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ABSTRACT A renewed interest in phase frame analysis of distribution systems has surfaced in recent
literature due to rapid expansion of grid-integrated distributed generation and non-linear loads, whose
grid imbalance-increasing effects require more detailed analysis and modeling of distribution systems for
their proper assessment. In this paper, under motivation of such recent usage of phase frame components,
we propose analytical equations for N -phase neutral-equipped line admittance matrix under transposition
assumption. By using the proposed equations, we evaluate precision losses caused by using the transposition
assumption formodeling three-phase four-wire distribution lines.Moreover, differently from previousworks,
we validate the transposition assumption and the admittance matrix values obtained for various combinations
of cable type and line geometry. A relevant reason for analyzing transposition assumption in more detail
is the fact that it may be useful in distribution system computations, due to its advantageous decoupling
of symmetrical components. In this sense, the present work provides additional discussion and illustrative
evaluations of the line transposition assumption, which may be useful for analyzing its applicability under
different circumstances.

INDEX TERMS Power distribution lines, impedance, approximation error.

I. INTRODUCTION
Increasing attention has been recently directed towards the
analysis of three-phase power systems in terms of phase
frame components [1]–[7]. This trend can be justified by a
greater interest in detailed modeling of distribution systems,
whose unbalanced lines do not yield the main advantage
obtained from usage of symmetrical components, namely
decoupling of components in the sequence frame [8].

In general, effects of power system imbalance are sig-
nificantly more pronounced at the distribution level, where
they may not be ignored without incurring in large modeling
errors. Among the phenomena that contribute to imbalance
in distribution systems, we emphasize: single and two-phase
laterals [9], three-phase line asymmetry and lack of trans-
position [10], [11], and integration of distributed generation
[12]. Furthermore, imbalance itself contributes to other power
quality problems, such as harmonic distortion [13]–[15].
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Given the significant imbalance of distribution systems,
assuming perfect system balance during analysis is usually
avoided. However, it cannot be denied that simplifications
yielded by such assumptions, among which we empha-
size component decoupling via symmetrical components, are
highly desirable. Such decoupling can only be achieved if all
line phases have equal self and mutual impedances [8], which
would be true in case of phase symmetry or line transposition.

In this sense, interesting results were established by Kerst-
ing in [16]. It was shown via a case study that, in assuming the
transposition of three-phase distribution lines, small errors
were obtained in computing bus voltages, whereas errors for
individual phase power losses were significant. Thus, it was
suggested that assuming transposition in distribution systems
is valid if the analysis is focused on voltage assessment.

It may be argued that such validation is insufficient, since
the approximation error was evaluated for a single combi-
nation of cable type and conductor geometry. An additional
evaluation of the method was carried out in [17], but the
system under consideration had identical line geometry to
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that in [16]. To the best of our knowledge, no further work
has attempted to test the method for different cases. Thus,
the question concerning amore general validity of themethod
is left unanswered. In this sense, the objective of this work is
providing further validation and discussion of the method via
evaluation of new case studies.

A motivation for this work is the expansion of distributed
generation integrated to distribution systems, which further
contributes to system imbalance [18]. In fact, this has been
a motivator for the renewed interest in three-phase modeling
of distribution systems [19], [20]. A further evidence of this
trend is the recent development of load flow solution methods
tailored for explicit representation of neutral conductor and
grounding [21]–[24]. In this context, we believe that eval-
uation of approximate techniques which may facilitate the
application of sequence frame analysis is pertinent.

The remaining sections of this work are organized as
follows. In Section II, the theoretical background regarding
modeling of distribution lines and transposition are given;
additionally, errors caused and computational advantages
yielded by the transposition approximation are discussed.
In Section III, a standard three-phase four-wire line model,
which we adopt as reference for evaluating the transposi-
tion approximation, is presented. Subsequently, additional
instances of distribution lines based on the original model,
which are proposed in order to expand the validation of the
transposition approximation, are presented and discussed.
In Section IV, computational results corresponding to the
previously presented evaluation instances are presented. Con-
clusions about the results are given in Section V.

