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ABSTRACT In the estimation of distributed sensor networks, process noise and measurement noise may
have outliers which have heavy-tailed characteristics. To solve this problem, this paper proposes a distributed
consensus estimating method for sensor networks based on Student-t distribution. In the state space
model, both process noise and measurement noise are modeled as Student-t distributions with heavy-tailed
characteristics. First, for the assumption that the process noise and measurement noise have the same degree
of freedom parameters, an exact distributed consensus Student-t filtering algorithm is derived. In practical
applications, this assumption is often not true, and due to the increasing degrees of freedom, the method will
quickly converge to the traditional distributed consensus Kalman filter. Therefore, it is necessary to relax
the assumption of the same degree of freedom and keep the degree of freedom unchanged within a certain
range. Based on this, an approximate distributed consensus Student-t filter algorithm is proposed. Simulation
results verify the effectiveness of the proposed algorithm.

INDEX TERMS Student-t distribution, distributed consensus filter, distributed sensor networks.

NOMENCLATURE
N(·;m, (3)−1) Gaussian distribution with mean m and

precision matrix 3
(·)T Matrix transpose manipulation
(·)−1 Matrix inversion operation
` Iteration index
0(·) Gamma function
x̂k|k−1 Prior estimate of xk
A Set of connections between nodes
N i Neighbors of node i
N Set of sensor nodes
Zk Measurements of all sensor nodes till

time k
Zk measurements of all sensor nodes at

time k
| · | Cardinality of a set
�i Information matrix
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π i,j Consensus weight
z̃ik Residual vector
d iz Dimension of measurement vector
Fk State transition matrix
H i
k Measurement matrix

i Sensor index
k Time instant index
Kk Filter gain
KL(·) Kullback-Leibler divergence
L Conseunsu steps
nx Dimension of state vector
p(·) Probability density function
qi Information vectors
Qk Scale matrix for wk
Rik Scale matrix for vik
xk System state vector
Z ik Measurements of the node i till time k
x̂k Posterior estimate of xk
G(·; a, b) Gamma distribution with shape parameter

a and scale parameter b

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 167865

https://orcid.org/0000-0001-7199-1583
https://orcid.org/0000-0002-7111-7623
https://orcid.org/0000-0001-5588-2010


J. Wang et al.: Distributed Consensus Student-t Filter for Sensor Networks

St(·;m,P, ν) Student-t distribution with mean m,
scale matrix P and degree of freedom ν

Hk [H1
k ,H

2
k , . . . ,H

i
k ]
T

Pk Scale matrix for xk
Rk diag(R1k ,R

2
k , . . . ,R

i
k )

vk [(v1k )
T , (v2k )

T , . . . , (vik )
T , . . .]T

vik Measurement noise
wk Process noise
zik Measurement vector

I. INTRODUCTION
Distributed state estimation is important in distributed sensor
networks [1], [2]. Due to the complex environment, the
communication, perception and processing capabilities of the
distributed sensor network will be limited. Thus, traditional
data sharing and fusion methods are not applicable in this
case. There are three major methods for distributed state
estimation, such as consensus-based algorithms [3], gossip-
based algorithms [4] and diffusion-based algorithms [5].
Consensus-based algorithms have capability to provide bet-
ter performance in terms of estimate accuracy. Information
sharing and interaction using the consensus method requires
neither a fusion center nor a full connection between network
nodes. Information interaction only occurs between neigh-
boring nodes, and the information of all nodes can eventually
be coordinated and consistent. This method is applicable to
any network topology and can simultaneously improve the
flexibility and robustness of the network.

