007
http://dx.doi.org/10.1016/0169-7439(95)80023-3
http://dx.doi.org/10.1016/0169-7439(95)80023-3
http://dx.doi.org/10.1214/009053606000001523
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO.2-E
http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO.2-E
http://dx.doi.org/10.1255/nirn.1216
http://dx.doi.org/10.30880/ijie.2018.10.08.017


H. A. G. Al-Kaf et al.: BOSS Approach and Interval Random Variables Selection Hybrid Model

NAYEF ABDULWAHAB MOHAMMED
ALDUAIS (Member, IEEE) received the B.Eng.
degree (Hons.) in computer engineering from
Hodeidah University, Yemen, in 2007, and the
master’s and Ph.D. degrees in communication and
computer engineering from the Faculty of Electri-
cal and Electronic Engineering (FKEE), Universiti
Tun Hussein Onn Malaysia (UTHM), Malaysia,
in 2015 and 2019, respectively. He is currently a
Lecturer and Researcher in the Internet of Things

(IoT) with the Faculty of Computer Science and Information Technology
(FSKTM), UTHM, having previously worked as an Assistant Lecturer with
the Faculty of Computer Science and Engineering, Hodeidah University,
from 2007 to 2013. He has authored numerous papers in journals and
conference proceedings. His research interests include WSN, IoT, artificial
intelligent (AI), and edge computing. He has received numerous medals and
scientific excellence certificates.

ABDUL-MALIK H. Y. SAAD (Member, IEEE)
was born in Jeddah, Saudi Arabia, in 1983.
He received the B.Eng. degree with the first rank in
computer engineering from Hodeidah University,
Hodeidah, Yemen, in 2006, the M.Sc. degree in
electronic systems design engineering from Uni-
versiti Sains Malaysia (USM), in 2014, and the
Ph.D. degree in the digital systems field from
USM, in 2018. He is currently an Assistant Pro-
fessor with the School of Electrical and Electronic

Engineering, USM. His research interests include artificial intelligent (AI),
digital system design, and image processing.

KIM SENG CHIA (Member, IEEE) received the
bachelor’s degree (Hons.) in electrical engineering
from the Universiti Teknologi Malaysia, in 2010,
and the Ph.D. degree from theUniversiti Teknologi
Malaysia, in 2014. His Ph.D. research is focused
on developing predictive models that are capable
of predicting the soluble solids content of a pineap-
ple non-destructively through near-infrared spec-
troscopy. He has served Southern University Col-
lege, Malaysia, from March 2014 to August 2014,

as an Assistant Professor. He has currently served the Faculty of Electronic
and Electrical Engineering, Universiti Tun Hussein Onn Malaysia, as an
Academic Staff, since September 2014. His research focuses on near-infrared
spectroscopic analysis and its applications. The specific focuses are on
the predictive accuracy of various predictive models (including artificial
intelligence) in near-infrared spectroscopic analysis, and to investigate the
feasibility of the technology in novel applications.

ABDULQADER M. MOHSEN (Senior Member,
IEEE) received the B.Sc. degree in computer sci-
ences from the Department of Computer Science,
Faculty of Science and Engineering, University of
Science and Technology (UST), Sana’a, Yemen,
in 1999, the M.Sc. degree in computer sciences
from the Department of Computer Science, Fac-
ulty of Science and Engineering, UST, in 2006,
and the Ph.D. degree in computer sciences from
the School of Computer Sciences, Universiti Sains

Malaysia (USM), Penang, Malaysia, in February 2011. He was the Head of

the Computer Science Department, UST, from 2011 to 2012. In addition,
he has been a part-time Associate Professor with the Arab Academy for
Banking and Financial Sciences (AABFS) and University Malaysia (OUM),
Yemen, since 2012. He is currently the Dean of the Faculty of Computing
and IT, UST, since 2013. He is one of the founders of the IEEE Yemen
Subsection and the Secretary of Yemen Subsection. He is the editorial board
member of many journals and conferences. He has published more than
25 journal and conference papers. He has supervised more than 10 master
and 4 Ph.D. students. His research and teaching interests and activities
are in the areas of computational intelligence, optimization, data science,
bioinformatics, data mining, approximate (metaheuristic algorithms), and
information systems.

HITHAM ALHUSSIAN (Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees in com-
puter science from the School of Mathemati-
cal Sciences, University of Khartoum (UofK),
Sudan, and the Ph.D. degree from Universiti
Teknologi PETRONAS (UTP), Malaysia. Fol-
lowing his Ph.D., he worked as a Postdoctor-
ate Researcher with the High-Performance Cloud
Computing Center (HPC3), UTP, where he is cur-
rently a Senior Lecturer with the Department of

Computer and Information Sciences, and a core member of the Centre for
Research in Data Science (CERDAS). His main research interests include
real-time parallel computing, big data and cloud computing, machine/deep
learning, data mining, and real-time analytics.

AMMAR ABDO MOHAMMED HAIDAR
MAHDI received the B.S. degree in electronic
engineering (mechatronics) and theM.Eng. degree
(Research Mode) in mechanical engineering
(mechatronics and automatic control) from Uni-
versiti Tun Hussein Onn Malaysia, in 2017 and
2019, respectively. He was also involved in
Research Exchange at the Nagaoka University of
Technology, Japan, in 2015. Since 2017, he has
been a Research Assistant with Universiti Tun

Hussein Onn Malaysia. He is currently a Lecturer with the University
of Science and Technology Yemen. His research interests include the
mechatronics discipline, control systems, dynamical systems, and robotics.
He is also having a keen interest in nonlinear control, artificial intelligence,
microcontrollers and signal, and image processing. He is a member of the
Board of Engineers Malaysia (BEM). His awards and honors include a Gold
Medal in RISE 2019.

WAN SAIFUL-ISLAM WAN SALAM received
the B.Eng. degree in mechanical engineering,
in 1999, the M.Sc. degree from Universiti Sains
Malaysia, in 2003, and the Ph.D. degree (DIC)
from Imperial College London, in 2015. He is
currently a Senior Lecturer with the Faculty
of Mechanical and Manufacturing Engineering,
Universiti Tun Hussein Onn Malaysia (UTHM).
He has authored over 40 publications in journals,
conferences, and book chapters. His main research

interest lies in the area of turbomachinery, energy generation and recovery
systems, low speed aerodynamics, and thermal management systems. He is
a member of the Board of Engineers Malaysia.

168052 VOLUME 8, 2020