II. THEORETICAL BACKGROUND
A. COMPUTATION OF LINE IMPEDANCE MATRIX
Consider a three-phase four-wire distribution line which con-
nects buses designated bymeans of indexes i and j. We denote
by V̂ r

i and Î rij , respectively, the phasors of voltage in phase
r of bus i and of current flowing from bus i to j in phase
r , with the phase index r ∈ 8 = {a, b, c, n}. Here, n
designates neutral, whereas the remaining elements indicate
system phases. In what follows, we adopt two approximate
assumptions regularly used in distribution system analysis:

1) Ignoring shunt admittances, which is justified by neg-
ligible capacitance to ground due to short line lengths;

2) Considering zero-resistance grounding of the neutral
conductor at both buses connected by the distribution
line, which does not cause significant error due to
neutral grounding impedances being small in practice.

Such assumptions allow representing the line via the equiv-
alent circuit in Fig. 1, in which the grounded nodes imply
V̂ n
i = V̂ n

j = 0 and Z = [zrs]4×4 is the line impedance
matrix, with r, s ∈ 8. It is clear that mutual impedance
does not depend on phase order, which implies that Z is sym-
metric. Furthermore, distribution lines are customarily built
with equal conductors on all phases (but possibly different on
neutral), thus zaa = zbb = zcc. In this sense, we may restrict

FIGURE 1. Equivalent circuit of distribution line.

the general impedance matrix to the form in (1):

Z =


zaa zab zac zan
zab zaa zbc zbn
zac zbc zaa zcn
zan zbn zcn znn

 (1)

where the self and mutual impedances can be computed,
in units of �/mile, by means of the following equations,
which are known as the modified Carson equations [17]:

zrr = [0.09530+ Rr ]+ j
[
0.12134 ·

(
ln

1
Drr
+ f (ρ)

)]
(2)

zrs = 0.09530+ j
[
0.12134 ·

(
ln

1
Drs
+ f (ρ)

)]
(3)

f (ρ) = 7.6786+
1
2
· ln

ρ

60
(4)

where Rr is phase r cable resistance in �/mile, Drr is the
geometric mean radius of phase r conductors, Drs is the geo-
metric mean distance between conductors of phases r and s,
both in feet, and ρ is earth resistivity in � · meter. It must
be noted that (2) to (4) presuppose grid operation at 60 Hz;
however, analogous equations with different constants can be
derived for any operation frequency [25].

It should be noted that (2) to (4) are often employed
approximations to the original Carson equations for com-
puting zrr and zrs. In such original equations, both real and
imaginary parts of impedance are given by relatively cumber-
some expressions, whose truncation of non-dominant terms
yields the modified Carson equations. The most notable loss
in precision due to truncation occurs in the real parts of zrr
and zrs, which lose their dependence on ground resistivity.
However, the imaginary parts of such impedances have a
stronger dependence on ρ, which is maintained by means
of the f (ρ) term given in (4). For such reasons, the error
caused by assumption that the resistive parts of zrr and zrs
are constant with respect to ρ is small [25].

Let V̂ i = [V̂ r
i ]1×4 and Î ij = [Î rij ]1×4, r ∈ 8. Considering

that V̂ i − V̂ j = ZÎ ij and applying V̂ n
i = V̂ n

j = 0, a Kron-
reduced impedance matrix Z′ = [z′rs]3×3, r, s ∈ 8

′
= 8 −

{n}, is obtained. This matrix satisfies v̂i−v̂j = Z′ îij, where the
reduced vectors v̂i = [V̂ r

i ]1×3 and îij = [Î rij ]1×3, r ∈ 8
′. The
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terms of Z′ can be computed as functions of corresponding
terms from Z [26]:

z′rs = zrs +
zrnzns
znn

(5)

It is worth mentioning that, despite the zero-resistance
grounding assumption, the effects of neutral conductor and
ground resistivity are incorporated into Z′. This can be
understood by observing that z′rs is a function of zrs and of
impedance terms involving n, all of them being functions
of ρ as in (2) to (4). Considering the symmetry and equal
diagonal terms of Z, as shown in (1), we conclude that the
corresponding Kron-reduced matrix has the following form:

Z′ =

z′aa z′ab z′acz′ab z
′
aa z
′
bc

z′ac z
′
bc z
′
aa

 (6)

Some comments are now given concerning the exact com-
putation of Z and Z′, as given in (1) to (6). Firstly, it can
be observed that storage of Z corresponds to storing eight
complex numbers, whereas Z′ requires storing four complex
numbers. Generalizing to an N -phase system (e.g. N = 6
for the case of two lines in the same distribution pole [17]),
the complex number storage requirements of both Z and Z′

are O(N 2). Considering that such impedance data are often
used in load flow studies of systems comprising thousands of
buses, reduction of storage requirements would be beneficial.