The combination of consensus theory and Kalman filter
is the most direct idea of consensus estimation. This combi-
nation can apply the consensus mechanism to the prediction
or update step of Kalman filter, so as not to lose the basic
characteristics of the Kalman filter. The consensus on esti-
mation (CE) methods using consensus strategy for the state
estimation of each node are proposed in [6]. To teal with
the conservative characteristic of the estimation for the CE
method, a consensus on measurement (CM) method which
makes the local new information pair to reach consensus is
proposed in [7]. However, this method needs large number
of consistent steps to achieve convergence. A consensus on
information (CI) method utilizing uniform local averaging
of information matrices and information vectors is proposed
in [8]. Many scholars have conducted in-depth research under
this framework and achieved fruitful results [9]–[17].

Most of the consensus filters assume that the process and
measurement noises are Gaussian distributions. However,
in many practical situations, the process and measurement
noises may suffer from outliers, which may come from unre-
liable sensors, unmodeled anomalies, sudden disturbance
in the system environment, or target maneuvers [18], [19].
The Gaussian distribution assumption may cause poor per-
formance or system failures in these situations. Thus the
Student-t distribution with heavy-tailed is used to model
the uncertainties exhibiting frequent occurrence of the out-
liers [20]–[24]. A linear distributed consensus filter with CI

strategy to handle measurement outliers is proposed in [25],
where the measurement noise of each sensor node is modeled
by the multivariate Student-t distribution and variational
Bayesian (VB) method [26], [27] is used to approximate
the joint posterior density. Then it is extended to nonlinear
cases in [28] where hybrid consensus strategy [9], [11] is
used. However, these methods can only handle the scenar-
ios with heavy-tailed measurement noise and well-behaved
process noise. The particle filter can handle the process
and measurement noises with arbitrary distributions [29],
however, it suffers from curse of dimensionality in high
dimensional problems. Gaussian sum filter (GSF) [30] can
deal with heavy-tailed non-Gaussian noises but it needs a lot
of Gaussian distributions to model the heavy-tailed process
and measurement noises accurately. There are other robust
methods such as WLAV (weighted least absolute value) fil-
ter [31] and MEAV (Maximum Exponential Absolute Value)
filter [32] to deal with bad data. However, these methods need
optimization or iteration procedure which may lead to a lot
of extra computation. Recently, the robust Student-t filters
for heavy-tailed process and measurement noises have been
proposed in [19], [33]–[35] for single sensor. This method
has less computational complexity, is easy to apply and can
deal with high-dimensional problems.

A distributed consensus Student-t filter is presented in this
paper to handle both heavy-tailed process and measurement
noises for distributed sensor networks. The main contribu-
tions of this paper can be highlighted as follows.

1) Both state and measurement of each sensor node
are modeled by Student-t distribution. Under certain
assumptions, the distributed consensus Student-t filter
is derived: the recursion predicted and updates steps for
multiple sensors are derived first, then the CI strategy
for Student-t distribution are derived based on moment
matching.

2) Since the assumptions are too restricted for real sce-
nario, some approximation are made to relax the
assumptions for practical applications. In addition,
the degree of freedom for Student-t distribution
does not grow over time to maintain heavy-tailed
characteristics.

3) The simulation are processed in scenario where process
noise and measurement noise are heavy-tailed. The
results show that the proposed method outperforms the
conventional distributed consensus filter.

The remainder of this paper is organized as follows.
Section II describes models of the sensor network and the
consensus method used in this paper. Section III presents our
distributed consensus Student-t filter. Simulation results and
analysis are given in Section IV and the conclusion is given
in Section V.

II. PROBLEM FORMALIZATION
In this paper, we consider the sensor network represented
by (N ,A), where N denotes set of sensor nodes and
A ⊆ N × N is the set of connections between nodes such
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that (i, j) ∈ A if node j can receive data from node i. The set
N i 1
= {j : (j, i) ∈ A} denotes neighbors (including i itself) of

node i ∈ N .
Consider a discrete time linear system

xk = Fk−1xk−1 + wk−1, (1)

and measurement equations of the sensor node i ∈ N

zik = H i
kxk + v

i
k , i ∈ N , (2)

where xk is the nx-dimension state vector, Fk is the state tran-
sition matrix, wk is the process noise, zik is the d

