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ABSTRACT For skeleton-based action recognition from depth cameras, distinguishing object-related
actions with similar motions is a difficult task. The other available video streams (RGB, infrared, depth)
may provide additional clues, given an appropriate feature fusion strategy. We propose a modular network
combining skeleton and infrared data. A pre-trained 2D convolutional neural network (CNN) is used as a pose
module to extract features from skeleton data. A pre-trained 3D CNN is used as an infrared module to extract
visual features from videos. Both feature vectors are then fused and exploited jointly using a multilayer
perceptron (MLP). The 2D skeleton coordinates are used to crop a region of interest around the subjects
for the infrared videos. Infrared is favored over RGB, as it is less affected by illumination conditions and
usable in the dark.We are the first to combine infrared and skeleton data.We evaluate our method on the NTU
RGB+D dataset, the largest dataset for human action recognition from depth cameras. We perform extensive
ablation studies. In particular, we show the strong contributions of our cropping strategy and pre-training on
action classification accuracy. We also test various feature fusion schemes. Feature sum on an element-wise
level yields the best results. Our method achieves state-of-the-art performances on NTU RBG+D.

INDEX TERMS Action recognition, depth cameras, feature extraction, gesture recognition, infrared,
skeleton, video understanding.

I. INTRODUCTION
Human action recognition is the task of recognizing an activ-
ity performed by one or more subjects inside a segmented
sequence. Recent years have witnessed successful deep archi-
tectures [5], [9], [23], [39], [52], [62] with promising results
on benchmark datasets [3], [38].

Consumer-grade depth cameras such as Intel RealSense
[22] andMicrosoft Kinect [66] coupledwith advanced human
pose estimation algorithms [43] have allowed 3D skeleton
data to be obtained in real-time. Key joints of the human body
are extracted to a 3D space, providing a high-level represen-
tation of an action. Skeleton data are robust to surrounding
environment, illumination variations and may be generalized
to various viewpoints [1], [11], [28], [29], [35], [57]. Earlier
works have indicated that key joints are powerful descriptors
for human motion [18]. The low dimensionality and high
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representation power make skeleton data a prime input for
action recognition tasks.

Opening the door for new action recognition algorithms,
those are broadly categorized into RGB and 3D skeleton
approaches. However, it has been demonstrated that visual
and skeleton inputs can work in symbiosis [36]. Actions
with similar body motion, such as writing versus typing on a
keyboard, prove difficult to classify with skeleton data only.
In this respect, skeleton data might benefit from the visual
clues of RGB streams.

Depth cameras offer four different data streams: RGB,
depth, infrared (IR) videos, and 3D skeleton. To our knowl-
edge, infrared videos from depth cameras have never been
used as an input source for action recognition. We argue
that the lack of large scale datasets proposing IR videos in
addition to the other streams is in part responsible. Moreover,
RGB and IR images are quite similar, the former offering
a richer representation of a scene, therefore, making it a
better candidate. However, IR is usable in the dark, which
is viable for security applications when skeleton data are
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insufficient. The recent introduction of large scale datasets
like NTU RGB+D [38] and PKU-MMD [31] containing IR
videos motivates the evaluation of methods using this stream.
Video understanding is a well-studied computer vision task.
But modeling spatiotemporal features and long-term depen-
dencies remains an issue.

Another challenge in video action classification is the vol-
ume of information. To reduce the complexity of the videos,
downscaling the frames is often employed but also comes
with a decrease in the quality of the information. Moreover,
discriminating clues may only occur in a small portion of the
frames, becoming undetectable in the process [51]. An alter-
native proposal is to focus on regions of interest. Visual
attention models are capable of focusing on important cues
and disregard other areas [4], [34], [40].

In this work, we intend to address the difficulty of differen-
tiating actions with similar motions with an additional visual
stream insensible to illumination conditions. Furthermore,
we evaluate the potential of IR videos as a standalone source.
We propose a model fusing video and pose data (FUSION).
Pose has a double purpose. It is used as an input stream in its
own right and also conditions the IR sequences, providing a
crop around the subjects, facilitating the classification. The
general outline of the network is illustrated Fig. 1.

FIGURE 1. Our model uses a 2D CNN for pose data and a 3D CNN for IR
sequences. Features from both modules are then fused and studied
jointly via an MLP. Training is done in end-to-end fashion.

The pose network is an 18-layer ResNet [12] taking as
input the entire skeleton sequence. The sequence is mapped to
an RGB image which is then rescaled to fit the input size of
the CNN. The IR network is a ResNet (2+1)D (R(2+1)D)
[50] where a fixed number of random frames taken from
evenly spaced subsequences are used as inputs. The features
of each module are then fused before proposing a final clas-
sification with a multilayer perceptron (MLP).

Our main contributions are as follows:

• We demonstrate the importance of IR streams from
depth cameras for human action recognition.

• We propose a fusion network taking skeleton and IR
sequences as inputs. Utilizing those two steams con-
jointly has never been attempted before.

