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ABSTRACT Convolutional neural networks (CNNs) require large amounts of data for training, beyond
what can be acquired for current radiomics models. We hypothesize that deep entropy features (DEFs)
derived from existing CNNs can be applied to MRI images of prostate cancers (PCa) to reliably predict the
Gleason score (GS) of PCa lesions. In this study, we analyzed 112 lesions acquired from 99 PCa patients,
either pre-biopsy or pre-treatment, their associated GS, and multi-parametric MRI (mpMRI) sequences. Our
approach is based on the extraction of DEF features produced in individual layers of 9 pre-trained CNN
models. We first analyze DEFs from separate CNNs using the Wilcoxon test and Spearman correlation to
find significant features associated with GS. In a multivariate analysis, we then use the combined DEFs
of all CNNs as input to a random forest (RF) classifier for predicting the Gleason grade group of patients.
Among the 9 pre-trained CNNs, the NASNet-mobile architecture offered the features most correlated to GS
(ρ = 0.47; p<0.05). From the 7,857 combined features, 11 DEFs could differentiate GS < 8 from GS ≥ 8
(corrected p < 0.05). Moreover, the RF classifier discerned GS of 6, 3+4, 4+3, 8 and ≥ 9 with an AUC
(%) of 80.08, 85.77, 97.30, 98.20, and 86.51, respectively. Our results suggest that the DEFs can be used to
differentiate GS of PCa lesions with the highest accuracy of GS ≥ 8 based on mpMRI. DEFs could improve
diagnosis accuracy, reduce the risks of misclassification, help to better assess prognosis, and individualize
patient care approaches.

INDEX TERMS Prostate cancer, deep learning, Gleason score, radiomics.

I. INTRODUCTION
Radiomics is a technique to extract large number of features
from medical image to build prediction models. However,
this technique suffers from overfitting when a large num-
ber of features are directly used to train and test predictive
models [1]. While, convolutional neural networks (CNNs)
have shown an outstanding ability to identify complex asso-
ciations in high-dimensional data for disease diagnosis and
treatment planning [2]. In order to get the benefit of the
representational capacity of well-known deep CNN designs
(e.g., ResNet, GoogleNet, etc.) and overcome the issue of
overfitting and limited datasets, we propose to encode the
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CNN features which are a key challenge in personalized
medicine of grading prostate cancer (PCa). For devising a
personalized approach to patients with PCa, the diagnosis
and management depend on the assessment of biological
aggressiveness of themalignancy, for which the gold standard
is prostate biopsy [3], [4]. The biopsy specimen is evalu-
ated in a standardized fashion by specialized physicians, i.e.
the pathologists, for assigning a Gleason Score (GS) to the
malignancy [5]. However, this procedure can lead to com-
plications [6], incurs a significant cost [7] and may need to
be repeated if sampled tissue are inadequate for analysis [8].
Additionally, significant discrepancies can arise between the
biopsy-evaluated GS and what is found during surgery (e.g.,
radical prostatectomy [9]). Important inter-observer variabil-
ity may also be found in biopsy reports [10]. Hence, there is a
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critical need to develop non-invasive methods that can predict
the PCa grades to improve delivery of high precision care for
these patients.

Evidence supports the role of multiparametric mag-
netic resonance imaging (mpMRI) performed before biopsy
as a guide for PCa assessment [3], [4]. Recent stud-
ies have shown that MRI offers advantages over tran-
srectal ultrasound (TRUS) guided biopsies in ruling out
clinically-significant disease, and that MRI followed by
targeted biopsies improves the detection rate compared to
systematic biopsies [11], [12]. Likewise, the MRI-FIRST
study [13] found that combining a MRI-targeted approach
with a systematic biopsy provided substantial added value.
The standardized method for reporting prostate mpMRI,
known as Prostate Imaging Reporting and Data System
(PI-RADS), stratifies prostatic lesions by their potential
for malignancy [14], [15]. PI-RADS’s efficacy ranges from
74-82% for its sensitivity to detect PCa and 65-94% for its
negative predictive value [12]. Recently, important efforts
have been invested to improve PCa screening, risk strati-
fication and individualized patient management. Radiomics
and CNNs offers an effective and non-invasive way to
predict oncological outcomes [16]–[20]. For PCa, multiple
studies have identified imaging features that correlate with
GS [21]–[23]. However, a common limitation of radiomics
approaches is the requirement of having enough high-quality
data to both train and validate the model.