i
z-dimension

measurement vector of node i, H i
k is the measurement matrix

of node i, vik is the measurement noise of node i.
For the initial state x0, the process noise wk and the

measurement noise vik , we have the following assumptions.
Assume that the initial state and the noise signal are not
related to each other, and their marginal distributions are

p(x0) = St(x0; x̂0,P0, η0), (3)

p(wk ) = St(wk ; 0,Qk , γk ), (4)

p(vik ) = St(vik ; 0,R
i
k , δ

i
k ), (5)

where St(·;m,P, ν) denotes Student-t distribution with
meanm, scalematrixP and degree of freedom (DOF) ν. Thus,
η0, γk and δik are the DOF of related densities. P0, Qk and Rik
are the scale matrix of related densities.

It is difficult to obtain a globally closed solution by max-
imizing the likelihood of Student-t distribution, however,
we can decompose Student-t distribution into a mixture of
infinite Gaussian distributions, which have the same mean
and precision. The Student-t distribution after decomposition
can be expressed as follows:

St(x;m,P, ν) =
∫
∞

0
N(x;m, (uν)−1)

× G(u; ν/2,ν/2)du, (6)

where N (x;m, (3)−1) is Gaussian distribution with mean m
and precision matrix 3, G(u; a, b) is Gamma distribution
with shape parameter a and scale parameter b. The probability
density function (PDF) of Student-t distribution is given by

St(x;m,P, ν) =
0
(
ν+d
2

)
0
(
ν
2

) 1

(νπ )
d
2

1
√
det(P)

×

(
1+

1
ν
(x − m)TP−1(x − m

)− ν+d2
(7)

where 0(·) denotes the Gamma function. It should be noted
that P is not a covariance matrix in general while ν

ν−2P is the
covariance for ν > 2.When ν = 1, it converges to the Cauchy
distribution, while ν →∞ it becomes the Gaussian distribu-
tion. Compared with the Gaussian distribution, the Student-t
distribution has the heavy tails.

Consensus algorithm is the information exchange rule that
ensures that the amount of concern of each node achieves
consistency. The weighted Kullback-Leibler average p̄(·)

among the probability density function (PDF) {pi(·)} are
given by [11]

p̄ = arg inf
p(·)

∑
i∈N

π iKL(p||pi) (8)

where π i > 0 is the weight and
∑

i∈N π i = 1, KL(p||pi) is
the Kullback-Leibler divergence between the PDFs p(·) and
pi(·). The problem of probability density consensus can be
treated as finding a consensus algorithm to make

lim
l→+∞

pil = p̄(x), ∀i ∈ N (9)

where p̄(·) is the asymptotic PDF. Thus the solution to (8) is

p̄(x) =

∏
i∈N [pi(x)]π

i∫ ∏
i∈N [pi(x)]π idx

1
=

⊕
i∈N

(π i � pi(x)) (10)

where π i = 1/|N |, the operators ⊕ and � are given by

p(x)⊕ q(x) 1=
p(x)q(x)∫
p(x)q(x)dx

(11)

π � p(x) 1=
[p(x)]π∫
[p(x)]πdx

(12)

Therefore, the solution can be obtained by exchanging the
local data with the neighbors via convex combination in a
iterative way

pi`(x) =
⊕
j∈N i

(π i,j � pj`−1(x)) (13)

where π i,j ≥ 0 is the consensus weight and
∑

j∈N i π i,j = 1,
` is the iteration index and iterations are initialized with
pi0(x) = pi(x).
The purpose of consensus filter in this paper is to obtain

a consensus state of a sensor network with both heavy-tailed
process noise and measurement noise.

III. PROPOSED METHODS
A. THE EXACT DISTRIBUTED CONSENSUS STUDENT-t
FILTER
1) THE STUDENT-t FILTER FOR MULTIPLE SENSORS
Suppose Z ik = {z

i
1, z

i
2, . . . , z

i
k , i ∈ N } denotes measurements

of the node i till time k , Zk = {Z ik , i ∈ N } denotes measure-
ments of all sensor nodes till time k and Zk = {zik , i ∈ N }
denotes measurements of all sensor nodes at time k . Similar
to the distributed consensus Kalman filter, we divide the filter
recursion into time update and measurement update.