• We perform extensive ablation studies.We isolate differ-
ent modules of our model and study their representation
power. We also evaluate the importance of data aug-
mentation, transfer learning, 2D-skeleton conditioned
IR sequences, IR sequence length, and various feature
fusion strategies on the accuracy score.

• We achieve state-of-the-art results compared to methods
using different streams.

Codes, documentation, and supplementary materials can
be found on the project page.1

II. RELATED WORK
A. SKELETON-BASED APPROACHES
Human action recognition has received a lot of attention due
to its high-level representation and powerful discriminating
nature. Traditional approaches focus on handcrafted features
[16], [53], [56]. These could be the dynamics of joint motion,
the covariancematrix of joint trajectories [16] or the represen-
tation of joints in a Lie group [53]. Design choices prove chal-
lenging and result in suboptimal results. Recent deep-learning
methods report improved accuracy. There exist three main
frameworks: sequence-based models, image-based models,
and graph-based models.

Sequencemodels exploit skeleton data as time series of key
joints which are then fed to recurrent neural networks (RNN)
[9], [26], [32], [38], [47], [55], [64]. Part-aware long short-
term memory (LSTM) RNN [38] uses different memory cells
for different regions of the body, then fuses them for the
final classification. Similarly in [9], a bidirectional RNN
studies separate body parts individually in earlier levels and
jointly deeper on. In an effort to model simultaneously time
and spatial dependencies, Liu et al. propose a 2D recurrent
model [32]. Recurrent models are now part of the early deep
learning efforts for skeleton-based action recognition. Vastly
improving upon the results of the traditional methods, they
remain insufficient. The sequence length has to be fixed
during training which is not ideal and requires a sampling
strategy. Moreover, sequence models tend to be much slower
than their image-based counterparts.

Image models represent skeleton data as 2D images which
are then used as inputs for convolutional neural networks
(CNN) [8], [21], [23], [27]–[29], [33], [59]. An intuitive
method is to assign the x, y and z coordinates of a skeleton
sequence to the channels of an RGB image [8], [27]. Each
joint corresponds to a row and each frame to a column,
or inversely. Pixel intensity is then normalized between 0 and
255 based on maximal coordinates value of the dataset [8]
or sequence [27]. Other works utilize the relative coordinates
between joints to generate multiple images [21]. Similarly,
some works project the 3D coordinates on orthogonal 2D
planes [28], [29] and encode the trajectories into a hue,

1https://github.com/adeboissiere/FUSION-human-action-recognition
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saturation, value (HSV) space [59]. A pre-trained model over
ImageNet [6] is leveraged. A similar approach is used in [13].
More recent works focus on view-invariant transformations
[20], [33] or networks [65] with improved results. In [23],
a temporal convolutional network is deployed with inter-
pretability of the results as a major objective. CNNs are able
to learn from entire sequences rather than sampled frames.
The image generated from the skeleton sequence is resized to
accommodate the fixed input shape of the CNN. This means
an entire sequence can be used at once, which is an advantage
compared to recurrent methods.

Graph neural networks have received a lot of attention as
of late due to their effective representation of skeleton data
[61]. There exist two main graph model architectures: graph
neural networks (GNN), and graph convolutional networks
(GCN), which aim to generalize traditional convolutional
networks. Spatial GCNs leverage the convolution operator
for each node using its nearest neighbors [45]. Yan et al. [62]
make the best of the graph representation to learn both spa-
tial and temporal features. Li et al. generalize the graph
representation to actional and structural links [30]. In [44],
a temporal attention mechanism is adopted to enhance the
classification while exploring the co-occurrence relationship
between spatial and temporal domains. In [42], the length and
direction of bones are used in addition to joint coordinates
while adapting the topology of the graph. Shi et al. represent
skeleton data as a directed acyclic graph based on kinematic
dependencies of joints and bones [41]. GCNs report the cur-
rent state-of-the-art results on benchmark datasets. However,
carefully designedCNNs show comparable results [65]. Also,
CNNs can be pre-trained on other large scale datasets which
improves the performances of image-based skeleton action
recognition models [65]. To our knowledge, an ImageNet [6]
style transfer learning is impractical for GCNs.

B. RGB-BASED VIDEO CLASSIFICATION
Traditional approaches focus on handcrafted features in
the form of spatiotemporal interest points. Among those,
improved Dense Trajectories (iDT) [54], which uses esti-
mated camera movements for feature correction, is consid-
ered the state of the art. After the widespread use of deep
learning on single images, many attempts have been made
to propose benchmarks for video classification.

Soon after [54], two breakthrough papers [19], [46] would
form the backbone of future efforts. In [19], Karpathy et al.
explore different ways of fusing temporal information using
pre-trained 2D CNNs. In [46], handcrafted features, in the
form of optical flow, are used symbiotically with the raw
video. Two parallel networks compute spatial and temporal
features. A few drawbacks include the inability to effectively
capture long-range temporal information and the heavy cal-
culations required to compute optical flow.

