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ABSTRACT This paper investigates the adaptive finite-time tracking control problem for a class of switched
nonlinear systems with unmodeled dynamics. In practical applications, switched systems usually possess
unfavourable factors, such as unmeasured states and unmodeled dynamics both of which are taken into
account in this paper. A dynamic signal defined with a special property is introduced in this paper to improve
control performance while garanteeing stability of the controlled system. By designing an observer, a finite-
time adaptive output-feedback tracking controller is constructed via the backstepping technique. Then,
the finite-time stability problem of the considered systems is studied. It is shown that all the signals in the
closed-loop system are semi-globally uniformly finite-time bounded (SGFUB), and the observer errors and
tracking errors can be regulated to a small neighborhood of the origin by choosing appropriate parameters.
It is noted that, the design process is less complex than some existing results on tackling control problems of
nonlinear systems with unmodeled dynamics. In the example, the simulation result testifies the effectiveness
of the proposed method.

INDEX TERMS Switched systems, adaptive control, observer, finite-time control, unmodeled dynamics.

I. INTRODUCTION
Switched systems are a type of hybrid systems, which contain
a family of subsystems and a switching signal. Switched
systems own many special features different from general
linear systems. For example, subsystems of a switched system
may be continuous-time or discrete-time systems, and even
if all subsystems are unstable, a switched system can be
stable by designing a suitable switching signal. In recent
practical applications, switched systems are usually used to
describe many complex systems. In the past decades, studies
on switched systems have received more and more attention,
and numerous excellent works have been reported in [1]–[19].
The authors in [1] has solved asymptotic tracking control
problem for a class of uncertain switched nonlinear sys-
tems by constructing a non-smooth Lyapunov function and
introducing a novel discontinuous controller with dynamic
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feedback compensator, and the local asymptotic tracking
performance of the systems with proposed controller was
verified. The stability problem for a class of switched inter-
connected nonlinear systems has been studied in [4], and
based on average dwell time method and the small gain
technique, an effective state-feedback controller is designed.
Further, different form traditional definition of ADT, a new
concept of ADT is proposed in [6], and the authors finished
the study of switching stabilization for a class of switched
nonlinear systems. However, the above mentioned results do
not consider the influence of unmodeled dynamics, which
widely exist in practical applications.

Unmodeled dynamics may be caused by many factors, and
it can be classified into state unmodeled dynamics and input
unmodeled dynamics. State unmodeled dynamics denote
the parts of invalid modeling during the parameterization,
and input unmodeled dynamics mean modeling errors or
external disturbances acting upon controllers. The presence
of unmodeled dynamics significantly affect the stability of
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systems. In order to solve this problem, many researchers
have put a lot of effort to it, and got many achievements, such
as [20]–[27]. In [21], an adaptive output-feedback control
method has been developed by using stochastic small-gain
theory and the input-state practically stable method, and to
guarantee the stability of the systems under consideration.
A similar method for unmodeled dynamics was used in [23],
to get good performances. The authors in [24] have intro-
duced a dynamic signal to deal with the unmodeled dynam-
ics, and accomplished the investigation of adaptive neural
control problem for nonlower triangular nonlinear systems
with unmodeled dynamics and dynamic disturbances. The
proposed method can ensure semi-global boundedness of
all signals. It is worth mentioning that the control schemes
proposed in above mentioned references need a long time to
reach a steady state. However, it is often significant to ensure
the stability of systems in finite-time.

