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ABSTRACT The trials and rollout of the fifth generation (5G) network technologies are gradually
intensifying as 5G is positioned as a platform that not only accommodates exploding data traffic but also
unlocks a multitude use cases, services and deployment scenarios. However, the need for hyperdense 5G
deployments is revealing some of the limitations of planning approaches that hitherto proved adequate for
pre-5G systems. The hyperdensification envisioned in 5G networks not only adds complexity to network
planning and optimization problems, but underlines need for more realistic data-driven approaches that
consider cost, varying demands and other contextual attributes to produce feasible topologies. Furthermore,
the quest for network programmability and automation including the 5G radio access network (RAN),
as manifested by network slicing technologies and more flexible RAN architectures, are also among other
factors that influence planning and optimization frameworks. Collectively, these deployment trends, techno-
logical developments and evolving (and diverse) service demands point towards the need for more holistic
frameworks. This article proposes a data-driven multiobjective optimization framework for hyperdense 5G
network planning with practical case studies used to illustrate added value compared to contemporary
network planning and optimization approaches. Comparative results from the case study with real network
data reveal potential performance and cost improvements of hyperdense optimized networks produced by
the proposed framework due to increased use of contextual data of planning area and focus on objectives
that target demand satisfaction.

INDEX TERMS 5G, hyperdense networks, network planning, techno-economics, network data analytics,
multiobjective optimization, small cells, Cloud-RAN, RAN slicing.

I. INTRODUCTION
This section provides an overview of mobile network deploy-
ment trends and their holistic planning and optimization
frameworks that inspire the research contribution presented
herein.

A. OVERVIEW OF DEPLOYMENT TRENDS
The ongoing mobile data traffic growth is mostly driven by
increased mobile broadband subscriptions globally coupled
with the increase in the average mobile data consumption
per subscription. The latter is mostly attributed to streaming
and sharing of increasingly high-definition video, as well
as, a range of emerging immersive video content (e.g. aug-
mented reality). A recent report noted that global mobile
data traffic will quadruple between years 2019 and 2025 to
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160 exabyte per month (with a further 53 exabyte per
month projected for fixed wireless access traffic) [1]. Such
projections on mobile data traffic growth and the diverse
requirements (e.g. latency, reliability etc.) imposed by a
multitude of new services, are prompting mobile operators
to upgrade their network to address the emerging demands
and remain competitive. The current typical scenario is for
operators to maintain multi-standard networks with expand-
ing fourth-generation (4G) long term evolution (LTE) foot-
print and while gradually phasing out preceding (pre-4G)
technology generations. At the same time operators are
maximizing the value of their LTE network investments by
applying LTE-Advanced and LTE-Advanced Pro enhance-
ments, which will provide not only capacity scalability, but
also flexibility to adopt cellular connectivity for vertical
services. These LTE-enhancements include infrastructure-
less proximity services for vehicles-to-everything and
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public-safety scenarios, and narrowband cellular connectivity
for Internet of Things (IoT) devices [2].

However, even as LTE network expansion is ongoing
globally, mobile operators, equipment vendors and other
industry stakeholders are already aggressively trialing and
rolling-out the fifth generation (5G) network technologies to
support evolving connectivity needs of the current decade
and beyond [1]. Moreover, sudden or unforeseen changes in
mobile traffic trends (as noted recently by changes in traffic
patterns induced by COVID-19 measures [1]), further under-
lines need for networks that are scalable for both projected
and unforeseen scenarios. To that end, 5G is envisioned to
be a unifying connectivity fabric that not only accommo-
dates exploding data traffic but also unlocks diverse verti-
cal use cases. This is attributed to fact that 5G is specified
from the beginning to enable enhanced mobile broadband
services, provide support for mission-critical communica-
tions with stringent reliability and latency demands; and
connecting massive number of IoT devices [3], [4]. The
ensuing diverse system requirements has necessitated not
only 5G core network advances (e.g. network slicing, virtu-
alization, in-networking caching etc.), but also development
of 5G new radio (NR) air interface with flexible numerology
and increased capacity through enhanced spectral efficiency
(e.g. with higher-order modulation, massive multiple-input
multiple-output (MIMO) etc.) and operation in new high
bands (including pioneer millimeter wave bands in the
24-28 GHz region) [5]. Moreover, 5G unlocks further net-
work capacity gains through aggressive spectrum reuse by
increased network densification [6]. The latter process of
network densification refers to addition of new cell sites
(typically small cell sites) to supplement existing macrocel-
lular networks and is usually quantified by the site density
(site/km2) or inter site distance.

Network densification has been a mainstay of 4G networks
with site densities of 10-30 sites/km2 becoming the norm,
particularly in urban scenarios [7], [8]. The need for small
cells will be even more critical in 5G networks due to oper-
ation in higher spectrum bands and need to support traffic
densities that are two to three order of magnitude higher
than LTE [4]. The general industry consensus is that 5G will
drive hyperdense deployments with site densities in excess
of 150 sites/km2 in urban and selected indoor scenarios [6].
With gradual rollout of 5G, the mobile network are becoming
increasingly heterogeneous constituting layered cell types
(indoor and outdoor small cells complementing umbrella
macrocells), based on multiple radio access technologies
(4G and 5G, alongside pre-4G technologies), operating in
different spectrum bands (low and mid bands used by all
radio access technologies (RATs) and 5G high-bands) [9].
Maintaining heterogeneous networks is strategic from a busi-
ness perspective as it allows operators to maintain services
for legacy user equipment (UE) categories while simultane-
ously providing capabilities to support new vertical-driven
use cases and enhanced user experiences leveraging 5G per-
formance enhancements.