Suppose DOF γk = ηk for all process noises, where ηk is
the DOF of xk |Zk , then we have

p(xk−1,wk−1|Zk−1)

= St(
[
xk−1
wk−1

]
;

[
x̂k−1
0

]
,

[
Pk−1 0
0 Qk−1

]
, ηk−1) (14)

The predicted density is

p(xk |Zk−1) = St(xk ; x̂k|k−1,Pk|k−1, ηk−1) (15)

Thus the parameter ηk is not changed.
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We assume that all nodes have the same DOF in measure-
ment noise distribution δik = δk and δk = ηk−1, then we
can obtain the joint density of the predicted state and the
measurement noise

p(xk , vk |Zk−1)

= St(
[
xk
vk

]
;

[
x̂k|k−1
0

]
,

[
Pk|k−1 0

0 Rk

]
, ηk−1) (16)

where

vk = [(v1k )
T , (v2k )

T , . . . , (vik )
T , . . .]T , i ∈ N (17)

Rk = diag(R1k ,R
2
k , . . . ,R

i
k ), i ∈ N (18)

Then, the joint density of state and measurement can be
obtained by linear transformation

p(xk , zk |Zk−1) = St(
[
xk
Zk

]
;

[
x̂k|k−1
Hk x̂k|k−1

]
,[

Pk|k−1 Pk|k−1HT
k

HkPk|k−1 Sk

]
, ηk−1) (19)

where

Sk = HkPk|k−1H
T
k + Rk (20)

Hk = [H1
k ,H

2
k , . . . ,H

i
k ], i ∈ N (21)

Thus, given all measurement Zk , the conditional density of
the state is still Student-t distribution

p(xk |Zk ) = St(xk ; x̂k ,Pk , ηk ) (22)

The above is the recursive process of obtaining all sensor
measurements.

2) CONSENSUS FOR STUDENT-t DISTRIBUTION
If the PDF of each sensor node is Gaussian distribution such
as pi(x) = N (x i, (3i)−1), then we can obtain the average PDF
by averaging information vectors qi = �ix̂ i and information
matrix �i

= 3i, and the following consensus algorithm are
derived in [10]

�i
` =

∑
j∈N i

π i,j�
j
k,`−1 (23)

qi` =
∑
j∈N i

π i,jqj`−1 (24)

For the Student-t distribution, the exact form of con-
sensus algorithm can hardly be obtained. It can be noted
that the Student-t distribution St(x;m,P, ν) will converge to
the Gaussian distribution as ν → ∞. Therefore, we can
approximate the PDF p(x) = St(x;m,Pk , ν) by a Gaussian
distribution p′(x) = N(x;m, P̄) ≈ St(x;m, P̄, ν̄) to take
the advantage of the Gaussian consensus algorithm such
as (23) and (24). That is

St(x;m,P, ν) ≈ St(x;m, P̄, ν̄) (25)

where DOF ν̄ →∞.
Qualitative features should be retained in the problem of

adjusting the matrix parameters given a new DOF. Therefore,

the adjusted matrix parameters P̄ should be scaled versions of
the original matrix given by P̄ = cP. As a general problem,
we must find a scalar c > 0 so that the PDF p(x) and p′(x)
is close in some respects. Once ν̄ is given, the parameter c
can be found using moment matching method. According to
moment matching method, we obtain the condition

ν

ν − 2
P =

ν̄

ν̄ − 2
cP (26)

for ν > 2 and ν̄ →∞, then the scale factor is given by

c =
ν(ν̄ − 2)
(ν − 2)ν̄

=
ν

ν − 2
(27)

According to the approximation, we can use the consensus
steps (23) and (24) directly. After the the consensus steps,
we should do some inverse operations to change the DOF
back to ν, and specific steps are given in Sec. III-A3.