Later research propositions fall into five frameworks:

• 2D CNN followed by RNN network [7]
• 3D CNN [5], [49], [63]

• Two-Stream 2D CNN [10]
• 3D-Fused Two-Stream [10]
• Two-Stream 3D CNN [3], [52]
Heavy networks and computations of handcrafted features,

as well as the absence of a benchmark for long-term temporal
features, remain an issue. In [50], Tran et al. explore different
forms of spatiotemporal convolutions and their impact on
video understanding. A (2+1)D convolution block separating
spatial and temporal filters allows for a greater nonlinearity
compared to a standard 3D block with an equivalent num-
ber of parameters, as illustrated Fig. 2. Separating convo-
lutions yields state-of-the-art results on benchmark datasets
such as Sports-1M [19], Kinetics [3], UCF101 [48] and
HMDB51 [25].

FIGURE 2. a) A standard 3D convolution operator. b) A factorized (2+1)D
convolution operation with an additional nonlinear activation function in
between. Illustration courtesy of [50].

C. MIXED INPUTS ACTION RECOGNITION
Depth cameras provide different streams, or in other words,
different representations of the same action. Some works
have attempted to improve classification by combining
streams. It can be argued that skeleton-based approaches
prove most effective at discriminating actions with broad
movements. However, for actions involving similar joint
positions and trajectories, such as reading vs. playing on
a phone, skeleton-based models do not perform as well.
Visual streams can provide important cues such as the
type of object held. RGB and depth streams have been
studied extensively. However, to our knowledge, we are
the first to use IR data from depth cameras for action
recognition.

In [15], [39], [58] the complementary role of RGB and
depth is demonstrated. In [67], pose, motion, and raw RGB
images are inputted in 3 parallel 3D CNNs. Although visual
information greatly improves upon the pose baseline, results
are comparable with the then state-of-the-art methods using
only skeleton data. Pose data can be utilized to extract
regions of interest around joints or body parts [2], [14],
[36]. In [36], human-object interactions are modeled using
both skeleton and depth data. An end-to-end network is pro-
posed to learn view-invariant representations of skeleton data
and held objects. Once again, visual information increases
the accuracy but the results do not justify the complexity
of a fusion approach compared to the other skeleton-only
approaches of the time. The same year, Baradel et al. use
RGB and skeleton data jointly in a pertinent way [2]. Pose
information is used as an input but also conditions the RGB
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stream. The 3D skeleton data are projected onto the RGB
sequences to effectively extract crops around the hands of
the subject, serving as another input. The RGB stream thus
provides important clues about an object held and inter-
subject interactions, significantly improving the results. This
work shows that not all body parts need to be focused on,
unlike the approach in [36]. But this requires as many streams
as there are hands, which is memory inefficient. Furthermore,
when the hands are close together, the information provided
may be redundant. Alternatively in [52], a region of interest is
created using motion fields from RGB videos. An additional
region from the body is extracted using motion saliency. The
advantages of this method are that depth data are not required
and the attention mechanism role of the saliency map. But for
almost motionless actions, the region extraction should not
perform as well.

We propose a similar approach to [2], [36] and [52] in
which the 3D skeleton data provide a crop around the sub-
jects, alleviating the need for a spatial attention mechanism.
A single crop is necessary, even when multiple subjects
are interacting, which relaxes the memory needs. Compa-
rably, a faster R-CNN [37] can be used to crop a region
of interest around the subjects on depth images [60], but
requires a powerful graphics processing unit to be usable in
real-time.

III. PROPOSED MODEL
We design a deep neural network using skeleton and
IR data, called ‘‘Full Use of Infrared and Skeleton in
Optimized Network’’ (FUSION). The network consists of
two parallel modules and an MLP. One module inter-
prets skeleton data, the other IR videos. The features
extracted from each stream are then fused using differ-
ent strategies (average, sum, multiplication, max, convolu-
tion, concatenation). The MLP is used as the final mod-
ule and outputs a probability density. The network is
trained in end-to-end fashion by optimizing the classification
score.

We note a skeleton sequence S = {Sj,t,k} where j denotes
a joint index, t a frame index and k a coordinate axis (X , Y
and Z ). We note I = {It } a sampled IR sequence, as detailed
section III-B3, where t is taken between {1, ..,T }, with T the
number of sampled frames.

In the following sections, we present the individual mod-
ules of our FUSION model: a 2D CNN as the pose module, a
3D CNN as the IR module, and an MLP as the stream fusion
module.

A. POSE MODULE
A skeleton sequence requires careful treatment for optimal
results. First, a skeleton sequence is normalized to be posi-
tion invariant, meaning the distance between the subject and
the camera is accounted for. The sequence is then tran-
scribed to an RGB image, with multiple subjects interac-
tions in mind. The handcrafted RGB image is then fed to a
2D CNN.

1) PRIOR NORMALIZATION STEP
Each skeleton sequence is normalized by translating the
global coordinate system of the camera to a local coordinate
system corresponding to a key joint of the main subject.
We choose the middle of the spine as the new origin. This
is illustrated Fig. 3.

FIGURE 3. In red the coordinate system of the camera, in green the new
coordinate system corresponding to the middle of the spine of the main
subject for the first frame of the sequence, in blue the skeleton of the
main subject, in black the translation vector.