B. HOLISTIC PLANNING FRAMEWORKS
However, the transition towards these heterogeneous hyper-
dense networks is exposing a number of significant chal-
lenges, such as, the increased complexity in network planning
and optimization. Network planning in this cellular context
connotes to the process of determining the number, loca-
tion, and configuration of base stations (macrocells and/or
small cells) to create a mobile network topology that satis-
fies pre-determined objectives or requirements of from the
perspective of different stakeholders. Typically, this includes
the supply-side perspective of mobile network operator’s
(e.g. maximizing return on investment (ROI) per small cell)
and the demand-side perspective subscribers or end user
(e.g. achieving certain quality of service (QoS)). It is noted
that in this case the ’user’ is not limited to human users,
but also includes devices, machines or other connected
‘‘things’’ [10]. Careful network planning is equally useful
for greenfield deployments in target planning areas where no
prior deployments exist, as it is for brownfield deployments
(or incremental deployments) enhancing or extending exist-
ing network infrastructure. The brownfield scenario exem-
plifies contemporary network planning processes, whereby,
network operators are looking to apply 5G upgrades on exist-
ing 4G networks. In general, the network planning process
constitutes at least three concurrent (and sometimes recur-
sive) phases, namely:

1) Network dimensioning: this is the initial step that typ-
ically uses link budget analysis to obtain a rough esti-
mate on the number of base stations required to fulfill
certain high-level coverage and capacity targets for a
given planning area [11].

2) Detailed network planning: The detailed network plan-
ning phase utilizes network dimensioning estimates
to evaluate a more accurate number of required base
stations, as well as, their precise locations and initial
cell parameters (e.g. antenna heights, azimuths, tilts
etc.).

3) Post-deployment optimization: The recurring opti-
mization procedures conducted in production networks
to maintain or enhance performance in response to
unforeseen or dynamic factors not captured in the
detailed network planning phase [12]. These factors
may include persistent network failures or quality
degradation and demand evolution due to new services,
subscriber growth, adoption of higher category UEs
and so on.

The investigations on methods to overcome challenges in
detailed network planning continue to gain significant trac-
tion in the research community as the need for hyperdense
5G (and beyond) networks becomes more apparent (see, for
instance [13], and references quoted therein). The densifica-
tion approach in pre-5G networks was typically motivated
by macrocell network performance shortcomings observed
from post-deployment optimization procedures, customer
feedback, crowd-sourced data, network drive or walk test
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campaigns, and so on. These findings would then inform
small cell placement decisions usually targeting coverage
holes, traffic hotspots or selected offloading relief points for
overloaded macrocells [8]. This reactive small cell deploy-
ment approach allowed for small cell deployments without
the obligatory detailed network planning.

By contrast, the envisioned scale of densification in 5G net-
works makes small cells deployment a critical pre-requisite
for 5G fulfilling service requirements, rather than simply a
macrocell complement. Moreover, it implies that small cell
sites are becoming a major contributor to the network’s over-
all energy footprint and total cost of ownership (TCO). These
factors underline the need for detailed planning of small cell
deployments in the 5G network rollouts [14]. However, these
heterogeneous hyperdense 5G networks reveal limitations
of traditional planning approaches, but also unlock oppor-
tunities for new approaches for detailed network planning
processes.

Additionally, new small cell ownership and sharingmodels
are emerging beyond traditional operator-only models [15].
The enormous amounts of data produced from existing net-
works and derived from other open data sources (includ-
ing non-telecom data) are also providing useful input for
increasingly data-driven planning process [15], [16]. Mobile
network operators are also seeing increased incentive to
transform from being mere broadband service providers to
providers of flexible communications and computing plat-
forms supporting a multitude of services with differing key
performance indicator (KPI) requirements and deployment
options [4]. This flexibility in supporting these diverse ser-
vices (both legacy and new services) whilst minimizing cost
of densification is also motivating developments in radio
access networks (RANs) taking advantage of increased vir-
tualization and softwarisation in the RAN [17]. These radio
access technology evolution and different deployment trends
are strongly interrelated and underline need for enhanced
planning frameworks that consider them in a holistic
manner.

C. CONTRIBUTIONS OF THIS WORK
This article proposes a data-driven multiobjective opti-
mization framework for hyperdense 5G network planning
with practical case studies used to illustrate possible added
value compared to legacy approaches. Specific contributions
embedded in the proposed framework include the following:

1) Introducing a pragmatic approach for the selection of
candidate site locations for hyperdense deployments,
taking into consideration different small cell infrastruc-
ture ownership or sharing models, as well as, char-
acterizing the cost efficiency of individual candidate
site as opposed to approaches assuming homogeneous
candidate sites.

2) Adoption of a data-driven approach leveraging con-
textual datasets (e.g. geospatial, spatiotemporal traffic,
demographic data etc.) of target area as an input to
the planning and optimization processes to enhance the

precision of the 5G hyperdense network planning under
realistic conditions.

3) Adoption of use case or service driven planning tar-
gets that is commensurate with the needs of the
emerging slice-based approaches, whereby, satisfac-
tion of demands of individual (per user, per service
etc.) KPI requirements becomes a primary objec-
tive, rather than common cell-level or network-level
KPI targets.

4) Implementation of brownfield network planning pro-
cess that targets to optimize new 5G deployments as
complement to legacy pre-5G infrastructure, consid-
ering not only multi-RAT operation but also hetero-
geneous architectures including new next-generation
RAN (NG-RAN) split architectures.

The numerical results from a realistic planning case study
reveals a number of interesting insights when the pro-
posed multiobjective optimization framework is bench-
marked against traditional approaches:

1) By focusing on satisfying KPI demands of individual
user services (rather than homogeneous network-wide
KPIs) and utilizing user distributions derived from real-
istic data, the proposed framework is not only able to
satisfy demand more effectively but also does so with
higher cost-efficiency.

2) The candidate site selection is critical in ensuring
computational tractability of hyperdense planning and
optimization. The framework candidate site selection
is also informed by contextual data and is based on
multiple criteria, thus achieving better performance
(demand satisfaction) and cost-efficiency, compared to
candidate site selection based on single criteria (e.g.
cost).

The rest of the paper is organized as follows. Section II
presents a state-of-art survey of network planning and
optimization approaches and identifies trends and gaps to
be considered for holistic planning framework proposed
herein. Thereafter, Section III outlines the system model of
the proposed framework and Section IV presents the case
study to evaluate the framework against commonly adopted
approaches. The results obtained from the case study are
then analyzed in Section V. Finally, the concluding discus-
sions and future potential research directions are presented in
Section VI.
List of acronyms used in this paper are presented

in Table 1.