For the majority of load flow algorithms, it is necessary
to obtain Y = Z−1 or Y ′

= (Z′)−1 in order for the system
admittance matrix to be computed. Given theO(N 2) different
elements of Z, Z′ and their corresponding inverses, it is
impractical, even for N = 3, to derive and apply analytical
equations for the elements of Y and Y ′. Hence, computation
of these matrices is usually carried out via matrix inversion,
which may be costly for a system with many lines.

In Section II-B, we discuss the transposition approximation
and how the above-mentioned difficulties can be attenuated
by means of its application. The error indexes that shall be
used for evaluating the approximation are also defined.

B. ANALYTICAL COMPUTATION OF ADMITTANCE MATRIX
VIA LINE TRANSPOSITION ASSUMPTION
By assuming that phases are transposed throughout the
distribution line, the phase self impedances and mutual
impedances between phases become equal to the average
of those computed for the individual phases in the untrans-
posed case. However, since the neutral conductor does not
participate in transposition, its average mutual impedance is
different from that of the phases, whereas its self impedance
remains unaffected. Thus, the form of the approximate
impedance matrix ZT is:

ZT =


zs zm zm zn
zm zs zm zn
zm zm zs zn
zn zn zn znn

 (7)

where znn is the neutral self impedance as previously defined,
and the remaining terms are given by:

zs =
1

#8′
∑
r∈8′

zrr (8)

zm =
1

(#8′)2 − #8′
∑
r∈8′

∑
s∈[8′−{r}]

zrs (9)

zn =
1

#8′
∑
r∈8′

zrn (10)

where # denotes the number of elements in a set and we have
#8′ = 3, #8 = 4 for the three-phase four-wire case. The
corresponding Kron-reduced matrix Z′T can be obtained by
applying (5) and has the following form:

Z′T =

 z′s z′m z′m
z′m z′s z

′
m

z′m z′m z′s

 (11)

Aside from the advantage of symmetrical component
decoupling, it is clear that ZT and Z′T require less storage
space than that of the exact impedance matrices. It can be
seen that, for the three-phase case, the amount of complex
numbers to be stored are reduced to four for ZT and two for
Z′T . In fact, once again generalizing to N -phase systems, it is
clear that the storage requirement does not increase with the
number of phases N , and thus is O(1).

Due to the smaller number of different elements in ZT ,
simple analytical equations for the elements of YT = ZT−1

and Y ′
T = (Z′T )

−1 can be derived. In this sense, we prove in
the Appendix that the following theorem holds:
Theorem 1: Let N = #8′ = #8 − 1 and consider a

transposed N -phase distribution line equipped with a neutral
conductor. Also, let the elements of the (N + 1)-th order YT
and N -th order Y ′

T follow the same subscript notation as that
of (7) and (11). The elements of YT and Y ′

T are given by:

ys =
znn[zs + zm(N − 2)]− z2n(N − 1)

(zm − zs)
{
Nz2n − znn[zm(N − 1)+ zs]

} (12)

ym = −
z2n − zmznn

(zm − zs)
{
Nz2n − znn[zm(N − 1)+ zs]

} (13)

yn =
zn

Nz2n − znn[zm(N − 1)+ zs]
(14)

ynn = −
zs + (N − 1)zm

Nz2n − znn[zm(N − 1)+ zs]
(15)

y′s =
z′s + z

′
m(N − 2)

(z′s)2 + z′m[z′s(N − 2)− z′m(N − 1)]
(16)

y′m = −
z′m

(z′s)2 + z′m[z′s(N − 2)− z′m(N − 1)]
(17)

where the admittances in (12) to (17) correspond to the
respective impedance notations in (7) and (11).