We adopt a sequence-wise normalization. In other words,
the translation vector is computed for the first frame and
applied to each subsequent frame, meaning the subject may
move away from the new local coordinate system, as follows:

S′ = S:,:,: − S1,0,:. (1)

where S′ is the normalized skeleton sequence, j = 1 corre-
sponds to the middle of the spine for the Kinect 2 skeleton
[66]. The ‘‘:’’ notation signifies that all values are considered
across this dimension.

2) SKELETON DATA TO SKELETON 2D MAPS
A skeleton sequence is mapped to an image similar to [8],
a skeletonmap. Each coordinate axis,X , Y and Z , is attributed
to each channel of an RGB image. Each key joint corresponds
to a row while the columns represent the different frames.

We apply a dataset-wise normalization [8]. We note cmin
and cmax the minimal and maximal values of the coordi-
nates after the normalization step for the entire training set.
As such, cmin and cmax are not influenced by the validation
and testing sets. The pixels of the skeleton map are recalcu-
lated using a min-max strategy in the [0, 1] range, as follows:

M =
S′ − cmin
cmax − cmin

. (2)

where M = {Mj,t,k} is the normalized skeleton map with k
both the coordinate axis and the image channel.

To accommodate for the fixed input size of the 2D CNN,
the skeleton map is resized to a standard size.

3) MULTI-SUBJECT STRATEGY
Our network is scalable to multiple subjects. We concatenate
the different skeleton maps across the joint dimension. With
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J being the total number of joints, the first J rows correspond
to the first subject, the subsequent J rows to subject 2, etc.
We limit the number of subjects to two, corresponding to
the maximum of the NTU RGB+D dataset [38]. Nonethe-
less, this method may be generalized to a greater number of
subjects. Should the skeleton sequence comprise only one
subject, the J rows of the second subject are set to zero.
In the case of multiple subjects, the coordinates of the

latter are translated to the local coordinate system of the main
subject (Fig. 4).

FIGURE 4. Skeleton map of two subjects. The joints of the two subjects
are concatenated across a dimension, then stacked over time. The created
image is reshaped to the fixed CNN input size.

The advantages of our method are manifold. Firstly, this
alleviates the need for individual networks for different sub-
jects. Secondly, this representation allows for a second sub-
ject to still intervene if its skeleton is detected after the first
frame. Thirdly, the distance information is kept as each sub-
ject coordinates are translated to the local coordinate system
of the first subject. Lastly, the skeleton map is resized to a
standard size to accommodate for the fixed input size of the
pose module. This implies that the network can learn from
raw sequences of different sizes.

4) CNN USED
The transformed skeleton map is used as input. We use an
existing CNN with pre-trained weights on ImageNet as we
find this ameliorates the classification score even when the
images are handcrafted. We choose an 18-layer ResNet [12]
for its compromise between accuracy and speed.

We extract a pose feature vector s from the skeleton map
M with the pose module fS with parameters θS in Equation 3.
Here, and for the rest of the paper, subscripts of modules and
parameters refer to a module, not an index.

s = fS (M|θS ) (3)

B. IR MODULE
The action performed by a subject is only a small region
inside the frames of an IR sequence. The 2D skeleton data
are used to capture the region of interest and virtually focus
the attention of the network, with multiple potential subjects
in mind. Because the IR module requires a video input with a

fixed number of frames, a subsampling strategy is deployed.
A 3D CNN is used to exploit the IR data.

1) CROPPING STRATEGY
Traditionally, 3D CNNs require a lot of parameters to account
for the complex task of video understanding. Thus, the frames
are heavily downscaled to reduce memory needs. In the pro-
cess, discriminating information may be lost. In an action
video of daily activities, the background provides little to
no context. We would like our model to only focus on the
subject as this is where the action happens. We argue that a
crop around the subject provides ample cues about the action
performed. Depth information, coupled with pose estimation
algorithms, provides a turnkey solution for human detection.
We propose a cropping strategy, shown Fig. 5 by a green
parallelepiped, to virtually force the model to focus on the
subject.

FIGURE 5. A fixed bounding box across the entire sequence is generated
using the 2D skeleton information. The new sequence focuses attention
on the subject rather than the background which provides little to no
context. The images are taken from the NTU RGB+D dataset [38].

Given a 3D skeleton sequence projected on the 2D frames
of the IR stream, we extract the maximal and minimal pixel
positions across all joints and frames. This creates a fixed
bounding box capturing the subject on the spatial and tem-
poral domains. We empirically choose a 20 pixels offset to
account for potential skeleton inaccuracy. The IR stream is
padded with zeros should the box coordinates with the offset
exceed the IR frame range.

The advantage of our method is as follows. Providing a
crop around the region of interest reduces the size of the
frames without decreasing the quality. The downscaling fac-
tor is thus less important and preserves a better aspect of the
image. Furthermore, it alleviates the need for an attention
mechanism as the cropping strategy may be seen as a hard
attention scheme in itself. Also, the network does not have to
learn information from the background, which is noise in our
case, as it is reduced to a minimum.