II. RELATED WORKS AND GAPS
A. ANALYSIS OF TRENDS
As noted previously, the need for holistic planning frame-
works is motivated by several technology and deployment
trends. An analysis of the trends is provided prior to a sum-
mary survey of the pre-5G/5G network planning research
works, some of which aspire towards holistic planning
approaches.
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TABLE 1. List of acronyms.

1) HETEROGENEOUS SMALL CELL OWNERSHIP MODELS
The small cell deployments in pre-5G networks have been
mostly operator-led (in same way as macro deployments),
with an operator responsible for site acquisition, infrastruc-
ture deployment and site maintenance. This approach pro-
vides network planning autonomy for the operator in terms
small cell placement decisions. However, ongoing hyperden-
sification makes it commercially unsustainable for opera-
tors to meet growing service demands from own small cell
deployments, thus motivating alternative small cell owner-
ship or sharing models [15]. Site sharing through commer-
cial agreements has been prevalent in macro deployments
and has gained traction for small deployments. However,
the use of small cells deployed by non-operator third par-
ties (neutral hosts) is project to contributed majority of
the deployed small cells after year 2023 [9]. These neu-
tral hosts (e.g. public venue owners, municipalities etc.)
leverage their infrastructure (e.g. buildings, utility poles,
advertisement panels etc.) to deploy and provide small-
cells-as-a-service model for use by one or more opera-
tors [15], [18]. Another interesting but relatively niche model
is of operator-branded but user-deployed small cells for
closed-access residential use analogous to traditional private
Wi-Fi deployments [19]. From a network planning perspec-
tive, the neutral host small cells present a planning constraint
in terms of possible candidate site locations and operator
decisions on whether to deploy or share small cells in specific
locations.

2) ADOPTION OF DATA-DRIVEN NETWORK PLANNING
PARADIGM
The increased availability of information on the time-varying
context of target planning areas is enabling enhanced pre-
cision or accuracy of network planning and optimization
processes [14]. This contextual information is typically
data that provides realistic representation of attributes that
influence network planning decision [16]. This includes
information on the 3D radio propagation environment
(buildings, terrain, and other obstacles), spatiotemporal
demand distribution (user locations and services consumed),
KPI requirements for different services, availability of
support infrastructure (site facilities, backhauling, energy
sources etc.) and techno-economic parameters (e.g. TCO,
average revenue per user, market share etc.). In the past,
mobile network planners have circumvented lack of realistic
data by simplifying the planning process through approxima-
tions derived from accumulated planning experience or lever-
aging synthetic data obtained from mathematical models for
radio propagation, traffic distribution, and so on. However,
the requirement for high-precision planning for hyperdense
5G networks [14], advances in data analytics [16], and the
increased access to relevant contextual datasets (e.g. public
sector Open Data [20]), is shaping the trend towards adoption
of a more data-driven paradigm in 5G network planning [16],
[21]–[23].

3) INCREASED COMPLEXITY IN THE NETWORK PLANNING
PROBLEMS
Detailed mobile network planning is essentially a practical
optimization problem of evaluating optimal topology while
considering two or more mutually conflicting objectives.
For instance, a commonly encountered conflict in network
densification is the one between minimizing costs (number
of base stations) and maximizing achievable performance
(frequency reuse gains). In such situations there is no sin-
gle solution that minimizes all the objectives. A common
approaches for solving these problems is by use of multiob-
jective optimization approaches that produce a set of optimal
trade-off solutions known as Pareto set or Pareto front of
solutions [24], [25]. However, solving these multiobjective
problems is complex and their optimal solutions belong to
the class NP-complete that cannot be found in polynomial
time. In the case of detailed planning of hyperdense 5G
networks, the complexity of multiobjective optimization is
underscored by the inherent heterogeneity in the system and
addition of optimization objectives or constraints that may
have been considered insignificant in pre-5G network plan-
ning (e.g. minimizing electromagnetic field (EMF) exposure
levels [26]). Moreover, the need to plan for increasingly
large number small cell deployments and exploitation of
big data resources for planning, places high demands com-
putational resources, necessitating innovative problem for-
mulation to be within the feasible computational efficiency
bounds.
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4) MIGRATION TO A SERVICE-ORIENTED NETWORK
PARADIGM
The planning of pre-5G networks has traditionally been
underpinned by some common network-wide performance
targets (e.g. cell edge rates, coverage probabilities, etc.) with
minimal consideration of the differentiation between targeted
services. This ‘‘one-size-fits-all’’ approach for the legacy
systems is not suitable for the new increasingly diverse ser-
vice requirements placed on mobile networks. Flexibility is,
among others, now a very important requirement for more
service-oriented paradigm. To that end, 5G networks are
service or use case driven, essentially implying that they
are engineered to be flexible connectivity platforms that
simultaneously support a multitude of services with differing
requirements and deployment options [4]. This service dif-
ferentiation manifests not just in terms of KPI requirements
(e.g. data rates, traffic densities, latency, reliability, mobil-
ity, security etc.), but also in terms of functional require-
ments of the service (e.g. positioning, caching, computing,
security etc.). Network slicing is main enabler for this new
service-oriented paradigm [27]. With 5G network slicing,
a mobile operator can build different end-to-end logical net-
works (slices) on a common and shared network infras-
tructure (network resources and functions). The instantiated
network slices must satisfy certain network performance and
function requirements of each service instance. Furthermore,
the network management and orchestration systems will con-
tinuously monitor and adapt the performance of network
slices such that requirements of the service are met through-
out the session. A notable development in this context is
the O-RAN Alliance specified open interfaces and intelligent
RAN controllers that enable external applications to have
assurance RAN slice KPIs [28]. From a 5G network planning
perspective, this service-oriented paradigm also necessitates
formulation of the optimization objectives towards fulfill-
ment or satisfaction of requirements of different types of
services envisioned for the network. Indeed it is noted that
satisfaction-based optimization approaches have appeared
in recent studies on Wi-Fi access point selection [29] and
resource allocation in 5G sliced networks [30]–[32].