3) THE RECURSION OF EXACT DISTRIBUTED CONSENSUS
STUDENT-t FILTER
According to the predicted and update steps in Sec. III-A1,
and the consensus step in Sec. III-A2, then for each local
sensor in the distributed sensor network, the following exact
consensus Student-t filter recursive process can be obtained:
(1) Prediction of local filter:

x̂ ik|k−1 = Fk x̂ ik−1 (28)

Pik|k−1 = FkPik−1F
T
k + Qk−1 (29)

(2) Update of local filter:

z̃ik = zik − H
i
k x̂

i
k|k−1 (30)

S ik = H i
kP

i
k|k−1(H

i
k )
T
+ Rik (31)

K i
k = Pik|k−1(H

i
k )
T /S ik (32)

x ik,0 = x ik|k−1 + K
i
k z̃
i
k (33)

Pik,0 =
ηik−1 +1

i
z,k

ηik−1 + d
i
z
(Pik|k−1 − K

i
kS

i
k (K

i
k )
T ) (34)

1i
z,k = (z̃ik )

T (S ik )
−1z̃ik (35)

ηik = η
i
k−1 + d

i
z (36)

(3) Consensus on the information matrix and information
vector: Approximate the initial information matrix and infor-
mation vector by

P̄ik,0 =
ηik

ηik − 2
Pik,0 (37)

�i
k,0 = (P̄ik,0)

−1 (38)

qik,0 = �
i
k,0x̂

i
k,0 (39)

For a L-step consensus iteration, the consensus on posterior
information is carried out in the form

�i
k,` =

∑
j∈N i

π i,j�
j
k,`−1, ` = 1, . . . ,L (40)

qik,` =
∑
j∈N i

π i,jqjk,`−1, ` = 1, . . . ,L (41)
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where ` = 1, 2, · · · ,L is the consensus step, π i,j is the
consensus weight. A convex combination is adopted by sup-
posing π i,j ≥ 0 and

∑
j∈N i π i,j = 1.

(4) Recover the state and the scale matrix:

x̂ ik = (�i
k,L)
−1qik,L (42)

Pik =
ηik − 2

ηik
(�i

k,L)
−1 (43)

It can be noted that with each measurement update,
the degrees of freedom increase according to (36). In turn,
this requires an increase in the degree of freedom of noise,
making the problem more and more Gaussian.

B. THE APPROXIMATED DISTRIBUTED CONSENSUS
STUDENT-t FILTER
The conditions required in Section 3.1 will hardly be met
in practice. Therefore, we introduce some approximations,
and the resulting filtering algorithm is only slightly more
complicated than the exact filter in (28)-(34). In addition,
we also prevent an increase in degrees of freedom, thereby
maintaining heavy-tailed density for the entire time.

Under more practical assumptions, we consider the linear
models (1) and (2) again. At this time, the degrees of freedom
γk and δk in equations (4) and (5) are arbitrary, therefore the
closed form of time update and measurement update cannot
be derived in closed form. Suppose at time k we have the
following posterior density

p(xk |Zk ) = St(xk ; x̂k ,Pk , ηk ) (44)

In the process of deducing the exact filter, we use a formula
to express the joint density of xk and wk after Zk is given.
If γk 6= ηk , then p(xk ,wk |Zk ) will not be represented as a
closed form unless wk is independent. However, for indepen-
dent noise, the joint density

p(xk ,wk |Zk ) = St(xk ; x̂k ,Pk , ηk )St(wk ; 0,Qk , γk ) (45)

is no longer Student-t distribution nor ellipsoid shape.
Therefore, we cannot derive a concise time update equation.
What leads to the convenient expression in the exact fil-
ter (28)-(34) is the joint density in (15) and (16). Therefore,
it is a reasonable choice to force the actual state and noise
density into this format.