2) MULTI-SUBJECT STRATEGY
The cropping strategy can be generalized to multiple sub-
jects. The bounding box is enlarged to account for the other
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subjects. We take the maximal and minimal values across all
joints, frames, and subjects.

For a given sequence, the bounding box is immobile
regardless of the number of subjects. This allows keeping
camera dynamics. We do not want to add confusion to the
sequence by adding a virtual movement of the camera with a
mobile bounding box.

3) SAMPLING STRATEGY
Contrary to the pose network, a given IR sequence is not
treated in its entirety. A 3D CNN requires a sequence with
a fixed number of frames T . Choices must be made regarding
the value of T and the sampling strategy. A potential approach
would be to take adjacent frames in a sequence. But the
subsequence might not be enough to correctly capture the
essence of the action. Instead, we propose a scheme where
the raw sequence is divided into T windows of equal duration
similar to [32], as illustrated Fig. 6. A random frame is taken
from each window. A new sequence is created of length T .

FIGURE 6. Each IR sequence is divided into a fixed number of windows of
equal size. For each subdivision, a random frame is sampled. The
concatenation of those frames is the input for the IR module.

4) 3D CNN USED
The new sampled sequences are used as inputs for the 3D
CNN. We use an 18-layer deep R(2+1)D network [50] pre-
trained on Kinetics-400 [3]. R(2+1)D is an elegant network
which revisits 3D convolutions. Tran et al. showed factor-
ing spatial and temporal convolutions yields state-of-the-
art results on benchmark RGB action recognition datasets.
Separating spatial and temporal convolutions with a nonlinear
activation function in between allows for a more complex
function representation with the same number of parameters.

We extract a stream feature vector i from the sampled
IR sequence I with the IR module fIR with parameters θIR,
as follows:

i = fIR(I|θIR). (4)

C. STREAM FUSION
Both pose and IR modules output their feature vectors.
An MLP serves as the final module and returns a probability
distribution for each action class in a dataset.

Features of both streams are fused using different schemes
(average, sum, multiplication, max, convolution, concatena-
tion). TheMLP consists of three layers with batch normaliza-
tion [17] before computation. The ReLU activation function
is used for all neurons. Lastly, a softmax activation function is

deployed to normalize the last layer’s output into a probability
distribution.

The class probability distribution y is outputted by the
MLP fMLP with parameters θMLP in Equation 5. Inputs i and
s correspond to the feature vectors computed by the pose and
IR modules.

y = fMLP(i, s|θMLP) (5)

We tried a scheme where the pose and IR modules of our
network would emit their own prediction. We would then
average the predictions on a logits level with learned weights
during the backpropagation step. However, this would lead to
the network’s final classification to be attributed solely to one
module or the other. Instead, we believe that an MLP allows
for the features of the two streams to be interpreted jointly.

IV. NETWORK ARCHITECTURE
A. ARCHITECTURE
1) POSE MODULE
The pose network is an 18-layer deep ResNet [12]. The
network takes as input a tensor of dimensions 3 × 224x224,
where 3 corresponds to the RGB channels and 224 to the
height and width of the image. The output, s, is a 1D vector
of 512 features.

2) IR MODULE
The IR network is an 18-layer deep R(2+1)D [50]. It takes as
input a video of dimensions 3xTx112× 112, where 3 corre-
sponds to the RGB channels, T to the length of the sequence,
and 112 to the height and width of the image. The output, i,
is a 1D vector of 512 features.

To be able to leverage the pre-trained R(2+1)D CNN,
which is originally trained on RGB images, the IR frames,
which are single-channel grayscale images, are duplicated.

3) CLASSIFICATION MODULE
The classification module is an MLP network with three
layers. The first layer expects a vector of 512 (average, sum,
multiplication, max, convolution) or 1024 (concatenation)
features and comprises 256 units. The second layer consists
of 128 units. The last layer has as many units as there are
different action classes in a dataset. Finally, the softmax
function is used to normalize the predictions to a probability
distribution. Batch normalization is applied before the layers.
A dropout scheme has been tested in place of batch normal-
ization but was not found to be superior.

The entire network, detailed Fig. 7, is trained in end-to-end
fashion. The weights are reset after each run.

B. DATA AUGMENTATION
To prevent overfitting and reinforce the generalization capa-
bilities of our model, we perform data augmentation during
training.

The skeleton sequences have limited viewpoints but their
representation makes them excellent candidates for aug-
mentation through geometric transformations. The skeleton
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FIGURE 7. The full detailed model. The pose and IR modules output separate feature vectors. The two are fused and a final MLP outputs a class
probability distribution. The pose network is a pre-trained ResNet-18. The IR network is a pre-trained R(2+1)D-18 network.

sequences are enhanced by performing a random rotation
around the X , Y and Z axis. For each sequence during train-
ing, we apply a random rotation between −20◦ and 20◦ on
each axis.

We approach IR data augmentation with the following
scheme. For each sequence during training, we perform a
horizontal mirroring transformation on the frames with a 50%
chance probability.