Our work proposes a novel radiomics method based on
deep entropy features (DEFs) to predict the GS of PCa
lesions from mpMRI. In contrast to traditional imaging fea-
tures, DEFs are learned from a convolutional neural net-
work (CNN) and thus have the potential of capturing more
informative characteristics of an image. In a previous study,
DEFs obtained from a three-dimensional CNN were shown
to be capable of describing differences between brain MRI of
patients with Alzheimer’s and healthy control subjects [24].
Expanding on this study, the current work evaluates the poten-
tial of DEFs, extracted from all layers of multiple network
architectures, to offer a more reliable prediction of GS in
prostate mpMRI. To overcome the challenge of limited train-
ing data, the proposed approach exploits a transfer learning
strategy where pre-trained CNNs are used to extract generic
imaging features, which are then summarized into a small set
of DEFs. These radiomic descriptors offer a highly-compact
representation of image texture which captures the hetero-
geneity of imaged tissues. To ensure reproducibility, our
study employs a publicly-accessible and verifiable database
of prostate cancer images.

The major contributions of our paper are as follows:
• This work is the first comprehensive work in encoding
well-known CNNs with quantifier function (Shannon
entropy) for predicting the GS of patients with PCa.

• We demonstrate the effectiveness of using the deep
entropy features to deal with RF in predicting the GS.

• We propose a small set of DEFs that encode multi-scale
(e.g., deep feature maps) PCa-related information.

• We present the classification performance of different
prostatic zone and its relationship with GS.

The rest of this article is structured as follows. Section II
describes the data used in this study as well as the pro-
posed pipeline. We then present the experimental results in
Section III and discuss our main findings in Sections IV.
Finally, Section V concludes with a summary of our work’s
main contributions and results

II. MATERIALS AND METHODS
This section describes the public dataset of PCa and explains
the steps data acquisition in preprocessing procedures, the
proposed pipeline and the performance metrics.

A. PATIENTS AND DATA ACQUISITION
The Cancer Imaging Archive (TCIA) was accessed to acquire
patient data and mpMRI images for this study. TCIA hosts a
publicly-accessible repository of labelled imaging data spon-
sored by the International Society for Optics and Photon-
ics (SPIE), National Cancer Institute/National Institutes of
Health (NCI/NIH), and the American Association of Physi-
cists in Medicine (AAPM) [25]. Our study uses the labeled
training data of the SPIE-AAPM-NCI Prostate MR Glea-
son Grade Group Challenge (PROSTATEx-2), comprising
a total of 112 PCa lesions from 99 different subjects [26].
The testing data of the PROSTATEx-2 dataset was not con-
sidered in our work since it does not contain labels. The
GS of each tumor was determined via MRI-localization.
Specifically, MR studies were read and reported by an expert
radiologist (>20 years of experience in prostate MR) who
indicated areas of suspicion with a score per modality using
a point marker. A biopsy was then performed for areas con-
sidered as cancer. The biopsy process was performed under
MR-guidance and confirmation scans of the biopsy needle
in situ were done to achieve the highest localization accu-
racy [25]. At each stage, a physician with relevant exper-
tise in the procedure was involved. Based on the biopsy
specimens and the mpMRI report, tumors were partitioned
into different Epstein grade groups [27], as per their GS:
G1 (GS ≤ 6), G2 (GS 3 + 4 = 7), G3 (GS 4 + 3 = 7),
G4 (GS = 8), or G5 (GS ≥ 9) (Table 1). As all patient
data were accessed through an anonymized public resource,
no institutional review board or Health Insurance Portability
and Accountability Act approval was required.