In recent years, researchers have been looking for a bet-
ter way to stabilize a system faster. Hence, the finite-time
stability problem has received increasingly attention and
became a hot issue. Finite-time stability is not only a need,
but also a trend. The investigations about finite-time sta-
bility are more interesting but challenging than other types
of stability, which inspired many scholars to make great
achievements [28]–[41]. For example, the authors in [28]
have investigated the global finite-time stabilization for a
class of nonlinear systems with parametric uncertainties,
and an adaptive finite-time control law is obtained by using
the global practical finite-time stability theory, which how-
ever did not work for the case that system functions are
unknown. Therefore, a novel finite-time stability criteria
called semi-global practical finite-time stability (SGPFS)
were presented in [29] and [30] for strict-feedback nonlinear
systems. In [42], the tracking control problem for a class of
nonstrict-feedback nonlinear systems with the actuator faults
has been addressed. Besides, the authors have studied the
adaptive finite-time fault-tolerant control problem for nonlin-
ear systems with multiple faults in [43]. In a word, the control
methods proposed in [42], [43] ensure that all signals in the
closed-loop system are semi-globally practically finite-time
stable. In summary, it is a meaningful and challenging topic to
investigate adaptive finite-time control problems for switched
nonlinear systems, which motives us to carry out this
paper.

Motivated by the above mentioned references, this paper
studies the adaptive finite-time tracking control problem
for a class of switched nonlinear systems with unmodeled
dynamics. The unknown functions are approximated by RBF
neural networks, and the unmeasured states are estimated
via introducing a state observer. Compared with the existing
literatures, the contributions and advantages of this paper are
listed as follows.

1. The unmodeled dynamics are settled by introducing
a dynamic signal. In contrast with the existing results,
the advantage is that the dynamic signal has some special
properties, which makes the design process less complex.

2. Based on the SGPFS theory and the backstepping tech-
nique, an adaptive finite-time tracking control problem for a
class of switched nonlinear systems with unmodeled dynam-
ics is proposed firstly. The proposed control method and
controller ensure that the system output can track a desired
trajectory in finite-time.

The remainder of this paper is designed as follows: The
preliminaries and problem formulation are given in section 2.
The design of controller and stability analysis are addressed
in section 3. In section 4, the validity of proposed method is
verified by a simulation example. Section 5 concludes this
paper.

II. PROBLEM STATEMENT AND MAIN RESULTS
A. SYSTEM DESCRIPTION AND BASIC ASSUMPTIONS
In this paper, the considered switched nonlinear systems with
unmodeled dynamics have the following form:

ṡ = q(z1, s, t)

ẋi = xi+1 + fi,σ (t)(x̄i)+1i(x, s, t)

1 ≤ i ≤ n− 1

ẋn = u+ fn,σ (t)(x̄n)+1n(x, s, t)

y = x1 (1)

where x̄i = [x1, x2, . . . , xi]T ∈ Ri, i = 1, 2, . . . , n are the
system states. u and y are the actual input and output of the
system, respectively. σ (t) : [0,+∞)→ 4 = {1, 2, . . . ,N }
is the switching signal, which is assumed to be a piece-
wise constant function. fi,k (·), i = 1, 2, . . . , n, k ∈ 4, are
unknown smooth nonlinear functions. s denotes the unmod-
eled dynamics; 1i(x, s, t), i = 1, 2, . . . , n, are the dynamic
disturbances, which are unknown Lipschitz continuous func-
tions. In addition, it is assumed that only output y is measur-
able in this paper.

The objective of this paper is to design an effective con-
troller for system (1), and the stability can be guaranteed in
finite time.
Definition 1 : The equilibrium point χ = 0 of nonlinear

system χ̇ = f (χ, u) is semi-globally uniformly finite-time
bounded (SGFUB), if for all χ̇ (t0) = χ0, there exists a
constant  > 0 and a setting time T (, χ0) such that ‖χ (t)‖ <
 , for all t ≥ t0 + T .
Assumption 1 : The nth derivative of the reference signal yr

is bounded and available.
Assumption 2 : Consider ṡ = q(z1, s, t) and 1i(x, s, t)

in (1), it is supposed that:
• The equilibrium s = 0 of ṡ = q(t, s, 0) − q(t, 0, 0) is

stable, and dynamic signal r satisfies

w1‖P‖2 ≤ r ≤ w2‖P‖2

∂r
∂t
+
∂r
∂s
(q(t, s, 0)− q(t, 0, 0)) ≤ −w3‖s‖2,∣∣∣∣∂r∂s

∣∣∣∣ ≤ w4 ‖s‖ ,

‖q (t, 0, 0)‖ ≤ w5

wherew1,w2,w3,w4 andw5 are unknown positive constants.
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• q and 1i satisfy the following inequalities