To the best of our knowledge, (12) to (17) have not been
derived in previous works concerning line transposition. The
application of such equations when transposition is assumed
can be useful, since their computational complexity is O(1)

VOLUME 8, 2020 168603



H. P. Corrêa, F. H. T. Vieira: Approach for Impedance Matrix Computation Considering Phase Transposition

due to not requiring matrix inversion routines, whose com-
plexities necessarily increase with the number of phases N .
It is of interest to note that (2) to (5) and (8) to (10) are

general, in the sense that they are applicable to an arbitrary
number of phases. On the other hand, (1), (6), (7) and (11)
are specific for the three-phase (N = 3) case.

III. PROPOSED CASE STUDIES
The reference feeder geometry selected for evaluating the
transposition approximation is the IEEE overhead feeder
#500 configuration [27]. This selection is due to such geom-
etry being similar to the single configuration used in the
original validation of the transposition assumption [16].

Such configuration is an established feeder geometry; it is
adopted for modeling most three-phase overhead feeders that
compose the IEEE test systems, in which multiple specifi-
cations of phase and neutral cables are used [27]. The cable
data given in Table 1 are adopted as reference; such data
correspond to the IEEE 4-bus system cable specification.

TABLE 1. Reference cable data.

The reference geometry is illustrated in Fig. 2, alongside
the values of mean geometric radii and resistances [8] of the
adopted phase and neutral cable specifications.

FIGURE 2. Conductor geometry and types for the base configuration.

In what follows, we propose three case studies which
are modifications of the adopted reference geometry and
cable data, allowing a more general validation of the trans-
position assumption. The influence of the following factors
over approximation error is considered: cable specification,
ground resistivity and height of neutral with respect to phases.
Also, a more general analysis considering arbitrary position-
ing of neutral and one of the phases is carried out.

A. VARYING NEUTRAL HEIGHT RELATIVE TO FEEDER
PHASES WITH CABLE TYPE AS PARAMETER
As a first extension of [16], impedance computations are
carried out for fixed phase cables positions (as in Fig. 2) with
variable height of the neutral cable with respect to the phase
plane, which is henceforth denoted as1h. For this case study,

we adopt 1h ∈ [0, 15′] and parametrize the computations
with three different cable specifications, all of which are used
in the multiple existing IEEE test systems.

Let C (i)
r =

(
D(i)
rr ,R

(i)
r

)
denote the pair of mean geometric

radius and resistance values associated to phase r ∈ 8, for
a given cable specification i ∈ {1, 2, 3}. Also, C (i) denotes
the data of all phases given in specification i. In Table 2,
the adopted cable specifications and their respective C (i)

labels are given. In Table 3, all values of Rr and Drr are
given, together with the IEEE test systems in which the cable
instances are used. This case study is illustrated in Fig. 3,
in which 0r denotes the set of all possible phase r cable
specifications, i.e. 0r =

{
C (i)
r , i ∈ {1, 2, 3}

}
.

TABLE 2. Cable specifications and labels (all cables are ACSR).

TABLE 3. Cable geometric mean radii (ft.) and resistances (�/mi).

FIGURE 3. Illustration of first and second case studies.

The motivation for adopting a variable-position neutral
arises from the fact that it is, in general, the element that intro-
duces greatest asymmetry to feeder configurations. In fact,
the neutral conductor is often the one with different diameter
and not coplanar with the phases in practical installations
(as is the case with the reference feeder adopted in this
work). Thus, 1h can be interpreted as a measure both of
neutral electromagnetic coupling and of system asymmetry.
Intuitively, for increasing 1h the neutral coupling is reduced
and thus system asymmetry decreases, which is expected to
reduce the error due to assuming transposition.

B. VARYING NEUTRAL HEIGHT RELATIVE TO FEEDER
PHASES WITH GROUND RESISTIVITY AS PARAMETER
In most works that involve computation of line impedance,
it is assumed that earth resistivity ρ is equal to 100 � · m.
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Nevertheless, it is known that resistivity may vary in a rel-
atively wide range depending on soil characteristics. The
reasoning commonly used for assuming ρ = 100� ·m is that
the term 1

2 ln
ρ
60 does not dominate (4) in the usual resistivity

range 100 � ·m < ρ < 1000 � ·m [25].
It must be observed that such considerations may not

be immediately generalized to the present analysis. In fact,
the above justification is applicable to the direct computation
of Z and Z′, whereas we want to analyze how ρ affects the
error caused by substituting such matrices by their transpo-
sition approximation counterparts. This is non-trivial espe-
cially for the matrix Z′, whose terms involve products of
impedances each of which is affected by approximation error,
as in (5).