Images were acquired by either a Siemens 3T
MAGNETOM Trio or Skyra MRI [27]. Pixel spacing, slice
thickness, and contrast varied within the included cohort.
Image heterogeneity was corrected via resampling all the
images to an ordinary voxel resolution of 1 mm3, for a total
size of 320 × 320 × 19 voxels. The unified grey image
adjustment to the [0-255] range for normalization where the
maximum grayscale value is 255, the minimum value is 0,
and the rest have been linearly transformed. We identified an
84 × 84 pixel 2D ROI from each MRI sequence. The ROI
selected included the abnormal area expertly identified by
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FIGURE 1. Illustration of the proposed methodology to generate and
evaluate deep entropy features. 1) T2-WI, ADC and DCE MRI images of
99 patients with 112 lesions; ROIs determined by size of 84 × 84 pixels.
2) Upsampling of the ROI (e.g., 224 × 224 pixels) for processing by
the 9 pre-trained CNNs. The texture of the CNN layer-blocks
(e.g., convolution layers, max pooling layers, ReLU, normalization and
fully-connected layer) is quantified using entropy. 3) Features capacity to
predict the GS evaluated via uni- and multivariate analyses.

the PROSTATEx-2 Challenge. Using these ROIs, we derived
DEFs from the T2-WI, ADC, and DCE images.

B. DEEP ENTROPY FEATURE EXTRACTION
The deep entropy features (DEFs) employed in the pro-
posed radiomics pipeline (Figure 1) measure the spatial
heterogeneity (i.e., texture) of feature maps computed by
a pre-trained deep CNN. In this study, we considered 9
well-known 2D CNN architectures that were pre-trained
on natural images from the ImageNet database: Xcep-
tion [28], AlexNet [29], Inception ResNet-v2, GoogleNet,
Inception-v3 [30], SqueezeNet [31], ResNet101 [32],
NASNet-mobile [33] and NASNet-large [33]. Considered the
2D ROIs extracted from mpMRI, each network was applied
separately on T2-WI, ADC, and DCE MRI series to obtain
imaging descriptors corresponding to the feature maps of
convolutional blocks. In most CNNs, a convolutional block is
composed of the following sequence of operations: convolu-
tion, pooling, normalization, and rectified linear unit (ReLU)
activation. For extracting DEFs, we computed the entropy
in each feature map of the 9 CNNs. Toward this goal, the
values at each position of a feature map are aggregated into a
discrete probability distribution (i.e., histogram) by grouping
them into 256 equal-sized bins. Let pi be the ratio of values
of a feature map falling into bin i, entropy is computed as

H = −
∑256

i=1
pilogpi

Featuremaps with high entropy correspond to textures having
more pronounced heterogeneity. The number of obtained
DEFs can vary for each CNN, according to the number of
convolution blocks in the network.

C. DEEP ENTROPY FEATURE EVALUATION AND
MODELING
Uni- and multivariate analyses were performed to assess the
relationship between DEFs and GS. First, we used Spearman
correlation to identify the features most correlated to GS [34].
The Wilcoxon rank-sum test [35] was then employed to
compare the distribution of features in lesion groups defined

based on GS. For this second analysis, we considered five
different partitions of lesions in two separate groups: G1 vs all
(G2-5); G2 vs all (G1+G3+G4-5); G3 vs all (G1-G2+G4-5);
G4G5 vs all (G1-3); G1G2 vs all (G3-5). For each of these
binary partitions, we performed a Wilcoxon rank-sum test
on individual features to identify those having a significantly
different distribution across the two lesion groups. To account
for multiple comparisons, the p-values of all Wilcoxon tests
and Spearman correlation estimates were adjusted using
the Holm-Bonferroni correction. Statistical significance was
defined as corrected p < 0.05 [36].
In a multivariate analysis, we used the DEFs as input to a