‖q (t, s, z1)− q (t, s, 0)‖ ≤ ϑ0ι0, ‖1i‖ ≤ ϑiδi1 + ϑi ‖s‖ δi2

where ϑ0 and ϑi(i = 1, . . . , n) are unknown positive con-
stants, ι0 ∈ C1 is unknown continuous function, ι0(0) = 0;
δi1 and δi2 are unknown positive continuous functions.
Remark 1 : Compared with the existing results [44], ι0,

δi1 and δi2 are completely unknown functions. Therefore,
the proposed control method is more applicable to real sys-
tems.
Lemma 1: For ah̄ ∈ R, h̄ = 1, . . . , n, 0 < η ≤ 1, we have n∑

h̄=1

∣∣ah̄∣∣
η ≤ n∑

h̄=1

∣∣ah̄∣∣η ≤ n1−η
 n∑
h̄=1

∣∣ah̄∣∣
η (2)

Lemma 2: There exist positive constants α, β, γ , such that
for any real variable x and y, the following inequality holds:

|x|α|y|β ≤
α

α + β
γ |x|α+β +

β

α + β
γ
−
α
β |y|α+β (3)

Lemma 3: Consider the system χ̇ = f (χ, u) and a smooth
positive defined function V (χ ). If there exist constants c > 0,
d > 0 and 0 < η < 1 such that

V̇ (χ) ≤ −cV η (χ)+ d, t ≥ 0 (4)

then the nonlinear system χ̇ = f (χ, u) is SGUFB.
Proof: It follows from (4) that for any 0 < ζ < 1, one

has

V̇ (χ) ≤ −ζcV η(χ )− (1− ζ )cV η(χ )+ d (5)

Define �χ =

{
χ |V η(χ ) ≤ d

(1−ζ )c

}
and �̄χ ={

χ |V η(χ ) > d
(1−ζ )c

}
. There are two cases as following:

Case 1: If χ (t) ∈ �̄χ , one can get from (5) that

V̇ (χ) ≤ −ζcV η(χ ) (6)

Integrating inequality (6) in the interval [0,T ], it becomes
that

T∫
0

V̇ (χ)
V η (χ)

dt ≤ −

T∫
0

ζcdt (7)

Furthermore, the following inequality is satisfied:

1
1− η

V 1−η (χ (T ))−
1

1− η
V 1−η (χ (0)) ≤ −cζT (8)

where V (χ (0)) is the initial value of V (χ ).
Next, define

Tr =
1

(1− η)cζ

V 1−η (χ (0))−
(

d
(1− ζ )c

) 1−η
η

 (9)

Then (9) indicates that χ (t) ∈ �χ ,∀T ≥ Tr .
Case 2: If χ (t) ∈ �χ , review the operations in Case 1,

the trajectory of χ (t) does not exceed the set �χ .
In conclusion, the time to reach the set�χ is bounded as Tr ,

the solution of χ̇ = f (χ, u) is bounded in a finite time.

B. RBF NEURAL NETWORKS
In this part, the radial basis function neural networks
(RBFNNs) will be given to approximate the unknown func-
tions, which are defined on a compact set � ∈ Rn. For
instance, f (x) is a smooth continuous functions over a com-
pact set� ∈ Rn, and there exists an NN θTϕ(x) for a positive
constant ε such that

f (x) = θTϕ(x)+ ε

where x ∈ Rn is the input vector. θ = [θ1, θ2, . . . , θl]T ∈ Rl

is the ideal weight vector, l > 1 is the NN node number; ε is
the approximation error, and ϕ(x) = [ϕ1, ϕ2, . . . , ϕl] ∈ Rl

is the basis function vector, which is generally chosen as an
Gaussian function. In this paper, the Gaussian basis function
will be utilized:

ϕi(x) = exp[−
(x − ξi)T (x − ξi)

ωi
], i = 1, 2, . . . , l

where ξ = [ξ1, ξ2, . . . , ξn] denotes the center of the receptive
field, and ωi represents the width of Gaussian function.
Defining the ideal constant weight vector θi∗ as:

θ∗i = arg min
θi∈Rl

{
sup
x∈�

∣∣∣fi(x̄i)− θTi ϕi∣∣∣}
where θ∗i = θ̂i + θ̃i.

III. MAIN RESULTS
In this section, a detailed design process is provided. First,
an observer is constructed in subsection 3.1. As we all know,
the Backstepping technique has unique advantages in dealing
with nonlinear control problems, it eliminates the constraint
that a system uncertainty should satisfy the matching condi-
tion. Therefore, it is used in this paper. An effective actual
controller is designed by combining the Lyapunov function
method and the Backstepping technique. Finally, stability
analysis is given in subsection 3.3.

A. OBSERVER DESIGN
The observer is designed in this subsection. Construct the
observer with the following form:

˙̂x i = x̂i+1 + f̂i,k
(
ˆ̄x i
∣∣∣ θ̂i)+1i

˙̂xn = u+ f̂n,k
(
ˆ̄xn
∣∣∣ θ̂n)+1n (10)

The error is defined as:

e = x − x̂ (11)

The derivative of e is

ė = Ae+
n∑
j=1

Bjfi,σ (t) ( x̄i| θi)−
n∑
j=1

Bj f̂i,σ (t)
(
ˆ̄x i
∣∣∣ θ̂i)

= Ae+
n∑
j=1

Bjθ̃jϕj + ε (12)

where ε = [ε1, . . . , εn]T , θ̃j = θ∗j − θ̂j.
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Considering the Lyapunov function candidate as

V0 = eTPe (13)

The differential operator of V0 is

V̇0 = ėTPe+ eTPė

= eT (−Q) e+ 2eTP

 n∑
j=1

Bjθ̃jϕj + ε

 (14)

By using the Youngs inequality, we get

2eTP
n∑
j=1

Bjθ̃jϕj ≤ n‖e‖2 + ‖P‖2
n∑
j=1
ϑjϕj

Tϕj (15)

where ϑj = θ̃Tj θ̃j.

2eTPε ≤ ‖e‖2 + ‖P‖2ε∗2 (16)

where ε∗ is a positive constant.
Substituting (15) and (16) into (14), one can get

V̇0≤−(λmin−n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj+ψ0 (17)

where ψ0 = ‖P‖2ε∗2.

B. THE DESIGN OF CONTROLLER
In this part, we will give the design process of actual
controller. First, we introduce a signal r , which has the
property in Assumption 2. Then, we construct an adaptive
neural finite-time tracking controller by using the backstep-
ping technique. Since backstepping technique need n steps,
we give the coordinate transformation of each step as follows:

z1 = y− yr
zi = x̂i − αi−1, 2 ≤ i ≤ n

Step 1: Construct the Lyapunov function as:

V1 = V0 +
1
γ0
r +

1
2
z12 +

1
2µ1

ϑ̃T1 ϑ̃1 (18)

where µ1 is a known constant.
According to Assumption 2, the derivative of r is

ṙ =
∂r
∂t
+
∂r
∂s
υ (t, s, z1)

=
∂r
∂t
+
∂r
∂s
(υ (t, s, z1)− υ (t, s, 0))+

∂r
∂s
υ (t, 0, 0)

+
∂r
∂s
(υ (t, s, 0)− υ (t, 0, 0))

≤ −w3‖s‖2 + w4w5 ‖s‖ + w4 ‖s‖ ν0ι0 (19)

It is not hard to get the following inequalities:

1
γ0
w4w5 ‖s‖ ≤

w3

8γ0
‖s‖2 +

2
w3γ0

w4
2w5

2 (20)

1
γ0
‖s‖ ν0ι0 ≤

w3

8γ0
‖s‖2 +

2
w3γ0

w4
2ν0

2ι0
2

≤
w3

8γ0
‖s‖2 +

1
w32γ02

w4
4ν0

4
+ ι0

4 (21)

Putting together (19), (20) and (21) gives

ṙ ≤ −
3w3

4γ0
‖s‖2 +

2
w3γ0

w4
2w5

2
+

1
w32γ02

w4
4ν0

4
+ ι0

4

(22)

The derivative with respect to V1 is:

V̇1 = V̇0 +
1
γ0
ṙ + z1ż1 −

1
µ1
ϑ̃
˙̂
ϑ

≤ −(λmin − n− 1)‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj −

3w3

4γ0
‖s‖2

+ z1
(
x2 + f1,k (x1)+ p1 − ẏd

)
+

1
γ02w32

w4
4ν0

4

+
2

γ0w3
w4

2w5
2
+ ι0

4
−

1
µ1
ϑ̃
˙̂
ϑ + ψ0 (23)

According to Lemma 2, one gets

|z1| |p1| ≤ |z1| (ν1δ11 + ν1 ‖s‖ δ12)

≤
z12δ112

2τ112
+
τ11

2

2
ν1

2
+

w3

4γ0
‖s‖2

+
γ0

2z14δ124

2w32ρ112
+
ρ11

2ν1
4

2
(24)

Substituting (24) into (23), the result is:

V̇1 ≤ − (λmin − n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj +

1
2
z22

+z1α1 + z1
_

f 1,k + ψ1 −
w3

2γ0
‖s‖2 −

1
µ1
ϑ̃
˙̂
ϑ (25)

where

_

f 1,k =
1
2
z1 + f1,k − ẏd +

z12δ112

2τ112
+
γ0

2z14δ124

2w32ρ112
(26)

ψ1 = ψ0 +
2

γ0w3
w4

2w5
2
+

1
γ02w32

w4
4ν0

4

+ι0
4
+
τ11

2

2
ν1

2
+
ρ11

2ν1
4

2
(27)

There are many unknown items in
_

f 1,k , so the RBF neural

networks are used to approximate
_

f 1,k .

_

f 1,k = θ
∗
1ϕ1 + ε1 (28)

Then, we can get the following inequality

z1
_

f 1,k ≤
1
2 z1

2
+

z12ϑ1ϕ1T ϕ1
2ω12

+
ω1

2

2 +
1
2ε
∗2 (29)

Substituting (29) into (25), one gets

V̇1 ≤ − (λmin − n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj +

1
2
z22

+
ω1

2

2
+

1
2
ε∗2 + z1

(
α1 +

z1ϑ̂ϕ1Tϕ1
2ω12

+
1
2
z1

)
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+
ϑ̃1

µ1

(
µ1z12ϕ1Tϕ1

2ω12
− ϑ̇1

)
+11 + ψ1 (30)

The virtual controller α1 and adaptive law ϑ1 are designed
as:

α1 = −
z1ϑ̂ϕ1Tϕ1

2ω12
−

1
2
z1 − c1z12η−1 (31)

ϑ̇1 =
µ1z12ϕ1Tϕ1

2ω12
− l1ϑ1 (32)

where c1 and l1 are design parameters.
Substituting (31) and (32) into (30) concludes that

V̇1 ≤ − (λmin − n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj +

1
2
z22

−c1z12η +
l1
µ1
ϑ̃1ϑ̂1 + ψ1 +

w3

2γ0
‖s‖2 +

ω1
2

2
+

1
2
ε∗2

(33)