5) HETEROGENEITY OF RAN TECHNOLOGIES AND
ARCHITECTURES
The 5G NG-RAN is characterized by heterogeneity. The
interworking approach for multiple RATs (pre-5G, 5G,
beyond 5G, non 3rd generation partnership project (3GPP)
etc.) is embedded in the NG-RAN specification, allowing
for continuity of support of diverse user device technolo-
gies and service types through intersystem roaming, dual
connectivity, service exposure, network or resource sharing
and so on [17]. Furthermore, virtualization of network func-
tions in the NG-RAN enables disaggregation and functional
decomposition of the 5G base station or next-generation
node B (gNB) into central unit (CU), distributed unit (DU)
and radio unit (RU) [17]. As a result, in addition to traditional

integrated gNB deployments, different cloud-RAN (C-RAN)
architectures are possible depending on the CU/DU/RU
functional splits adopted and their placement within the
NG-RAN. Additionally, the control plane and user plane
separation allow their independent scaling and separate place-
ment within the network. This deployment flexibility is
attributed to the fact that most of those functions are hosted
as software services, and can be dynamically instantiated
at different parts of the network, such as, the radio site,
on the edge or even at remote data centers) [33]. Essentially,
this software reconfigurability enhances the automaton and
programmability of the overall 5G network and caters to
flexibility demands of network slicing. For network opera-
tor or service provider, the actual placement decisions for
different network functions is typically influenced by fac-
tors, such as, KPI targets, cost, backhaul/fronthaul capacity,
deployment scenario needs or business requirements. The
function placement flexibility and considerations also include
placement of some core network functions and application
layer functions (e.g. edge computing, caching etc.) in the
RAN. Notably, the placement of the core network’s user
plane function (UPF) within or on the edge of the RAN
is key enabler for provisioning slices with stringent latency
requirements [33]. These heterogeneous aspects of the
5G-RAN impact network planning not just in terms inter-
working between systems but also implications of different
architectures, particularly in a brownfield network planning
process that targets to optimize 5G new deployments as com-
plement to legacy pre-5G infrastructure.

B. IDENTIFIED GAPS
Themultiobjective optimization framework for network plan-
ning have been discussed in some previous publications.
Table 2 acknowledges the advances made in the literature,
but also highlights the gaps and how they are considered in
this paper.

1) RADIO ACCESS TECHNOLOGIES AND ARCHITECTURE
In Table 2 majority of research has focused on pre-5G net-
work planning for single-RAT heterogeneous networks from
the perspective of multiple cell types or layers (macro and
small cells). Furthermore, most of 5G network planning stud-
ies are underpinned by greenfield deployment assumptions,
with no consideration of interworking with legacy pre-5G
deployments in the problem formulation.
Considerations for Proposed Framework: The network

planning have to take into account the flexibility of the
NG-RAN architecture and inherent heterogeneity as noted
previously in Section II-A5. Notably, there have been recently
a steady increase in network planning research works [34],
[35], [42], [50]–[52], which account for the disaggregated
deployment of gNB functions (RUs, DUs, CUs) across dif-
ferent physical locations. This typically results in network
planning problems where placement of small cell functions
(DU and CU) are optimized at potential tiered-level locations
represented as RAN edge node or processor pools sites,
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TABLE 2. Summary of Related Works (BH - backhaul, FH - fronthaul, MC - macrocell, SC - small cell).
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subject to constraints on backhaul/fronthaul capacity, energy,
cost and so on [33]. However, these works do not provide
detailed evaluation of RAN performance or consideration of
spatiotemporal user and demand distributions. With the new
NG-RAN architectures there is noted need for network plan-
ning and optimization to consider end-to-end performance
including radio access, edge and transport.

2) RADIO PROPAGATION MODELLING
The pathloss coverage map contains the information on the
pathloss at different locations in a target planning area with
respective to specific base station locations and their antenna
parameters (antenna pattern, tilt, height, etc.). As such,
pathloss maps of high accuracy and resolution are required
for optimizing coverage and minimizing interference in the
planning phase. The pathloss predictions are obtained using
propagation models that can be roughly split into empiri-
cal models and deterministic models [53], [54]. Empirical
models are derived frommeasurements performed in specific
locations and re-calibrated for use in other target planning
areas. This allows for propagation modelling to be carried out
with low computational effort while at least rough geospatial
data of the target planning area is required. Due to simplicity
of use empirical models represent a regular choice particu-
larly in the pre-5G network planning as noted in Table 2.
However, this simplicity and ease of reuse of the models
comes with a disadvantage of limited modelling accuracy.
On the other hand, deterministic modelling typically relies
on ray tracing algorithms used to compute radio propaga-
tion in multipath environments. The propagation modeling
accuracy is much higher than for empirical models, but with
the cost of higher computational effort and need for detailed
3D geospatial data of the target area. A notable exception
is geometry-based stochastic modeling approaches which
overcome geospatial data unavailability by using predefined
stochastic distribution to recreate scatterers [54].
Considerations for Proposed Framework: There is

increased popularity of deterministic models for propaga-
tion modeling in 5G and beyond systems regardless of the
challenges noted above [54]. This is attributed to factors
including the flexibility of accurately modelling channels
with carrier frequencies ranging from sub-6 GHz to even
Terahertz bands, different carrier bandwidths, as well as,
the need to evaluate advanced 5G multiantenna techniques
(e.g. beamforming) that place high demand on channel spatial
resolution. Furthermore, deterministic models provide the
flexibility of modelling time-varying channels with mobile
radio transmitters and receivers, as well as, scattering objects
in the surrounding vicinity.

3) CANDIDATE SITE SELECTION
In practice the deployment of base stations is only feasible in
a limited number of candidate site locations within a given
planning area, due to constraints, such as, availability of
site facilities (e.g. grid power, fixed line infrastructure etc.),
deployment costs, permits for civil work and right of access.