When training the entire FUSION model, the best results
are achieved when the two streams are augmented indepen-
dently compared to mirroring the skeleton data (e.g. the left
hand becomes the right hand) jointly with the IR video.

C. TRAINING
The network is trained in end-to-end fashion by minimizing
cross-entropy loss, meaning all the modules of our network
are trained together. The pose network is pre-trained on the
ImageNet dataset [6]. The IR network is pre-trained on the
Kinetics-400 dataset [3].

V. EXPERIMENTS
We evaluate the performances of our proposed model on the
NTU RGB+D dataset, the largest benchmark to date [38].
We also perform extensive ablation studies to understand the
individual contributions of our modules.

A. NTU RGB+D DATASET
The NTU RGB+D dataset [38] is the largest human action
recognition dataset to date captured with a Microsoft Kinect
V2 [66]. To our knowledge, it is also the only one including
the IR sequences. It contains 60 different classes ranging
from daily to health-related actions spread across 56,880 clips
and 40 subjects. It includes 80 different views. An action
may require up to two subjects. The skeletons are composed
of 25 joints and the IR videos are all in 512×424. The various
setups, views, orientations, result in a great diversity which
makes NTU RGB+D a challenging dataset.
We follow the two official benchmark evaluations for

this dataset: Cross-Subject (CS) and Cross-View (CV).

The former splits the 40 subjects into training and testing
groups so that all sequences of a subject are in one set or
the other. The latter uses the samples acquired from cam-
eras 2 and 3 for training while the samples from camera 1 are
used for testing.

B. EXPERIMENTAL SETTINGS
For consistency, we do not modify the following hyperpa-
rameters across all experiments. We set the batch size to
16. Gradient clipping is used to avoid an exploding gradient
issue. We set it to 10. Adam optimizer [24] is used to train the
networks. A learning rate of 0.0001 is set and kept consistent
during training.

The pose and IR modules each require a fixed input size.
Skeleton maps are resized to 224×224 images. IR frames are
resized to 112× 112.

To assure consistency and reproducibility, we use a pseu-
dorandom number generator fed with a fixed seed. Following
[38], we sample 5% of the training set as our validation set.
The model with the highest validation accuracy is used to
evaluate the test set. We perform each experiment five times,
with a different seed, for a total of 10 runs across the two
benchmarks. Mean and standard deviation of the accuracy
scores are reported. Statistical significance is evaluated using
a one-tailed paired sample T-Test. Experiments are paired by
benchmark and seed. For example, when evaluating data aug-
mentation, the accuracy of the model without augmentation
is paired with its augmented counterpart for the same seed.
As such, each sample contains ten results. A critical value of
0.05 is used. Unless specified otherwise, a discussed increase
in performance is found statistically significant.

C. ABLATION STUDIES
In this section, we isolate the pose and IR modules and
study different parameters. Action classification accuracy
on the NTU RGB+D dataset is used as the comparison
metric. We evaluate the impact of various fusion schemes,
transfer learning, data augmentation, pose conditioning of IR
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sequences, and the number of frames T . Finally, we compare
our results with the current state of the art.

The CV benchmark is a much easier task. The test actions
are already seen during training but from a different point of
view with a different camera. Although the different setups
yield different joint position estimations for a given sequence
[65], the geometric nature of skeleton data allows for a better
generalization. This is not the case for the CS task as the test
sequences are completely novel. Consequently, the following
discussions will only address the CS benchmark.

1) POSE MODULE ALONE
We evaluate the performances of our pose module as a stan-
dalone. The IR module does not intervene. We also adjust
the input size of the classification MLP. Optimal results are
achieved by combining pre-training with data augmentation.
Table 7 shows the best results of the pose module on NTU
RGB+D: 81.9% on CS and 89.6% on CV.

2) INFRARED MODULE ALONE
The other part of the FUSION network, and arguably themost
important contributor, is the infrared module. In a similar
fashion as above, the input size of the MLP is adjusted while
keeping the number of neurons equal. Optimal results are
achieved with a pre-trained network, with data augmentation,
on pose-conditioned inputs for a sequence length of T = 20.
Table 7 shows the performance of the IR module as a stan-
dalone: 90.4±0.79% on CS and 93.8±0.46% on CV.

3) INFLUENCE OF FEATURE FUSION SCHEME
We test various deep feature fusion schemes: average (avg),
sum, multiplication (mult), max, convolution (conv) and con-
catenation (concat). The average, sum, multiplication, and
max fusion schemes are done in element-wise fashion. The
convolution scheme considers the i and s feature vectors as a
512×2 image. The features are convoluted by a 2D kernel of
size (1, 2). A new 1D feature vector with 512 new computed
features is thus outputted. Table 1 shows the impact of the
different fusion schemes on classification accuracy for the CS
and CV benchmarks.

TABLE 1. Impact of fusion scheme on classification performances (A:
Augmented | P: Pre-trained | C: cropped inputs) (accuracy in %).

The different schemes perform similarly. More convinc-
ingly, the sum scheme (93.35% average on CS and CV)
has the highest mean accuracy, but not found to be statisti-
cally better than the average and max schemes. Nonetheless,
regardless of the chosen scheme, results are systematically
improved compared to the pose and IR modules (Table 7).