Hence, this case study considers a feeder with identical
geometry to that of the first case study, including a variable
1h ∈ [0, 15′], but with fixed cable specification C (1) and
parametrization of cable impedance by resistivity. The values
selected for resistivity are ρ ∈ P = {10, 100, 1000} (� ·m);
the case study is illustrated in Fig. 3.

C. VARYING NEUTRAL AND PHASE POSITIONS
Considering that the previous case studies encompass vari-
able resistivity and cable type, we now propose a third case
study in which approximation error is evaluated as a function
of phase and neutral positions. To reduce the number of vari-
ables involved, we adopt a reference system xOy with fixed
phases a and c on points (0′, 4′) and (7′, 4′), respectively; such
relative positioning is identical to that of Fig. 2.
Phase b and neutral n are assigned arbitrary coordinates

(x, y) and (xn, yn), respectively. Phase coordinates vary con-
tinuously in the domain X ×Y = ]0′, 7′[ × [−3′, 4′], where
the open interval is used to avoid superposition with phases
a and c. The set X is such that phase b position is always
between the fixed phases horizontally, whereas Y is specified
to have the same range as X , for the sake of simplicity.
In contrast, neutral coordinates may be assigned one of

the points in the set N = {(3.5′, 0.5′), (6.0′, 3.0′)}. The first
and second points were chosen to simulate, respectively, sym-
metrical and asymmetrical neutral placement with respect to
the X × Y domain. Cable types and ground resistivity are
assumed to be C (1) and ρ = 100� ·m, respectively. This case
study is summarized in Fig. 4.

IV. RESULTS AND DISCUSSION
In what follows, the results of each proposed case study are
sequentially presented and discussed. All results are given

FIGURE 4. Illustration of third case study.

as plots of error indexes of the impedance matrices esti-
mated via transposition assumption, with respect to their
non-transposed counterparts. In each case study, the error
curves are plotted as functions of continuous position vari-
ables (i.e., 1h, x and y) and parametrized by the discrete
variables under consideration (i.e., cable type, ρ, xn and yn).
The adopted error indexes are defined in Section IV-A. All

obtained results and their respective analyses are presented in
sub IV-B to IV-D. In Section IV-E, a general discussion of the
obtained results is carried out.

A. ERROR INDEXES
Recall that it was established in [16] that the transposition
approximation is of interest mainly with regard to the com-
putation of voltages. It is clear that voltage drop between line
terminals is linear with respect to the impedance matrix itself.
Thus, we abstract voltage and current from this analysis and
evaluate impedance error directly. In this sense, we compute
the absolute percentage errors for magnitude, phase angle,
real part and imaginary part of each element in the matrix Z:

eR(zrs) =
|R [zrs − zrs|T ] |

R [zrs]
· 100% (18)

eI (zrs) =
|I [zrs − zrs|T ] |
|I [zrs] |

· 100% (19)

eZ (zrs) =
| |zrs| − |(zrs|T )| |

|zrs|
· 100% (20)

e2(zrs) =
|6 zrs − 6 zrs|T |
| 6 zrs|

· 100% (21)

where (·)|T indicates usage of the transposition approxima-
tion andR, I, 6 (·), |(·)| are respectively: real part, imaginary
part, phase angle and absolute value operators. Analogous
impedance errors are computed for the Kron-reduced matrix
and are denoted by e′R(z′rs), e

′

I (z
′
rs), e

′

Z (z
′
rs) and e

′
θ (z
′
rs). All

absolute percentage errors are then used for computing the
corresponding average absolute errors, which are:

EU =
1

(#8)2
∑
r∈8

∑
s∈8

eU (zrs) (22)

E ′U =
1

(#8′)2
∑
r∈8′

∑
s∈8′

e′U (z
′
rs) (23)

where U denotes any of the symbols:R, I, Z and 2.