To that end, the type of base station or cell would also dictate
the number of possible sites. Macro base station antennas are
typically deployed 20-60m above ground and require erection
of radio towers or deployment at rooftops of tall buildings.
On the other hand, outdoor small cells are usually deployed
closer to the user ‘‘below rooftop level’’ several meters above
ground and present more diverse ownership models (as noted
previously in Section II-A1), which results in equally diverse
types of site locations.
Considerations for Proposed Framework: From a network

planning perspective, the knowledge on the available candi-
date sites is critical in ensuring practical feasibility of topolo-
gies computed by network planning algorithms. It is noted
in Table 2, that the use of candidate site locations has been
limited to leveraging of existing pre-5G sites (mostly macro
sites) as input for network planning, whereas, candidate site
locations for small cell sites are usually arbitrarily selected
with little or no practical consideration. With onset of hyper-
densification, the careful consideration of small cell candi-
date sites will be critical for evaluating overall deployment
costs and ensuring small cells have prerequisite access to high
capacity backhaul and energy sources.

4) USER DISTRIBUTION AND DEMAND DEFINITION
Macro site deployment is typically planned to provide a
blanket coverage over a given planning area. To that end,
the supplementary deployment of small cells closely correlate
to the expected spatiotemporal traffic distribution, whereby,
denser deployments occur in areas with significant periods of
high-traffic densities. The spatiotemporal traffic distributions
are determined by variations in user distributions and their
respective demands, whereby, user distribution refers to the
actual spatiotemporal distribution of users in the planning
area, whereas, demand represents actual KPI value (e.g.
throughput) required to support each user service. In most
studies, probability distributions (e.g. Poisson, uniform etc.)
provide a convenient way for generating user distribution for
the network planning (see Table 2). Yet, more realistic user
distributions are obtained when applying the population data.
Similarly, the definition of service demand has usually been
simplified to few arbitrary chosen target values or it is simply
replaced by network performance measures (e.g. cell edge
or center rates) that provide minimum performance that user
should achieve to support all services envisioned in planning
phase.
Considerations for Proposed Framework: Simple models

may work in conventional macro-only networks but result
in sub-optimality when network density is increasing due to
introduction of small cells. To that end, spatiotemporal traffic
data from existing pre-5G networks [22], [55], [56] provides
a useful resource for optimizing hyperdense 5G and beyond
networks. Sets of practical network data provide dynamic
user distribution (e.g. hourly user/service dynamics) and ser-
vice demand trends that can be used to predict accurately
future traffic demands for a given service. Furthermore, with
the emergence of a slice-based service-oriented networks,
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the definition of service demand should be linked to specific
requirement of network slices (e.g. as noted in [30], [47]).

5) COST MODELLING
Although the small cell site deployment and operation costs
are low (compared to macro sites), they may represent a sig-
nificant fraction of the overall network TCO due to increased
densification. Therefore, modelling of costs in network plan-
ning process is critical while ensuring that obtained net-
work topology meets performance targets within allowable
or sustainable cost constraints. The cost consideration in most
network planning studies of Table 2 has been abstracted and
represented in terms of the number sites, essentially with
assumption that all sites admit the same cost.
Considerations for Proposed Framework: The above

explained simplification of non-parametrized cost modelling
does not account for heterogeneity of candidate site loca-
tions and related cost differences due to presence (or lack)
of permits, built structures, site facilities (e.g. powering,
backhaul etc.), as well as, their ownership models noted in
Section II-A1. This calls for more explicit modelling of all
cost factors in 5G hyperdense deployments. Furthermore,
the transition towards C-RAN architecture underlines the
need for careful cost modeling including not just radio sites,
but also costs of related radio edge deployments and transport
infrastructure, which may for instance influence the kind of
split architectures adopted in a particular part of the network
[35], [50]–[52].

6) OPTIMIZATION OBJECTIVES AND APPROACHES
In earlier discussions it was noted that mobile network plan-
ning problems usually entail evaluation of optimal topologies
under the consideration of two or more mutually conflicting
objectives. To that end, the common optimization trade-off
noted in Table 2 has been between maximizing the achievable
performance whilst minimizing the cost. As noted previously
the cost in most cases has been represented indirectly by the
number of small cell radio sites.
Considerations for Proposed Framework: The transition

toward flexible cloud-based 5G RAN architectures that
tightly integrate access with backhaul/fronthaul [57], further
underline usefulness of optimizing end-to-end performance
and costs aspects in hyperdense deployments. Furthermore,
the use of network slicing is increasing the need for versatility
in formulation of optimization objectives, not only being
limited to throughput-related targets, but also satisfying other
KPIs (e.g. latency) included in slice definition.

III. SYSTEM MODEL
The holistic planning framework proposed in this paper is
depicted in Fig. 1. It consists of three core parts, namely
data collection, data driven analysis and multiobjective opti-
mization. The framework takes relevant contextual data of
target planning area as an input and provides Pareto optimal
networks as an output. Comparative performance evaluation
is performed over realized networks to thoroughly understand

trade-offs between satisfaction and economic indicators. The
aim of the evaluation is to support operator’s decision on
network deployment. The framework is tuned for brownfield
planning in target areas with pre-existing pre-5G network
deployments. Yet, it can also be applied for greenfield 5G
planning with modification on models that are based on the
existing network data.

Objectives for core parts of the framework and related
methodologies are described as follows.

A. DATA COLLECTION
The effectiveness of data-driven heterogeneous hyperdense
network planning is highly dependent on the availability
and quality of contextual data of target planning area. This
includes, geospatial data, data describing existing networks
deployed in the area, data on subscribers and services sup-
ported by those networks, and cost and revenue related
data [14]. This input data is collected by operator from the
network, as well as, external data sources including over-the-
top service providers and public data [22]. The quality of this
gathered data is dependent on its ability to provide accurate
understanding on users’ demand, candidate sites and radio
propagation in the planning area. Most important data sets
for the framework are briefly described as follows.

GEOSPATIAL DATA
This term refers to data providing digital representation of
geospatial phenomena, such as, terrain, building, roads/rails,
vegetation and other relevant geospatial data that affects
radio propagation and demand distribution. Such data can be
obtained from 2D/3D maps, built infrastructure plans for the
area and other geographical information data sources.