For time update, we suggest to find the common degree
of freedom parameter η̃k from γk to ηk . Similar to Sec. 3.1,
we use

p(xk−1,wk−1|Zk−1)

≈ St(
[
xk−1
wk−1

]
;

[
x̂k−1
0

]
,

[
P̃k−1 0
0 Q̃k−1

]
, η̃k−1) (46)

as an approximate Student-t distribution. Since the degrees
of freedom have changed, P̃k−1 and Q̃k−1 replace the matri-
ces Pk−1 and Qk−1, and the mean remains unchanged. The
method for finding P̃k−1 and Q̃k−1 called moment matching
have already been given in Sec. 3.1.2. Therefore, we can now

apply a similar time update to (28)-(29). For measurement
updates, a similar approximation is

p(xk , vk |Zk−1)

≈ St(
[
xk
vk

]
;

[
x̂k|k−1
0

]
,

[
P̃k|k−1 0

0 R̃k

]
, η̄k−1) (47)

The two density approximations (46) and (47) extend the
exact filter in Section 3.1 and provide a convenient closed
form solution for time update and measurement update. The
approximate density is still the t density, but it may change
the DOF.

Assuming that the measurement of each sensor is indepen-
dent of each other, for each local sensor in the distributed sen-
sor network, the following approximate consensus Student-t
recursion process can be obtained:

(1) Prediction of local filter: The prediction update depends
on the previous posterior parameters x̂k−1, Pk−1 and ηk−1.
First, the following approximation is required:

Pik−1,Q
i
k−1, η

i
k−1, γ

i
k−1→ P̃ik−1, Q̃

i
k−1, η̃

i
k−1 (48)

Then we have

x̂ ik|k−1 = Fk x̂ ik−1 (49)

Pik|k−1 = Fk P̃ik−1F
T
k + Q̃k−1 (50)

(2) Update of local filter: Do the following approximation

Pik|k−1,R
i
k , η̃

i
k−1, δ

i
k → P̃ik|k−1, R̃

i
k , η̄

i
k−1 (51)

Then we have

z̃ik = zik − H
i
k x̂

i
k|k−1 (52)

S ik = H i
k P̃

i
k|k−1(H

i
k )
T
+ R̃ik (53)

K i
k = P̃ik|k−1(H

i
k )
T /S ik (54)

x ik,0 = x ik|k−1 + K
i
k z̃
i
k (55)

Pik,0 =
η̄ik−1 +1

i
z,k

η̄ik−1 + d
i
z
[P̃ik|k−1 − K

i
kS

i
k (K

i
k )
T ] (56)

1i
z,k = (z̃ik )

T (S ik )
−1z̃ik (57)

ηik = η̄
i
k−1 + d

i
z (58)

(3) Consensus on the information matrix and information
vector: Approximate the initial information matrices and
information vectors by

P̄ik,0 =
ηik

ηik − 2
Pik,0 (59)

�i
k,0 = (P̄ik,0)

−1 (60)

qik,0 = �
i
k,0x̂

i
k,0 (61)

For a L-step consensus iteration, the consensus on posterior
information is carried out in the form

�i
k,` =

∑
j∈N i

π i,j�
j
k,`−1, ` = 1, . . . ,L (62)

qik,` =
∑
j∈N i

π i,jqjk,`−1, ` = 1, . . . ,L (63)
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where ` = 1, 2, · · · ,L is the consensus step, π i,j is the
consensus weight. A convex combination is adopted by sup-
posing π i,j ≥ 0 and

∑
j∈N i π i,j = 1.

(4) Recover the state and the scale matrix:

x̂ ik = (�i
k,L)
−1qik,L (64)

Pik =
ηik − 2

ηik
(�i

k,L)
−1 (65)

C. DISCUSSION
Compared with the standard CI method, the growth of the
computational complexity for the proposed method comes
from calculating the 1i

z,k and ηik for exact method. The
approximated method needs more computational cost in
approximate procedures such as (48) and (51). Therefore,
the order of computational complexity of the proposed algo-
rithm is the same as that of CI method. In addition, no local
parameters such as 1i

z,k and ηik are communicated among
nodes, and only global parameters are communicated among
neighboring nodes, the communication cost of the proposed
method is the same as the standard CI method.