4) INFLUENCE OF PRE-TRAINING
Pre-training a network is an elegant way to transfer a learned
task to a new one. It has been shown to provide impressive
results even on handcrafted images [65]. Furthermore, it helps
with the overfitting issue smaller datasets may demonstrate.

We evaluate the impact of this strategy on our network.
Table 2 shows the effect of pre-training on the different
modules.

TABLE 2. Impact of pre-training on classification performances (P:
Pre-trained | C: cropped inputs) (accuracy in %).

The pose network enjoys a noticeable increase in accuracy
of about 2.5% for both benchmarks (78.0% to 81.0% on
CS). It is pre-trained on ImageNet, which consists of real-life
images. The skeleton maps used as inputs are handcrafted.
Even then, a pre-training scheme shows encouraging results.

The impact of pre-training on the IR module’s accuracy is
significant. For uncropped sequences, the accuracy increases
by about 8% for both benchmarks (75.8% to 83.7% on CS).
For cropped sequences, the gain is almost 6% for the cross-
subject benchmark (84.2% to 90.1%) and above 4% for cross-
view (88.6% to 92.7%).

The greater contribution of transfer learning for the IR
module compared to the pose module might be explained by
the greater resemblance of IR vs. RGB videos compared to
handcrafted vs. real-life images. Nonetheless, such findings
further emphasize the power of transfer learning.

5) INFLUENCE OF DATA AUGMENTATION
Data augmentation consists of virtually enlarging the dataset,
thus hopefully preventing overfitting and reducing variance
between training and test sets. We perform augmentation for
the different streams. Table 3 shows the performances of data
augmentation on the different modules with pre-trained net-
works. Overall, data augmentation yields favorable results.

The pose module alone enjoys an increase of about 1%
accuracy for CS and 1.5% for CV (81.0% to 81.9% on CS).
Mirroring skeleton data with a 50% chance during training,
in addition to random rotations further improves the result,
especially on CV. The IRmodule alone seems to benefit more
from data augmentation on the CV benchmark compared to
the CS. For the CV benchmark, the increase is about 1%
whether the input sequence is cropped (92.7% to 93.8%)
or not (85.5% to 86.7%). Overall, the improvements are
significant. When the modules are fused using an element-
wise sum scheme, our FUSION network, independent data
augmentation is favorable with an increase of 0.7% for the
CS benchmark (91.1% to 91.8%) and 0.8% for the CV bench-
mark (94.1% to 94.9%). Mirroring the skeleton and IR data
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TABLE 3. Impact of data augmentation on classification performances (A:
Augmented | P: Pre-trained | C: cropped inputs | †: augmentation is joint,
i.e. when an IR sequence is mirrored, so is the skeleton) (accuracy in %).

TABLE 4. Impact of our cropping strategy on classification performances
(A: Augmented | P: Pre-trained | C: cropped inputs) (accuracy in %).

jointly also leads to improved performances, but to a lesser
extent.

6) TRANSFER LEARNING VS. DATA AUGMENTATION
Transfer learning and data augmentation are two strategies
to better generalize the performances of a network. Trans-
fer learning leverages the learned parameters from another
dataset while data augmentation virtually enlarges the cur-
rent dataset. A small dataset might lead to overfitting which
increases variance between the training and validation sets as
the training error continues to lower.

Our model can reach a negligible training error, even
with individual modules, showcasing an overfitting issue.
Having studied the impacts on performances of both meth-
ods, transfer learning shows much better results. This
might be explained by the already large size of the NTU
RGB+D dataset mitigating the potential of data augmenta-
tion. Nonetheless, it is formidable how a model can yield
vastly different performances based on the initialization of its
parameters. The black-box nature of deep learning makes the
interpretation of how a model learns difficult. Perhaps future
works will focus on understanding the internal representation
of a network to guide its learning rather than implementing
evermore complex models.

7) INFLUENCE OF POSE-CONDITIONED CROPPED IR
SEQUENCES
In this section, we evaluate the impact of our cropping strat-
egy, detailed section III-B1, on the performances of the IR
module as a standalone. Table 4 shows a significant increase
in performances.

Our baseline for this comparison, the IR module with-
out transfer learning and data augmentation on uncropped
sequences, reports unsatisfactory results (75.8% onCS).With
transfer learning and data augmentation, we are able to
increase the accuracy by 10% average for both benchmarks

(75.8% to 84.5% on CS). However, we find that our cropping
strategy alone reaps similar benefits (75.8% to 84.2% on CS).
When combining all three strategies, we further ameliorate
the classification score by about 5% (90.4% on CS). The
average gain for both benchmarks is thus above 15%, which
is considerable.

We demonstrate the power of a pragmatic approach.
An identical model performs significantly better thanks to
careful design choices.