random forest (RF) classifier for predicting different combi-
nations of Gleason grade groups. While different classifiers
could be used for the same tasks, we have chosen the RF
classifier as it is performing well when training data is small
and has an optimized selection mechanism that allows inter-
pretability [37]. By integrating decision tree bagging with
random subspace search, it decreases errors due to the het-
erogeneity of training data and offers a strong generalization
for new samples [38]. RF classifiers also have a relatively
small number of hyper-parameters to tuning compared to
more complex models such as neural networks, the major
factors being the number of trees, the maximum tree depth,
the minimum number samples in a node. In our experiments,
these hyper-parameters were selected using grid search on a
validation set. In this context, we set 500, 15 and 4, respec-
tively, for the number of trees, the maximum tree depth, and
the minimum number samples in a node.

In this analysis, we considered the same partitions as
before, i.e. G1 vs all, G2 vs all, G3 vs all, G4G5 vs all, and
G1G2 vs all to define five binary classification problems. A
5-fold cross-validation (CV) was performed to obtain perfor-
mance measures. In this internal validation technique, data
samples are randomly divided into five folds. Each of these
folds is then used, in turn, to calculate the area under the
ROC curve (AUC) of an RF model trained with remaining
samples (those in the 4 other folds). To generate a quan-
tifiable performance metric, we then computed the average
of AUC values across all five folds. The out-of-bag sample
permutation error of the RF classifier was used to measure the
relative importance of each feature for predicting the Gleason
grade group. Importance values were computed for every RF
tree and then averaged over the entire ensemble. To obtain
normalized values, we divided them by the standard deviation
of the ensemble. Features are considered to be predictive of
the grade group if they have a positive importance value [39].

To further validate results, for each classification task (G1
vs all, G2 vs all, etc.), we randomly divided the datasets into
a training (70%) and testing (30%) cohort using balanced
populations of each grade group in training. The performance
of predictive models was measured based on the AUC and
the confusion matrix obtained on the test samples. Moreover,
we analyzed the localized relationship between DEFs and
GS by considering separately the lesions located in three
different anatomical zones of the prostate, i.e. peripheral
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FIGURE 2. Spearman’s correlation analysis of the top 10 deep entropy features (DEFs). Color-coded from -0.5 (dark blue) to 0.5 (dark red). x represents
the CNN architecture and the y-axis represents the DEFs best correlated with the GS among each CNN architectures.

TABLE 1. Distribution of prostate cancer patients by Gleason score
groups.

zone (PZ), transitional zone (TZ), and anterior zone (AZ).
The zone labels of PCa lesions were provided by TCIA in
the dataset. Among the 112 lesions, 50 where located in
the PZ, 17 in the TZ, and 45 in the AZ. For each zone,
we measured the Spearman correlation between DEFs and
GS and used the Kruskall-Wallis test to establish significant
differences between the feature distributions of distinct Glea-
son grade groups. Once again, Holm-Bonferroni correction
of p-values was used to account for multiple comparisons.
All our processing/analysis steps were performed using the
Matlab Statistics and Machine Learning Toolbox.

III. RESULTS
A. CHARACTERISTICS OF THE STUDY POPULATION
Histopathological data was available to confirm the GS of
the 112 malignant lesions identified in mpMRI. All mpMRI
images had the same three series available, i.e. T2 weighted
imaging (T2 WI), apparent diffusion coefficient (ADC),
and dynamic contrast enhancement (DCE) series. Among
these 112 lesions/findings, there were 36, 41, 19, 8, 8 tumors
with GS ≤ 6 (G1), GS = 7 (3+4; G2), GS = 7 (4+3; G3),
GS = 8 (4+4, 3+5, or 5+3; G4), and GS ≥ 9 (G5), respec-
tively (Table 1). In the cohort of 99 patients (average age
65 years, range 42–78 years), 87 patients had one lesion, 11
patients had two, and a single patient had three [40].

TABLE 2. Deep Entropy Features derived from pre-trained convolutional
neural networks.