B. FIRST CASE STUDY
All average absolute errors for Z are plotted in
Figs. 5(a) and 5(b), whereas the errors corresponding to Z′

are given in Figs. 5(c) and 5(d). All errors are plotted as
functions of 1h and with parameter C (i)

r ∈ 0r , with r ∈ 8
and i ∈ {1, 2, 3}.
The results show that 1h has significant influence over

approximation error, with higher values of neutral height
being associated to smaller average errors. Such behavior
could be reasonably expected, since a higher 1h implies
smaller electromagnetic coupling between neutral and other
conductors. This reduces the overall influence of the neutral
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FIGURE 5. Average absolute errors obtained in the first case study.

conductor and increases system symmetry, which in turn
decreases error due to less asymmetric information being
disregarded when the transposition approximation is used.
In general, it can be seen that all average errors underwent,
approximately, twofold reductions when comparing the min-
imum and maximum values considered for 1h.
It is notable thatER = 0 for all1h, which can be explained

by the fact that all phase conductors have the same cable
specification. Given that the series resistance of each phase
depends on cable type and that all phases are equal in this
respect, transposition is indifferent in this case. In contrast,
E ′R 6= 0 for all values of 1h, which may be explained by
(5), where it can be seen that error in z′rs is associated to the
errors of zrs and of the product zrnzns (znn is equal to neutral
self-impedance and does not contribute to error). Thus, even
with ER = 0, the product term is still subject to error, which
implies E ′R 6= 0.
Another salient feature of the results is the fact that mean

absolute errors associated to Z do not depend on C (i), i ∈
{1, 2, 3}, which is not true for Z′. This is a further effect of
Kron reduction, which is now explained. The computation
of Z by means of (2) to (4), with constant ρ, shows that
the impedances’ reactive parts depend solely on Drr and
Drs. Considering that Drr is equal for all phases, it does
not contribute to transposition error. In addition, Drs is not
determined by cable type; for this reason, it does not depend
on C (i). Hence, error for Z is also independent of C (i).

In opposition to the above reasoning for Z, the results show
that approximation error for Z′ depends on C (i). This is a

further consequence of Kron reduction via (5), due to which
errors for individual impedances z′rs depend on the product
zrnzns. As previously established, ER = 0, which means that
the real parts of the individual terms of the product have no
error. However, the product itself causes propagation of the
individual imaginary part errors to the real and imaginary
parts of its result. Finally, for r = s, the product depends
on Rr and Drr , making average error dependent on the cable
specification C (i).
It should also be noted that, in spite of being influenced by

C (i), average errors for Z′ have a weak dependence on such
parameter. This can be attributed to such dependence being
only due to the diagonal terms of Z′, namely z′rr , r ∈ 8′.
Furthermore, each set of error curves for the different C (i)

converge towards each other for high 1h. This is due to the
fact that, as 1h→∞, the term zrnzns in (5) tends to zero.

In terms of error magnitudes, the results of this case study
suggest that the transposition approximation can be used if
very high precision is not necessary when computing system
voltages. Mean relative error for reactance was by far the
highest, reaching above 8% in all cable types for 1h = 0.
However, the lower relative errors of resistance (approxi-
mately 3% or less), coupled with the fact that resistance
dominates reactance in distribution, keeps the magnitude and
phase errors under 1%.

C. SECOND CASE STUDY
Analogously to the first case study, average absolute errors
for Z are plotted in Figs. 6(a) and 6(b), whereas the errors
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FIGURE 6. Average absolute errors obtained in the second case study.

corresponding to Z′ are given in Figs. 6(c) and 6(d). All errors
are plotted as functions of 1h with parameter ρ ∈ P.

It is immediate that ρ has a significantly more pronounced
effect over reactance approximation error than C (i). In fact,
the different values of ρ displace the reactance error curves
in their entirety, whereas convergence to a common curve
when 1h → ∞ happened for variable C (i). Furthermore,
a common Z reactance error curve for all ρ ∈ P is not
obtained, as was the case for C (i)

r ∈ 0r , r ∈ 8. Contrariwise,
convergence of the resistance error curves still happens for
high 1h and the displacement between curves is much less
pronounced. Furthermore, ER = 0 is still valid for all ρ ∈ P
due to the same reasons discussed in the first case study.