Step i (i=2, 3, . . . , n-1): In this step, the change of coordi-
nates equality is

zi = x̂i − αi−1

The derivative of zi is

żi = ˙̂x i − α̇i−1

= zi+1 + αi −
i−1∑
j=2

∂αi−1

∂xj

(
xj+1 + fj,k

(
xj
)
+ pj

)
+ f̂i,k (x̄i)+ pi −

i−1∑
j=2

(
∂αi−1

∂ϑ̂j

˙̂
ϑ j+

∂αi−1

∂yd (j−1)
yd (j)

)
(34)

Choosing the Lyapunov function candidate as

Vi = Vi−1 +
1
2
zi2 +

1
2µi

ϑ̃Ti ϑ̃i (35)

where µi is a known constant.
Combining (33), (34) with (35), the derivative of Vi is

V̇i ≤ − (λmin − n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj

−

i−1∑
j=1

cjzj2η +
i−1∑
j=1

lj
µj
ϑ̃jϑ̂j + ψi−1 +

i− 4
4γ0

w3‖s‖2

+

i−1∑
j=1

ωj
2

2
+
i− 1
2
ε∗2 +

1
2
zi2 +

1
2
zi2 +

1
2
zi+12

+ziαi + zifi + zipi − zi
i−1∑
j=2

∂αi−1

∂xj

(
xj+1 + fj,k

(
x̄j
))

−zi
i−1∑
j=2

∂αi−1

∂xj
pj − zi

i−1∑
j=2

(
∂αi−1

∂ϑ̂j

˙̂
ϑ j +

∂αi−1

∂yd (j−1)
yd (j)

)

−
1
µi
ϑ̃Ti
˙̂
ϑ i (36)

Similar to the procedures in Step 1, we can obtain

|zi| |pi| ≤
i−1∑
j=2

2γ02

w32ρj12

(
δj2zj∂αi−1

∂xj

)4

+
ρj1

2ν1
4

2

+

i−1∑
j=2

(
∂αi−1

∂xj

)2 zj2δj12

2τj12
+
τj1

2ν1
2

2
+

w3

8γ0
(37)

Substituting (37) into (36), the following inequality is
obtained

V̇i ≤ − (λmin − n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj

−

i−1∑
j=1

cjzj2η +
i−1∑
j=1

lj
µj
ϑ̃jϑ̂j + ψi−1 +

i− 4
4γ0

w3‖s‖2

+

i∑
j=1

ωj
2

2
+

i
2
ε∗2 + zi

(
αi +

ziϑ̂iϕiTϕi
2ωi2

+
1
2
zi

)

+
ϑ̃i

µi

(
µizi2ϕiTϕi

2ωi2
−
˙̂
ϑ i

)
+

w3

4γ0
‖s‖2 +

τi1
2ν1

2

2

+
ρi1

2ν1
4

2
(38)

From the inequality (38), we design the intermediate con-
trol function αi and the adaptive law ϑ̂i as follows

αi = −
ziϑ̂iϕiTϕi
2ωi2

−
1
2
zi − cizi2η−1 (39)

˙̂
ϑ i =

µizi2ϕiTϕi
2ωi2

− liϑ̂i (40)

where ci and li are known constants.
Putting (39) and (40) together with (38), one gets

V̇i ≤ − (λmin − n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj

−

i∑
j=1

cjzj2η +
i∑

j=1

lj
µj
ϑ̃jϑ̂j +

i∑
j=1

ωj
2

2
+

i
2
ε∗2

−
i− 4
4γ0

w3‖s‖2 +
1
2
zi+12 + ψi (41)

where ψi = ψi−1 +
τi1

2ν1
2

2 +
ρi1

2ν1
4

2 .
Step n: At the final step, the actual controller will be

designed. Consider zn = x̂n − αn−1, and the derivative of
zn is

żn = u+ f̂n,k (x̄n)−
n−1∑
j=2

∂αn−1

∂xj

(
xj+1 + fj,k

(
xj
)
+ pj

)
+pn −

n−1∑
j=2

(
∂αn−1

∂ϑ̂j

˙̂
ϑ j +

∂αn−1

∂yd (j−1)
yd (j)

)
(42)