B. ANALYSIS OF DEEP ENTROPY FEATURES
Table 2 reports the number of layers in each of the 9 pre-
trained CNN architectures and their corresponding number
of unique DEFs. The layer names of these architectures are
reported in Supplementary Table S1. Combining features of
all 9 networks yields a total of 7,857 unique DEFs. The
Spearman rank correlation (ρ) between GS and all signifi-
cant DEFs (determined by input modality and layer name)
is given in Table 3 and Figure 2. A DEF is significant
if it has a correlation p-value < 0.05 after correction. The
correlation ρ and corrected p-values of all layers can be
found in Supplementary Table S2. It can be seen that the
NASNet-mobile architecture yields the most correlated DEFs
and the feature with the highest absolute correlation of ρ =
0.47. After Holm-Benferroni correction, a total of 5, 4, 3, 2,
6, 3, 5, 16 and 2 DEFs extracted from Xception, AlexNet,
InceptionResNet-v2, GoogleNet, Inception-v3, SqueezeNet,
ResNet101, NASNet-mobile and NASNet-large architectures,
respectively, were statistically correlated with Gleason grade
groups. Statistically-correlated DEFs are found for both
T2-WI and ADC modalities in all 9 pre-trained CNNs.

Results of theWilcoxon rank sum test comparing the distri-
bution of DEF values across Gleason grade groups are shown
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FIGURE 3. Statistical significance heatmap of DEFs in discriminating Gleason grade groups. Each column represents the 15 most significant DEFs per
Gleason grade group comparison, p-values as per the Wilcoxon test. Significant DEFs (corrected p < 0.05) are identified by a green-black circle.
Color-coded from 0 (dark blue: least significance) to 6 (dark red: greatest significance). x represents the compared Gleason grade groups and the y-axis
corresponds to the most significant DEFs per Gleason grade group comparison, for each CNN architecture.

FIGURE 4. Importance values of deep entropy features which predicted the Gleason score groups. The 10 most important deep entropy
features for each Gleason grade group prediction task, using the RF model’s out-of-bag sample permutation error as importance measure.

in Figure 3. We find 11 DEFs with statistically-significant
differences for the GS ≥ 8 (i.e., G4G5) vs GS < 8 lesion
partition, with p-value< 0.05 following correction. All these
significant DEFs were derived from T2-WI images. No sig-
nificant DEFs were found when comparing between other
lesion partitions due to the p-value correction on a large
number of comparisons. The full set of p-values is provided
in Supplementary Table S3.

C. PREDICTIVE MODELS FOR GLEASON GRADE GROUP
Table 4 summarizes the results of the 5-fold CV analysis
evaluating the RF classifier’s ability to predict the Gleason
grade group of the 112 lesions. When considering DEFs
of each network architecture separately, the NASNet-mobile
yields the best prediction in all but one case (i.e., G3 vs all),
a result which is consistent with the previous correlation anal-
ysis. The highest accuracy is obtained when discriminating

between G4G5 and other Gleason grade groups (G4G5 vs
all), with an AUC of 92.68%. Furthermore, combining DEFs
derived from all 9 CNNs (7,857 features) into the same RF
model boosts performance in all but one classification tasks
compared to NASNet-mobile, with relative AUC improve-
ments of 0.38, 4.80, 3.90, 0.35 and -1.67, for G1 vs all, G2 vs
all, G3 vs all, G4G5 vs all, and G1G2 vs all, respectively.

D. FEATURE IMPORTANCE FOR GLEASON SCORE
PREDICTION
Figure 4 compares the DEFs, with the greatest importance
values from the pretrained CNN’s application to thempMRI’s
T2-WI, ADC, and DCE series. Specifically, Figure 4 shows
the 10 DEFs with the highest importance value (i.e., permuta-
tion error on out-of-bag samples) for each classification task.
Overall, the image modality (i.e., T2-WI, ADC or DCE) and
network architecture leading to the most predictive features
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TABLE 3. Correlation of deep entropy features with the Gleason grade group.

varies from one classification task to another. For instance,
DCE-based features obtain a high importance value for G3
vs all, however DEFs derived from this modality are not so
predictive for other GS partitions. Moreover, this analysis
demonstrates the RFmodel’s ability to select relevant features
from a large set, with most DEFs obtaining a null importance
value. The importance values of DEFs derived from all MRI
modalities and CNN layers are reported in Supplementary
Table S4.