EXISTING NETWORK DATA
We need existing network topology, configuration and cover-
age data, but also spatiotemporal distribution of users/devices
and their traffic, obtained from the operator’s network man-
agement system (NMS).

SERVICE DATA
The demand distribution is one of the key planning inputs.
To formulate it, we need the service data from operator’s
existing network and KPI requirements defined for future
services.

COST AND REVENUE DATA
Network TCO is a sum of various factors including cost
of required network upgrades, equipment, installation, new
site acquisition and/or rental, powering, fronthaul/backhaul,
maintenance and licensing [58]. Data that describes these
costs needs to be surveyed in the context of the planning
area and targets. We note that also costs of using street fur-
niture and site sharing are also relevant while predicting the
overall network cost. Finally, data that provides insights on
spatiotemporal distribution of current or projected revenues
is also important in ensuring ROI.
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FIGURE 1. Data-driven optimization framework for planning hyperdense networks.

B. DATA DRIVEN ANALYSIS
This analysis is performed to produce service demand dis-
tribution, to identify candidate sites for small cells and to
compute propagation.

1) GEOSPATIAL MODELING
Geospatial modeling of the planning area is a key input
needed for the accurate propagation computation. The terrain,
vegetation, buildings and other 3D structures need to be
modeled in detail to accurately capture their impact on the
radio propagation. The impact of the applied radio frequency
can be captured well only if accurate geospatial models are
developed with thorough understanding of the propagation
characteristics [54].

Combining available geospatial data and future built
infrastructure development plan of the area, aforementioned
maps are created with knowledge on requirements of applied
propagation computation tool. Implementation of maps is
carried out using 3D map editors, for instance WallMan
module of WinProp software [59].

2) PROPAGATION PREDICTION
The performance characterization of 5G NR is highly sen-
sitive to the choice of the propagation model, especially in
mmWave frequencies [60]. Previously in Section II-B2, it was
noted that the use of deterministic 3D ray-tracing methods
and high-accuracy geospatial maps provides useful means for
radio propagation prediction across 5G low, mid and high-
bands [54], [61]–[63].

Propagation predictions are computed for existing cells and
all small cell candidate sites. We denote the resulting average
channel power response by0 ∈ RNt×Na whereNt = Nm+Nc,
Nm is the number of existing cells and Nc is the number of
candidate sites and Na is the number of area elements (pixels)
in the planning area A.

3) USER AND DEMAND DISTRIBUTION
As satisfying users’ demand is a key objective of the pro-
posed network planning framework, users and their demand
distribution needs to be modeled as realistically as possible.
Typically planning studies assume that users are distributed
uniformly or according the Poisson point process while the
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FIGURE 2. Data-driven approach to obtain user and demand distribution.

user density is derived from population density or by some
other means, as noted previously in Section II-B4. Yet, better
accuracy can be achieved if user distribution is obtained by
applying the user distribution data obtained from the existing
NMS [6].

Conventionally, the NMS follows the number of users
attached to different base stations (BSs), with the resolution
that depends on the cell sizes. Besides this cell-level informa-
tion on user distribution, the current networkmonitoring tools
can provide spatiotemporal user distribution statistics per
pixel with relatively high resolution [64]. In urban area, such
a tool typically achieves around 50 m× 50 m pixel resolution
that can be enhanced to 20 m × 20 m pixel resolution by
applying machine learning techniques [14].

In Fig. 2 we propose an approach to obtain user and
demand distribution. The approach starts either from the
number of users per cell or per pixel. In the former
case, we apply the pixel-level cell coverage map from
the NMS or we simulate it. The instantaneous number of
users is obtained by using the Poisson distribution over the
statistics.

Users’ service demand can be expressed in terms of indi-
cators such as throughput, reliability (e.g. block error rate)
or latency. The demand definition should reflect thorough
understanding of user behaviour, services and their require-
ments.Moreover, as noted previously in Section II-A4, in net-
work slicing context this demand definition provides basis for
definition of user or service-specific slice templates. In Fig. 2
we have a simple approach based on service clutter map
that is generated based on targeted services and their spatial
distribution that can be obtained from operators’ planning
targets.

4) SPATIAL USER SATISFACTION
User satisfaction is a measure for the match between the
user demand and networks’ ability to fulfil the demand with
respect to certain performance indicators like data throughput
and latency. The match varies in different locations since
neither signal coverage nor the user distribution are even. Let
A be the area where the network planning is carried out and
let I (u, x) refer to a performance indicator value for a user u
in the location x ∈ A. Then we define the user satisfaction as

S(u, x) = I (u, x)/Id (u), x ∈ A, (1)

where Id (u) is the performance demanded by the user u.
We make the following notes on the measure (1):

• User is optimally satisfied in location x if S(u, x) = 1.
Otherwise, user either suffer from the service under-
provision (S(u, x) < 1) or enjoys of overprovision
(S(u, x) > 1). These cases are suboptimal from the
network operator perspective.

• While S(u, x) represents the satisfaction of a certain user
in a certain location, in network studies we create a user
satisfaction statistics that is denoted by S. The spatial
user satisfaction can be obtained from S by focusing
the observation on the values of S in some limited
geographical area like pixel.

• The network performance target can be defined in terms
of satisfaction outage. Such occasion takes place when
S(u, x) < 1. Let Nu be the number of all users in the
statistics. Then we define

Nout = |{u : S(u, x) < 1, x ∈ A}| (2)
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FIGURE 3. Data-driven candidate site selection method.

and the satisfaction outage reads as Sout = Nout/Nu.
We now set a target Sout < p, where p defines the target
probability of an outage.

5) SELECTION OF CANDIDATE SITES
It was noted in Section II-B3 that selection of candidate sites
is one of key steps in ensuring practical feasibility of deploy-
ments and computational tractability of the network planning
and optimization problems. While the complexity of network
planning and optimization problem increases with the num-
ber of candidate sites and the target site density, complexity
can be alleviated by a deliberate process of elimination of
impractical small cell site locations from the overall candidate
site set. This elimination can be based e.g. on location specific
costs and customer local dissatisfaction. We propose a small
cell candidate site selection methodology that efficiently pro-
duces a trade-off between conflicting interest.