Construct the final Lyapunov function as

Vn = Vn−1 +
1
2
zn2 +

1
2µn

ϑ̃Tn ϑ̃n (43)
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where µn is a known constant.
According to the result in Setp i, we can get

V̇n ≤ − (λmin − n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj

−

n−1∑
j=1

cjzj2η +
n−1∑
j=1

lj
µj
ϑ̃jϑ̂j +

n− 5
4γ0

w3‖s‖2

+

n−1∑
j=1

ωj
2

2
+
n− 1
2

ε∗2 +
1
2
zn2 −

1
µn
ϑ̃Tn
˙̂
ϑn + znu

+znfn + znpn − zn
n−1∑
j=2

∂αn−1

∂xj

(
xj+1 + fj,k

(
x̄j
))

+ψi−1 − zn
n−1∑
j=2

(
∂αn−1

∂ϑ̂j

˙̂
ϑ j +

∂αn−1

∂yd (j−1)
yd (j)

)

−zi
n−1∑
j=2

∂αn−1

∂xj
pj (44)

Similar to the operations in previous steps, we can obtain

|zn| |pn| ≤
zn2δn12

2τn12
+
τn1

2

2
ν1

2
+

w3

8γ0
‖s‖2

+
γ0

2zn4δn24

2w32ρn12
+
ρn1

2ν1
4

2
(45)

−zn
n−1∑
j=2

∂αn−1

∂xj
pj ≤

n−1∑
j=2

2γ02

w32ρj12

(
δj2zj∂αn−1

∂xj

)4

+
ρj1

2ν1
4

2
+

n−1∑
j=2

(
∂αn−1

∂xj

)2 zj2δj12

2τj12

+
τj1

2ν1
2

2
+

w3

8γ0
(46)

Design the actual controller u and adaptive law ϑ̂n as

u = −
znϑ̂nϕnTϕn

2ωn2
−

1
2
zn − cnzn2η−1 (47)

˙̂
ϑn =

µnzn2ϕnTϕn
2ωn2

− lnϑ̂n (48)

By substituting (45), (46), (47) and (48) into (44), one can
obtain

V̇n ≤ − (λmin − n− 1) ‖e‖2 + ‖P‖2
n∑
j=1

ϑjϕj
Tϕj

−

n∑
j=1

cjzj2η +
n∑
j=1

lj
µj
ϑ̃jϑ̂j +

n∑
j=1

ωj
2

2
+
n
2
ε∗2

−
n− 5
4γ0

w3‖s‖2 + ψn (49)

where λ′ = λmin − n− 1 and ψn = ψn−1+
τn1

2ν1
2

2 +
ρn1

2ν1
4

2 .

According to Lemma 2, some items in (49) can be changed
as

‖P‖2
n∑
j=1

ϑ̃jϕj
Tϕj ≤

n‖P‖2

2
+
‖P‖2

2

n∑
j=1

ϑ̃Tj ϑ̃j (50)

n∑
j=1

lj
µj
ϑ̃jϑ̂j ≤

n∑
j=1

ϑj
Tϑj

2
−

n∑
j=1

ϑ̃Tj ϑ̃j

2
(51)

Define c = min
{
λ′, 2cj, lj − ‖P‖2, n−54γ0

w3

}
, and V̇n is

rewritten as

V̇n≤−ceTPe− c
n∑
j=1

zj2η−c
n∑
j=1

ϑ̃Tj ϑ̃j−c‖s‖
2
+dn (52)

where dn = ψn +
n‖P‖2

2 +

n∑
j=1

lj
2µj
ϑj
Tϑj.