The Gaussian noise is one of the most common
distribution in nature. The central limit theorem states that
under appropriate conditions, the mean value of a large
number of independent random variables converges to normal
distribution according to the distribution after proper stan-
dardization. Under normal circumstances, the noise is gen-
erally Gaussian distribution, with occasional outliers which
make the whole distribution of the noise have heavy-tailed
feature. It can be seen from [36] that the abnormal val-
ues can also be expressed by Laplace distribution and
Cauchy distribution. However, the Student-t distribution pro-
vides a heavy-tailed alternative to the Gaussian distribution
while the shape of Student-t distribution is more similar
to Gaussian distribution (see Fig. 1). When DOF tends
to 1, the Student-t distribution becomes Cauchy distribution.
Besides, the Student-t distribution leads to closed-form solu-
tion of the proposed filters. In addition, the Student-t based
filter can deal with other heavy-tailed noises such as Laplace
noise [22]. Therefore, we choose the Student-t distribution
here to model the heavy-tailed process and measurement
noises.

IV. SIMULATIONS
Here we consider a tracking problem in two-
dimensional plane. The target dynamic includes the state
x = [px , ṗx , py, ṗy]T , and the model is confirmed by

Fk =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , Qk = Gk1GTk (66)

where 1 = diag([w2
x ,w

2
y]), sample time T = 1s, w2

x = w2
y =

0.1 and

Gk =
[
T 2/2 T 0 0
0 0 T 2/2 T

]T
(67)

FIGURE 1. Gaussian distribution (with m = 0 and P = 1) and Student
distribution (with m = 0, P = 1 and ν = 10).

The true initial state of target is

x0 = [2600m, 20m/s, 3800m, 10m/s]T

Initial states for filters are chosen randomly from N (x0,P0)
in each simulations turn, where

P0 = diag([502m2, 52m2/s2, 502m2, 52m2/s2])

There are 20 sensor nodes in the sensor network (the
topology is shown in Fig. 2). Themeasurementmodel is given
by

H i
k =

[
1 0 0 0
0 0 1 0

]
(68)

The heavy-tailed measurement noise is generated by a mix-
ture of Gaussian with a nominal noise variance R and out-
liers with noise variance 100R. Suppose we have a nominal
measurement noise variance R = diag([(10m)2, (10m)2]),

FIGURE 2. The sensor network used in simulations.
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then the heavy-tailed measurement noise of sensor node i is
generated according to

vik ∼

{
N(0,R), with probability 1− po
N(0, 100R), with probability po

(69)

where po is the probability of the measurement outliers. The
heavy-tailed process noise is generated according to

wk ∼

{
N(0,Q), with probability 1− po
N(0, 100Q), with probability po

(70)

which is wildly used to evaluate the performance of Student-t
based filters.

This paper mainly compares the following three methods:
(1) Distributed consensus Kalman filter (DCKF) in [10];
(2) exact Distributed consensus Student-t filter, referred to as
DCSTF-E; (3) approximate distributed consensus Student-t
filter, referred to as DCSTF-A. The simulation results were
obtained through 100 Monte Carlo simulations, and the root
mean square error (RMSE) of position and velocity was used
to evaluate the simulation results.

The consensus step is L = 3 and The consensus weights of
sensor nodes are set to π i,j = 1/|N i

| if j ∈ N i and π i,j = 0
if j /∈ N i. The initial DOF of DCSTF-E are set to ν = 3. For
DCSTF-A, the DOF is set to γk = δk = η0 = 20.
When no outliers exist ( po = 0 ), both process noise and

measurement noise are Gaussian. Fig. 3 and Fig. 4 show the
simulation results of the three methods without outliers. It can
be seen from the figures that the RMSE of the DCKF and
DCSTF-E methods are relatively close, and the RMSE of the
DCSTF-A is slightly higher than the previous two methods.
This means that in the absence of outliers, the performance of
the DCKF and DCSTF-E methods is relatively close, while
the performance of the DCSTF-A method is slightly lower.