This difference between resistance and reactance errors
may be explained from the fact that ρ only determines the
imaginary part of reactances, as seen from (2) and (3). Hence,
the resistance error curves follow essentially the same behav-
ior as in the first case study: for Z, error is null due to indif-
ference of phase resistances with respect to transposition,
whereas errors forZ′ occur due to the zrnzns term in (5), whose
effects decay as 1h→∞.

In a different manner, reactance errors are strongly depen-
dent on f (ρ), which is summed to the geometry-dependent
(and thus prone to transposition error) term ln 1

Drs
in (3).

The results show that transposition error decreases for higher
resistivity, which is explained as follows. From (4), it is clear
that df

dρ (ρ) > 0; thus, for greater ρ, the dominance of f (ρ) in

the sum
[
ln 1

Drs
+ f (ρ)

]
from (3) increases. Such increasing

dominance tends to equalize the reactances of all zrs, which
in turn decreases error due to assuming transposition.

D. THIRD CASE STUDY
For conciseness, only relative errors for magnitude and phase
are shown for this case study. In Figs. 7(a) to 7(d), error
plots relative to Z and Z′ are given for the symmetric neutral
placement, whereas analogous results for asymmetric neutral
are presented in Figs. 8(a) to 8(d).

The salient aspect of the obtained results is that approx-
imation error grows rapidly due to proximity between two
conductors (phase or neutral), with divergence occurring for
coordinate superposition (which is impossible in practice).

This is an intuitively satisfactory result: if two of the con-
ductors are in much closer proximity to each other than the
remaining ones, it is implied that the feeder has a highly
asymmetrical geometry. As a consequence of this, error
penalties caused by assuming transposition are increased.
It should be emphasized that the error surface peaks corre-
spond to conductor superposition, which causes ln 1

Drs
→∞

in (3) and a consequent scaling of error towards infinity.
Comparison between the symmetric and asymmetric neu-

tral cases shows that the main effect of neutral position
is determining the neighborhood in which error divergence
occurs. However, it is also important to note that errors (espe-
cially for magnitude) tend to be higher in the asymmetric
case. This may also be explained via asymmetry, which tends
to increase the transposition approximation error.
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FIGURE 7. Average absolute errors obtained in the third case study, considering symmetric neutral.

FIGURE 8. Average absolute errors obtained in the third case study, considering asymmetric neutral.

In a broader analysis, most general aspects of the
error plots agree with those already discussed in the pre-
vious case studies. Among these, we mention greater

relative errors for Z′ when compared to Z and gener-
ally low errors, except in the neighborhood of divergence
points.
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E. DISCUSSION
In the following items, we summarize the salient features of
the obtained results and analyses carried out in this paper.
• Despite being an often overlooked parameter in line
impedance matrix modeling, grounding resistivity has
significant influence in error incurred due to usage of the
transposition approximation. Interestingly, in the pro-
posed case studies, resistivity was found to have higher
influence over error than the specification of phase and
neutral cable types;

• Errors caused by the transposition approximation are
higher for the Kron-reduced impedance matrix, when
compared to its explicit-neutral counterpart. As shown
in this work, this is due to further error propagation by
a nonlinear impedance term (product of impedances)
present in the Kron reduction equations;

• In terms of error, phase and neutral cable specification
is unimportant for the explicit-neutral matrix. For the
Kron-reduced case, it becomes irrelevant as the dis-
tances from neutral to the phases tends to infinity. It was
shown that the former assertion is a consequence of all
phase cables being usually equal to each other, whereas
the latter is due to reduction of electromagnetic coupling
between neutral and phases, which in turn decreases the
impedance product term of Kron reduction;

• Relative positions of phase and neutral conductors have
major influence over approximation error. Particularly,
error increases rapidly when the distance between two
conductors (either two phases or phase and neutral)
becomes small with respect to other distances. In the
extreme case of superposition, divergence occurs;

• In general, all obtained results suggest that the transposi-
tion approximation is applicable to practical distribution
feeders. Clearly, this is a consequence of such feeders
not usually presenting the characteristics (i.e. high asym-
metry and/or proximity between two particular phases)
for which error becomes high.

• Usage of transposition approximation may be advanta-
geous in load flow studies due to its lower computational
complexity and storage requirements in comparison to
standard inversion of the impedance. In fact, analytic
equations have been derived in this work for directly
computing the impedance matrix inverse.