According to Lemma 1, the following inequalities hold(
eTPe

)η
≤ eTPe+ (1− η) η

η
1−η (53)

c

 n∑
j=1

ϑ̃Tj ϑ̃j

η ≤ c
n∑
j=1

ϑ̃Tj ϑ̃j + c (1− η) η
η

1−η (54)

c

 n∑
j=1

ϑ̃Tj ϑ̃j

η ≤ c
n∑
j=1

ϑ̃Tj ϑ̃j + c (1− η) η
η

1−η (55)

Substituting (53), (54) and (55) into (52), the result is

V̇n ≤ −cVnη + d (56)

where d = dn + (1− η) η
η

1−η + c (1− η) η
η

1−η .
Define a constant ℘ = d

(1−ζ )c , where ζ is a constant which
satisfies 0 < ζ < 1. Then let

Tr =
1

(1− η)cζ

[
V 1−η
n (χ (0))− ℘

1−η
η

]
(57)

where Vn (χ (0)) represents the initial value of Vn(χ ).
According to Lemma 3, the time to reach the set χ (t) is
bounded as Tr .
Theorem 1: For the nonlinear switched systems (1) with

unmodeled dynamics, the actual controller (47), the adaptive
laws (32), (39), (48), and Lemma 3, guarantee that all signals
in the resulting system are SGUFB.

IV. SIMULATION RESULTS
In this section, an example will be given to expound our
design scheme and verify the obtained results.

Consider the following nonlinear system with unmodeled
dynamics:

ṡ = −s+
1
8
x12 sin(t)

ẋ1 = x2 + f1,k (x1)+11

ẋ2 = u+ f2,k (x̄2)+12

y = x1, k = 1, 2
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FIGURE 1. Tracking performance.

FIGURE 2. Response of x1 and x̂1.

FIGURE 3. Response of x2 and x̂2.

where f1,1(x1) = 2sin2(x1) − x1, f1,2(x1) = −x1sin(x1),
f2,1(x1) = sin(x1x2)+0.5cos(x2), f2,2(x1) = 0.5x1+ sin(x22),
11 = s2 + sin(x1), 12 = −2s+ x21 .

First of all, the reference signal is chosen as:

yr = 0.5sin(t).

FIGURE 4. Response of the input u.

FIGURE 5. Response of the unmodeled dynamic.

FIGURE 6. Switching signal.

Then, the state observer is designed as:

˙̂x1 = x̂2 + f̂1,k
(
ˆ̄x1
∣∣∣ θ̂1)+11

˙̂x2 = u+ f̂2,k
(
ˆ̄x2
∣∣∣ θ̂2)+12
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Finally, RBF neural networks are used in the design of
controller, and NNs have five hidden nodes with Gaussian
basis function ϕi(x). In this example, the design parameters
are chosen as: µ1 = µ2 = 10, l1 = l2 = 30, c1 = c2 = 30,
λ1 = λ2 = 10, η = 0.99. The initial values are chosen as[
x1,1, x1,2, x2,1, x2,2

]T
= [0.5, 2, 1, 1]T . The initial values of

the other parameters are taken as zero.
The simulation results are shown in Figs. 1-5. Fig. 1 shows

the the trajectories of y and yr , Fig. 2 and Fig. 3 exhibit the
trajectories of x1 and x̂1, x2 and x̂2, respectively. Fig. 4 plots
the trajectory of actual input u. Fig. 5 is the response of ζ . The
switching signal is given in Fig. 6. We can draw a conclusion
that the tracking error can be regulated arbitrarily small and
all the sates are guaranteed to be bounded.

V. CONCLUSION
In this paper, an adaptive neural control strategy for a class of
stochastic switched nonlinear systems in nonstrict-feedback
form with actuator faults is considered. Actuator faults
include loss of effectiveness and outage in this paper []. In the
process of neural networks (NNs) being utilized to estimate
the unknown functions, via the character of the Gaussian
function, the problem of nonstrict-feedback form is han-
dled. By designing the fault-tolerant control (FTC) which is
obtained via backstepping technique, the problem of actuator
faults is dealt with. Finally, the boundedness of all the signals
in the resulting closed-loop system are achieved and the
tracking error converges to a small neighborhood around the
origin. A vivid simulation example is given to demonstrate
the high efficiency of the proposed control method in the end.
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