FIGURE 3. The Position RMSE for different methods when po = 0.

Fig. 5 and Fig. 6 show the simulation results of the three
methods when the probability of outliers is po = 0.2. It can
be seen from the figures that the RMSE of the DCSTF-E

FIGURE 4. The velocity RMSE for different methods when po = 0.

FIGURE 5. The Position RMSE for different methods when po = 0.2.

method at the initial stage of the simulation is lower than
that of the DCKF method, and the root mean square error of
the two is closer as the simulation proceeds. This is because
the DOF parameter in the DCSTF-E method increases with
time and eventually converges to the DCKF method. This
shows that the previous theoretical analysis and simulation
results are consistent. The RMSE of the DCSTF-A method
is much lower than the first two methods. This shows that
in the presence of outliers, the performance of the DCSTF-A
method is significantly better than the DCKF and DCSTF-E
methods.

Tab. 1 and Tab. 2 give the simulation results of the three
methods under different outlier probabilities. It can be seen
from the tables that as the outlier probability increases,
the RMSE of all methods increases accordingly. Under differ-
ent outlier probabilities, the RMSE of the DCSTF-E method
is slightly lower than that of the DCKF method, and the
RMSE of the DCSTF-A method is significantly lower than
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FIGURE 6. The velocity RMSE for different methods when po = 0.2.

TABLE 1. Position RMSE (m) with different outlier probabilities.

TABLE 2. Velocity RMSE (m/s) with different outlier probabilities.

TABLE 3. Position RMSE (m) with different consensus steps.

the first two methods. This shows that the proposed dis-
tributed consensus Student-t filtering algorithms perform bet-
ter than the distributed consensus Kalman filtering algorithm
in the presence of outliers.

Tab. 3 and Tab. 4 give the simulation results of the three
methods under different consensus iteration steps. It can
be seen from the tables that with the increase of the num-
ber of consensus iterations, the RMSE of the three meth-
ods decreases accordingly. Similar to the previous method,
the RMSE of the DCSTF-E method is slightly lower than
that of the DCKF method, and the RMSE of the DCSTF-A
method is significantly lower than the previous two methods.
These further verify the effectiveness of the proposed
algorithms.

TABLE 4. Velocity RMSE (m/s) with different consensus steps.

FIGURE 7. The Position RMSE for DVBSCI and other methods when
po = 0.2.

FIGURE 8. The velocity RMSE for DVBSCI and other methods when
po = 0.2.

In order to further illustrate the effectiveness of the pro-
posed algorithms, we the compared proposed algorithms with
the distributed variational Bayesian Student-t CI (DVBSCI)
filter presented in [25]. Fig. 7 and Fig. 8 show the simula-
tion results. It can be seen from the figures that the RMSE
of the DVBSCI method gives the worst performance. This
is because DVBSCI algorithm only models the outliers of
measurement noise and does not consider the outliers of
process noise. This further proves the effectiveness of the
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proposed algorithm considering outliers of both process noise
and measurement noise.

V. CONCLUSION
In this chapter, a kind of consistent Student-t filter is pro-
posed, which is used for both process noise and measurement
noise. Firstly, the system model based on Student-t distri-
bution is established. Based on the Student-t distribution,
an accurate distributed consistent Student-t filter is proposed.
Then, an approximate distributed consistent Student-t filter is
proposed for the determination of the strong constraints of the
filter and its convergence to the standard Kalman filter over
time. The simulation results show that the proposed algorithm
can achieve stable and accurate state estimation when both
process noise and observation noise are heavy tailed noise.
The proposed algorithm can be extended to other consensus
algorithms and nonlinear situations in the future.
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