E. PREDICTION ACCURACY ON CLASS-BALANCED
SAMPLES
A possible confound in the previous analysis is the class
imbalance when splitting lesions based on Gleason grade

groups. In the next analysis, we evaluate the RF model’s
performance on binary partitions having the same number
of samples. Specifically, we use a balanced sample partition
of 36/36 for G1 vs all, 41/41 for G2 vs all, 19/19 for G3 vs
all, 16/16 for G4G5 vs all, and 35/35 for G1G2 vs all. For
each classification task, we then use 70% of samples in each
partition for training and 30% for testing. Figure 5 gives the
confusionmatrix andROC curves of the RFmodel for the five
tasks. The model achieves an accuracy of 80.95%, 83.33%,
100.00%, 100.00% and 47.62%, respectively, for G1 vs all,
G2 vs all, G3 vs all, G4G5 vs all and G1G2 vs all. Corre-
spondingly, the highest AUC is obtained for discriminating
between GS < 8 and GS ≥ 8 (G4G5 vs all), with an AUC
of 98.20%.In addition, Table 5 illustrates the performance
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TABLE 4. Area under the ROC curve (%) of the RF classifier for discriminating between different Gleason grade group partitions, when using DEFs
from 9 pre-trained CNNs.

TABLE 5. Performance comparison of AUC with existing techniques.

FIGURE 5. Random forest models implementing deep entropy features.
Models predicting the Gleason score group of each PCa lesion, with their
associated (A) confusion matrix (x and y coordinates represents the true
class and predicted class, respectively) and (B) receiver operator
characteristic curve.

comparison of AUC with the previous studies in predicting
theGS of PCa. Except theG2 vs. all, our approaches showed a
better AUCvalue in predicting theG1 vs. all, G3 vs. all, G4G5
vs. all and G1G2 vs. all comparing to the existing techniques.

To assess the impact of splitting samples, we repeat
70-30% split random samples 20 times. For G1 vs. all, G2 vs.
all, G3 vs all, G4G5 vs all and G1G2 vs all, respectively, the
average AUC value of 86.40, 86.35, 95.40, 94.70 and 85.05%
is achieved.

F. ZONE-SPECIFIC RELATIONSHIP BETWEEN DEFs AND
GLEASON SCORE
It is unknown if peripheral zones (PZ) are biologically dif-
ferent than transitional Zones (TZ). With radomic analy-
sis applied on mpMRI in understanding the mechanism of
PCa, the impact of tumor location on biological behavior
may have significant implications for optimum treatment
modalities [40]. Figure 6A shows the DEFs most correlated
with GS, for lesions located in the three anatomical zones
of the prostate (i.e., PZ, TZ, and anterior – AZ). We see
that features with moderate (0.3 ≤ |ρ| ≤ 0.7) or high cor-
relation (|ρ| > 0.7) are found in all three zones. However,
after p-value correction, statistical significance can only be
established for DEFs in peripheral lesions, with absolute
correlation in the 0.6-0.63 range. Although more pronounced
correlation is found for transitional lesions, statistical signif-
icance could not be confirmed due to the smaller number of
lesions in this zone (i.e., 17 compared to 50 for PZ). Sim-
ilarly, Figure 6B displays the results of the Kruskal-Wallis
test comparing the DEFs among each Gleason grade groups
by anatomic zone. Following Holm-Bonferroni correction,
39 DEFs derived from PZ were statistically significant, the
highest significance obtained for ADC-NASNet-mobile fea-
tures. The complete set of corrected p-values can be found
in Supplementary Table S6.All correlation coefficients and
corrected p-values are reported in Supplementary Table S5.