8) INFLUENCE OF SEQUENCE LENGTH
Sequences of the NTU RGB+D dataset are at most a couple
of seconds long. We study the impact of the length T of
the new sampled IR sequence on classification performances
of two networks: the IR module only and on the complete
FUSION model. Both models are pre-trained and fed with
augmented data. The IR sequences are pose-conditioned.
Table 5 reports the impact of different values of T on the
accuracy score.

As a general tendency, the greater the value of T , the better
the results. Best results are achieved for T = 20 (on CS:
90.4% for IR module only and 91.8% for FUSION). For the
FUSION network, excellent results are achieved for a number
of frames as little as T = 8 (89.5% on CS and 92.9% on
CV). The differences between T = 12 and T = 16 are
not significant. The results really shine with T = 20. But
FUSION networks with a smaller value of T are much faster,
showcasing a trade-off between speed and accuracy.

9) PERFORMANCES BASED ON ACTION TYPE
We separate the action classes into three categories: intense
kinetic movement, similar motion, and object-related actions.
Details are provided in the footnote page 10. We use the class
IDs defined in [38]. The pose module, the IR module, and
the entire FUSION model are evaluated Table 6. For more
details on single-class performances, confusion matrices for
all modules can be found on the project page.

The pose module has a strong ability to classify actions
with intense movements (86.3% on CS) compared to similar
motion (76.1%) and object-related actions (76.8%). Actions
such as sitting down, standing up, falling, jumping, stag-
gering, walking toward or away from another subject are
classified with over 95% accuracy. Unsurprisingly, similar
motion and object-related actions prove themost challenging.
Writing is the trickiest, with 40% accuracy only and often
mislabeled as writing or typing on a keyboard. We believe
this will always be a limitation of pose-only networks.

The IR module has a more balanced accuracy score. Some
actions, such as touching another person’s pocket or stag-
gering, prove more difficult to recognize for the IR module
compared to the posemodule. However, some object-oriented
actions are still difficult to correctly discern. For instance,
writing is more often than not mislabeled as playing with
a phone. We propose two possible explanations. Firstly, the
object information might be lost during the rescaling process,
even with our cropping strategy in place. Secondly, the IR
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TABLE 5. Impact of IR sequence length on classification performances (A: Augmented | P: Pre-trained | C: cropped inputs) (accuracy in %).

TABLE 6. Comparison by action category. Class IDs can be found on the NTU-RBG+D website. (A: Augmented | P: Pre-trained | C: cropped inputs)
(accuracy in %).

TABLE 7. Comparison of our model to the state of the art (A: Augmented
| P: Pre-trained | C: cropped inputs) (accuracy in %).

nature, grayscale and noisy, might not be clear enough to
discern the object correctly. But other object-related actions
such as dropping an object or brushing hair see an impressive
improvement of over 10%.

The FUSION network is able to benefit from the kinetic
information of the pose module to improve the accuracy of
actions difficult for the IR module. For instance, touching the
neck is improved from 82% (pose only) and 77% (IR only)
to 95%. This is a strong demonstration that the two feature
networks work conjointly. However, the FUSION network
is still challenged by hand-related actions (eat a meal, brush
teeth, reading, writing).

10) COMPARISON WITH THE STATE OF THE ART
We compare our FUSION model, using an average fusion
scheme, with the state of the art (Table 7). We divide current
methods into 5 different frameworks including handcrafted
features, RNN-based methods, CNN-based methods, fusion

2Class IDs: 7, 8, 9, 10, 22, 23, 24, 26, 27, 31, 34, 36, 37, 38, 40, 42, 43,
44, 45, 46, 47, 48, 50, 51, 52,53, 54, 55, 56, 57, 58, 59, 60

3Class IDs: 1, 2, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 29, 30, 34, 35, 36,
39

4Class IDs: 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15,16, 17, 18, 19, 20, 21, 28, 29,
30, 32, 33, 49

methods, and GCN-based methods. Current best results are
obtained using skeleton data only with GCNs. We achieve
better results than the current state of the art on the CS
benchmark (91.8%) with 1.9% accuracy increase. On the
CV benchmark, results are comparable (91.8±0.40% for
FUSION against 91.8±0.40% for DGNN [41]). We conclude
to the efficacy of IR data to correctly interpret human actions.
Given the representation power of IR, follow-upworks should
compare this stream to RGB and/or depth maps.

We significantly improve upon current fusion methods,
once again validating the complementary role of pose and
visual data.

VI. CONCLUSION
We propose an end-to-end trainable network using skeleton
and infrared data for human action recognition. The pose
and infrared modules report strong individual performances,
which is greatly due to the power of transfer learning as
they are both pre-trained on other large scale datasets. When
working in symbiosis, the results are further ameliorated.
We are the first to jointly use pose and infrared streams. Our
method improves the state of the art on the largest RGB-D
action recognition dataset to date. Compared to other fusion
approaches, our method uses a single video stream, which we
believe is more memory efficient.

Our work demonstrates the strong representational power
of infrared data, which opens the door for applications where
illumination conditions render RGB videos unusable. The
complementary role of pose and visual streams is further
illustrated, which is in line with previous work. Given the
limits of our network on hand-related actions, future work
could focus on integrating a dedicated stream.
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