V. CONCLUSION
An extended analysis, with respect to previous works in the
literature, of the transposition assumption and its influence
over the impedance matrix of distribution lines was carried
out. Multiple case studies were considered, in which error
due to assuming transposition was evaluated as a function of
line geometry, cable type and ground resistivity. The results
corroborate previous assertions that the approximation error
is low for practical systems, which suggests that the transpo-
sition approximation may be applied to voltage calculations.

A remarkable feature of the case study results is the fact
that, aside from the dominance of line geometry, ground

resistivity has significant influence over approximation error.
This result is of interest because ground resistivity is an often
overlooked parameter in modeling, for which standard values
are usually assumed without further consideration. In this
paper, we have also contributed with a derivation of general
analytical equations for the N -phase, neutral-equipped line
admittancematrix under transposition assumption. Given that
a transposed line is assumed, using the derived equations
reduces computational complexity by dispensing with the
usual procedure of inverting the impedance matrix.

APPENDIX
DERIVATION OF ANALYTICAL EQUATIONS FOR THE
ADMITTANCE MATRICES YT AND Y ′

T
Proof of Theorem 1: Let ZT be the impedance matrix of anN -
phase distribution feeder equipped with a neutral conductor.
By matrix inversion, ZT and YT have to satisfy:

zs zm · · · zm zn
zm zs · · · zm zn
...
...

...
...

...

zm zm · · · zs zn
zn zn · · · zn znn


︸ ︷︷ ︸

ZT


ys ym · · · ym yn
ym ys · · · ym yn
...
...

...
...

...

ym ym · · · ys yn
yn yn · · · yn ynn


︸ ︷︷ ︸

YT

= INC1 (24)

where INC1 is the (N+1)-th order identity matrix. Due to the
particular structure ofZT andYT , the equality of their product
with the identity matrix yields only five different equations,
as will now be shown. In the following analysis, we consider
the product of the k-th row of ZT with the l-th column of YT .

Firstly, for 1 ≤ k, l ≤ N and k = l, the N corresponding
equations are identical and given by:

[zs]ys + [(N − 1)zm]ym + [zn]yn = 1 (25)

where coefficients of the desired admittance terms are high-
lighted with brackets. Now, for 1 ≤ k, l ≤ N and k 6= l, there
are N 2

− N identical equations expressed as:

[zm]ys + [zs + (N − 2)zm]ym + [zn]yn = 0 (26)

For 1 ≤ k ≤ N and l = N + 1, N equations are obtained:

[zs + (N − 1)zm]yn + [zn]ynn = 0 (27)

In a similar manner, N equations are yielded for k = N+1
and 1 ≤ l ≤ N :

[zn]ys + [(N − 1)zn]ym + [znn]yn = 0 (28)

Finally, a single equation is given for k = l = N + 1:

[Nzn]yn + [znn]ynn = 1 (29)

By summing the number of identical equations of each
type, we arrive at the full (N +1)2 equalities that are imposed
by (24). The obtained equations compose a system of four
variables with five equations; it must be shown that one of
the equations is linearly dependent if a solution is to exist.

For conciseness, we do not carry out this procedure or the
system solution in detail. However, it is of interest to indicate
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that linear dependence can be shown as follows: first, solve
(27) and (29) for yn and ynn. Then, by inserting the obtained
results in (26) and (28), it can be shown that such equations
become identical to each other.

Hence, by disregarding (28), the following system of equa-
tions equivalent to (24) is obtained:
zs (N − 1)zm zn 0
zm zs + (N − 2)zm zn 0
0 0 zs + (N − 1)zm zn
0 0 Nzn znn



ys
ym
yn
ynn

 =

1
0
0
1


(30)

The solution of this system yields (12) to (15).
An analogous derivation can be carried out for obtain-

ing Y ′
T by starting from the equality Z′TY

′
T = IN . How-

ever, the corresponding system of equations may be directly
obtained from (30) by omitting the last two variables, yn and
ynn. Proceeding this way, the following system is obtained:[

z′s (N − 1)z′m
z′m z′s + (N − 2)z′m

] [
y′s
y′m

]
=

[
1
0

]
(31)

whose solution yields (16) and (17). �
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