IV. DISCUSSIONS
We implemented a novel approach using deep entropy
features (DEFs) derived from all layers of 9 different
pre-trained CNNs to analyze mpMRI images of PCa lesions.
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FIGURE 6. Sensitivity analysis of deep entropy features applicability to distinct regions of prostate anatomy. (A) Spearman’s correlation analysis of
the 15 DEFs most correlated to GS in the AZ, PZ and TZ regions, respectively. (B) The 15 most significant DEFs for discriminating Gleason grade groups in
the AZ, PZ and TZ zones, respectively. Black-green circles in A and B represent a significant p-value following Holm-Bonferroni correction.

This contrasts with our previous study on brain MRI, where
features extracted only from the most superficial layers of
a single CNN were used to predict Alzheimer’s or mild
cognitive impairment [45]. Experiments in the current study
identified 46 DEFs derived from the pre-trained CNNs that
were significantly correlated to GS. Furthermore, when given
as input to a RF classifier, these combined features led to
a highly accurate prediction of the Gleason grade group.
There currently is a clinical need for radiomic tools that can
predict the aggressiveness of PCa lesions with high reliability.
Even with modern advances in targeting, the existing diag-
nostic gold standard of TRUS biopsy is not as reliable as
definitive resection [46], while also carrying risks. Reported
morbidity includes pain, bleeding, lower urinary tract symp-
toms, erectile dysfunction, and infection which can be life
threatening in some cases [6], [47]. Cost is another limiting
factor of biopsy. Thus, a single biopsy requires a medical
specialist to acquire a sample then a separate specialized
pathologist to evaluate the resultant specimenwith reasonable
accuracy [48]. In many centers, TRUS biopsy will already
be preceded by an MRI for guidance or to determine the
necessity of additional biopsy [49]. Therefore, the implemen-
tation of an MRI-derived radiomics approach would not add
significant cost, and could replace two expensive steps for
the diagnosis and/or re-evaluation of prostate cancer. The
proposed method based on DEFs compares favorably with
previous approaches for predicting the Gleason grade group

of PCa lesions. In the PROSTATEx Challenge [26], the best-
performing method among 32 submissions achieved an AUC
of 87% for discriminating between clinically significant and
non-significant lesions. Since almost all clinically-significant
lesions (i.e., 71 out of 73) have a Gleason grade group > 1,
we can compare this value with the AUC of 88.8% obtained
by our method for the G1 vs all task.

Our experiments also confirm results of previous
works showing the efficacy of radiomics for analyz-
ing PCa images [40], [50]–[55]. In [56], entropy-based
texture features extracted from gray-level co-occurrence
matrix (GLCMs) were found to be related to GS, more
specifically, that a higher GS is associated with a higher
ADC entropy and low ADC energy. Likewise, the average
ADC image/maps are thought to be a biomarker for GS,
combinations of the ADC volume and average held an AUC
value of 74.9% to discriminate a biologically low risk PCa
(GS=6) from higher risk malignancies (GS≥7) PCa [21].
Other methods have similarly discriminated between a low
and high GS, such as combined T2-WI and spectroscopy
images [57]. Strategies which compensated for unbalanced
samples, via imputation, have found that texture features
could reliably discriminate intermediate-risk prostate can-
cers (GS 6, 3+4, and 4+3) from each other [58]. When
implemented as combined radiomic feature models (joint
intensity matrices and GLCM), AUC values were 78.40%
(GS=6), 82.35% (GS=3+4), and 64.76% (GS≥4+3) [42].
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Along the same vein, a model which combined 45 radiomic
features achieved AUC values of 83.40% (GS=6), 72.71%
(GS=3+4), and 77.35% (GS≥4+3) [41]. Moreover, volume
derived from mpMRI has shown a moderate correlation with
GS [59], while the combined volume and mean ADC features
achieved an AUC of 70.4% for classifying GS 6 from GS≥ 7
tumors [21]. Compared to features based on texture, shape
features are more sensitive to the manual segmentation of
ROIs. The current study overcomes this problem by applying
a fixed ROI size of 84× 84 pixels.