Fig. 3 represents an approach that can be used to select
candidate site locations based on site deployment cost and
spatial user satisfaction. We notice that the site deployment
cost is computed based on the collected cost data and it is
a sum of many factors. It includes the costs of building the
last mile optical backbone, equipment installation, site rental
and/or acquisition costs [58]. Furthermore, the site deploy-
ment cost may include the reduction that can be obtained
through site sharing or by using low-cost site locations in e.g.
street furniture.

A location can become a candidate if its site deployment
cost is less than a given cost cap and the local user satisfaction
is below the target level. The resulting number of candidate
sites is determined by the values we set for the cost cap and
the target level of satisfaction. To further relax the compu-
tational complexity, filtering can be optionally performed on
the resulted candidate site set by setting a certain minimum
mutual distance among the candidate sites.

When satisfaction is measured in terms of latency, we also
need to know transport network topology: where are sites
for processing pools and what is the transport technology.

The contribution of radio propagation time to the end-to-
end (e2e) latency is negligible. It was previously noted in
Section II-A5 that in C-RAN deployments with functional
decomposition, the small cell would include DUs and/or CUs
functions placed in different processor pool or radio edge
node locations depending on the adopted functional splits in
the RAN [17], [33], [35], [50], [52]. The e2e latency in the
transport network is sum of delays due to transmission, traffic
switching, processing as well as interface encapsulation that
depends on the adopted functional splits and placements
(including UPF of the core network) [33]. With sites for the
pools and all possible placement of the network functions,
we can know all possible e2e paths from each candidate site
incurring their own e2e latency.

C. MULTIOBJECTIVE OPTIMIZATION
It is recalled that in brownfield scenarios, densification
through small cell deployments occurs as a complement to
existing networks. The main planning challenge is to define
the best set of small cell site locations when the number
of candidate site locations is large and there are multiple
performance targets. Natural methodology in this problem
setup is provided by the multiobjective optimization. Accord-
ingly, we apply herein a metaheuristic multiobjective opti-
mization method, whereby, we start from a possible network
deployments, simulate the systemwith selected deployments,
compute values of objective functions and reformulate the
networks until the ending criteria of the optimization is ful-
filled [49]. In each phase we leverage the input planning data
described in previous sections.

1) SYSTEM SIMULATION
To produce and rank the possible network realizations based
on the user satisfaction,Monte Carlo simulation is performed.
Let us denote a possible network realization by a vector
x = (1, xc), where 1 refers to the existing network and
xc ∈ {0, 2, 3, . . . ,No + 1}Nc contains the prospective small
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cell extension. No is the number of options for candidate sites
in terms of small cell type and e2e paths. For a site, 0 value
means no small cell placement while each remaining values
refers to applied specific small cell type (e.g. femtocell, pic-
ocell, microcell etc.) and e2e path from the radio site to the
UPF. The system simulation for a network x, is performed as
follows.

First, let Pr ∈ RNt denote the cells’ transmission power
vector on the downlink reference channel used for the cell
selection. Then the received reference channel power matrix
Rr ∈ RNt×Na is obtained as

Rr = diag(x� Pr ) 0, (3)

where � refers to the Hadamard product. Using the users’
locations, the reference power matrix Rr can be mapped to
the matrix Ru

r ∈ RNt×Nu that contains users received powers
on the reference channel, where Nu is the number of users.
The user cell association is then performed based on the
best received power criteria. To ensure the offloading from
existing cells towards small cells, some bias can be added to
the cell association procedure. Now, for ith user, the serving
cell c∗i is obtained from

c∗i = argmax
c={1,...Nt }

Ru
r (c, i). (4)

Once users are attached to cells, a binary serving cell matrix
C ∈ {0, 1}Nt×Nu can be defined. That is, for ith userC(c∗i , i) =
1 andC(c, i) = 0 otherwise.We denote byC′ the complement
of C. Further, the vector containing the users’ SINRs (per
resource block) is computed using the formula

SINR =

(∑
col

C� Ru
d

)
�

(
Pn +

∑
col

C′ � Ru
d

)
, (5)

where � is the Hadamard division and
∑

col refers to the
columnwise summation. Moreover, Pn is the white noise
power and Ru

d contains users’ received powers on the data
channel. Now Rd = diag(x � Pd ) 0, where Pd contains
the cells’ data channel transmission powers. We note that
SINR values from (5) are applied to compute performance
indicators such as throughput and reliability using a mapping
table or function for applied radio technology [65], [66]. For
instance, the user throughput vector can be obtained similarly
as in [66], using the formula:

TP = BprbBeff

[
Nprb � Nmimo � log2

(
1+

SINR
SINReff

)]
,

(6)

where Bprb, Beff, SINReff, Nprb and Nmimo are bandwidth
per PRB, bandwidth efficiency, SINR efficiency, number of
PRBs vector and number of MIMO layers vector, respec-
tively.

Based on serving cell matrix C and e2e path in x, latency
of users can be calculated using the formula

Le2e = Tr + Tt + Tsw + Tp + TDU + TCU + TUPF , (7)

where Tr , Tt , Tsw and Tp are total two-way latency due to
radio propagation, fiber transmission, traffic switching and
processing and TDU , TCU and TUPF are latency due to inter-
face encapsulation resulted from split and placement of the
DU, CU and UPF network functions [35].

The user satisfaction statistics is now embedded in the
vector S = I � Id , where Id is user demanded performance
indicator value vector and I is the indicator vector that is
obtained from the simulation, (6) for throughput and (7) for
latency. Finally, satisfaction objectives for the multiobjective
optimization can be derived from S, e.g. in terms of per-
centiles.

2) ECONOMIC OBJECTIVES
Network TCO is a sum of all site deployment costs including
both location dependent and location independent costs.Most
important factors include costs of equipment, installation, site
acquisition or rental, backhaul, powering, maintenance and
licensing.