Our experiments showed that certain CNN architectures
provide more discriminative features for analyzing PCa
lesions. In particular, the NASNet-mobile network yielded
the features most correlated to GS, with the highest corre-
lation of 0.47 (p=0.003) obtained for ADC image in layer
Separable-Conv-1-Normal-right2-1-point-wise. This archi-
tecture, as well as the NASNet-large network, also showed
prominent differences when comparing lesions grouped
based on Gleason score. Notably, a total of 9 DEFs com-
puted by these two networks from T2-WI images gave
statistically-significant differences when comparing lesions
withGS< 8 vsGS≥ 8, with corrected p< 0.05. Furthermore,
among the 9 pre-trained CNNs, the NASNet-mobile network
gave the most predictive DEFs when used as input to a RF
classifier (Figure 4 and Figure 5). Hence, the features of
this model achieved the highest AUC for identifying G1, G2,
G4G5, and G1G2 lesions.

Compared to applications involving natural images, deep
learning models like CNNs have had a more limited success
for classifying medical images. This is largely due to the
much smaller amount of training data in clinical applications,
but also to the particularity of medical images which often
have poor contrast and low resolution. A recent survey on
deep learning for Alzheimer’s prediction [60] found that most
studies reporting high accuracy suffered from some form of
data leakage (e.g., using images from the same subject in both
training and testing).

In the current work, we alleviate the problem of overfitting
when training with a small dataset via a transfer learning
strategy that computes a compact set of informative features
from pre-trained CNNs. The proposed DEFs are based on
entropy, a well-known concept of information theory to mea-
sure uncertainty of random variables. In our radiomics model,
entropy is used to assess the heterogeneity of CNN feature
maps considered as image textures. Information theory has
been explored for various applications in computational biol-
ogy [61], for example, in a maximal information transduction
estimation approach to reduce uncertainty in transcriptome
analyses [62]. To our knowledge, this is the first work propos-
ing DEFs from different pre-trained CNNs for PCa analysis.

This work has notable limitations, the foremost being
the limited number of retrospectively evaluated PCa lesions
(n=112) and patients (n = 99). Validation steps on a larger
scale and prospective design are required before broader clin-
ical application. Furthermore, images derived from multiple
medical centers would be an essential step in demonstrating

the generalizability of DEFs to predict PCa lesion aggres-
siveness. A larger patient cohort would also enable a better
quantification of the variability between CNN features and
their relationship to GS. Another key limitation is our reliance
on biopsy data, which has an understandable potential for
sampling error despite modern targeting approaches [46].
This limitation is also present in other radiomics works for
PCa [53] and is likely due to the logistical difficulties of
acquiring pre-operative mpMRI alongside an anatomically-
correlated intact pathological specimen. To bridge this gap in
the literature, a studywith complete prostatectomy specimens
would likely have a limited sample size, but the application
of our pre-established CNN methodology could minimize
this limitation while validating the approach in an external
data set. Future work will be focused on testing GS using
the DEF before therapy and the post-diagnostic prognostic
test.

V. CONCLUSION
In this study, we generated and evaluated novel radiomic
features based on the entropy of featuresmaps in 9 pre-trained
CNNs fed with mpMRI data of 112 PCa lesions and GS ≥ 9
with an AUC of 80.08, 85.77, 97.30, 98.20, and 86.51 %,
respectively. Our results surpass, via an indirect assessment,
the published performance of the clinically-implemented
PIRADS as well as recent radiomics models in the literature.
We conclude that the use of pre-trained CNNs to generate
DEFs is an efficient method to empower radiomics analysis
for PCa. The potential clinical yield of this work is a tool
that can not only limit misclassification but could be refined
to optimize non-invasive evaluations of a PCa’s malignant
potential. Next steps will include combining DEFs with other
novel imaging features or in prospective assessments that can
quantify its clinical applicability.
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