For a small cell network extension the annual TCO can be
obtained from

TCO =
Nc∑
j=1

scj, scj =

{
sc(j, xc(j)− 1), xc(j) 6= 0
0, xc(j) = 0,

(8)

where sc ∈ RNc×No is the cost matrix with values for having
ready-made small cell options at the corresponding candidate
sites. Equation (8) can be written in the form

TCO = Nvsci +
Nv∑
j=1

scd (lj), (9)

where Nv is the number of active small cells, sci represent
the location independent costs, scd (lj) refers to the location
dependent costs of jth active small cell, denoted by lj. As can
be seen from (9), the small cell network extension cost does
not vary only with the number of active cells but also with the
location dependent variable costs. Thus, minimizing only the
number of active small cells cannot be used to assess TCO.

Revenue is a function of both users’ (satisfied) demand
and their buying power. It is mainly obtained from users’
service payments based on different billing models (e.g.
metered, fixed-price recurring, volume-based, tiered, bundled
etc.) although there might be also other indirect revenue
sources. In data volume based invoicing the revenue per user
is typically location dependent due to socio-economic factors.
Accordingly, the network topology may affect to the total
revenue as well. In such case we can apply net present value to
assess the net discounted cash flow considering both network
costs and unevenly distributed opportunities to gain revenue.

IV. A CASE STUDY
In the following we carry out a brownfield planning case
study to demonstrate the usage of the proposed holistic
multiobjective planning framework. Specifically, we utilize
the framework to benchmark improvements of different 5G
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FIGURE 4. Case study planning area in downtown Addis Ababa. Purple
circles refer to macro sites. Blue circles and yellow triangles refer to street
furniture and fiber termination points, respectively.

hyperdense deployment approaches over an existing pre-5G
macrocellular network.

A. STARTING POINT: THE EXISTING NETWORK
As a starting point for the case study we have adopted
a 1.67km × 1.48km (∼2.5km2) downtown area of Addis
Ababa (Ethiopia), depicted in Fig. 4. This area exemplifies
an urban scenario with active business area, intra-urban roads
and light rails, public hotspots (Meskel Square, stadium and
parks), and residential areas (bottom left). The city is located
at altitude of 2000-3000m above sea level and there are
buildings of heights up to 79m.

The existing pre-5G network in the selected study area is
composed by ten macro BS sites. Each site is tri-sectored
supporting three 3G+ cells that apply 3GPP band 1 with
quad-carrier support and three 4G cells that operate employ-
ing 20 MHz bandwidth at 3GPP band 3 carrier. Although we
use precise site coordinates and antenna parameters, they are
not presented in the paper due to confidentiality reasons.

To characterize the network traffic we have analyzed
the numbers of users and the data flow during Octo-
ber 2019 within 10 sites of Fig. 4. The obtained results indi-
cate that most of the connections take place through the 3G+
technology. To give an example, we have presented in Fig. 5
the hourly mean number of users served by cell 1 of site 1
applying 3G+ and 4G technologies for a one week period
(Oct 25-Nov 01). Furthermore, the distribution of the highest
mean data traffic per hour is shown in Fig. 6 for the observed
10 sites within the same time period. As can be seen from the
Fig. 6, the busiest traffic hour commonly occurs around the
lunch time (12 pm to 1 pm). The afternoon hours at round
4 pm and 5 pm are also popular as well as the evening hour at
9 pm. Exception is the Sunday which is the only non-working
day in Addis Ababa.

FIGURE 5. Hourly mean numbers of users for 3G+ and 4G.

FIGURE 6. Per-hour highest mean data traffic distribution.

B. NETWORK UPGRADE AND HYPERDENSIFICATION
1) PROPAGATION PREDICTION
For the propagation modeling we have created a 3D map of
the area using local terrain and building map data imported
and edited using the WallMan module of WinProp software
suite [59], see illustration of Fig. 7. Applying this building
and terrain map, we can compute signal paths in all cells
using the deterministic 3D propagationmodel (dominant path
ray-tracing model [67]) of ProMan package included the
WinProp suite [59].

2) USER DISTRIBUTION AND THROUGHPUT DEMAND
While planning the hyperdense small cell extension for the
current network we assume the same distribution of users
as in the present network but with much higher expectation
for the users’ throughput. The applied user distribution is
based on the real NMS data collected in October 2019. Data
consists of the cell-level numbers of users and observed per
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FIGURE 7. Building and terrain maps of the planning area.

FIGURE 8. Instantaneous user distribution. Blue black squares refer to
users.

hour data flow with 50 m × 50 m pixel accuracy. Based
on this data and user density clutter of Table 3, defined by
the NGMN Alliance [68], the user and throughput demand
distribution is generated by applying the approach presented
in Fig. 2. A snapshot of the user distribution is depicted
in Fig. 8.

We have focused on the throughput that is computed based
on the mapping in (6), whereby, the applied SINR and band-
width efficiency parameters are selected according to [66].
Furthermore, we assume that future throughput demand will
be much higher than that observed in the present NMS data
due to improved devices and new services. Target values are
listed in the Table 3 that is formulated by scaling the ideal 5G
demand set defined by the NGMN in [68].

First, the user satisfaction is simulated for the existing
and upgraded 4G macro network, see the related technol-
ogy assumptions summarized in Table 4. Results of Fig. 9
show that we obtain limited user satisfaction even after
upgrading the macro cells to support carrier aggregation
and higher-order MIMO antenna configurations. As we see
from Fig. 9 only bit more than 10% of the users are satis-
fied whereas at the 50%-ile and 10%-ile level users are far
from satisfaction. The spatial user satisfaction levels for the

TABLE 3. User throughput demand and relative density.

TABLE 4. Technology assumptions.

FIGURE 9. User satisfaction with only macro cells.

upgraded macrocellular network is shown in Fig. 10. While
user satisfaction is good on large land portions of the study
area (dark green), it is noticeable that satisfaction is rather
low (red, orange, yellow) on areas where user density and
demands are high.

3) CANDIDATE SITE LOCATIONS FOR SMALL cells
For the computation of the annual small cell site deployment
cost we have used assumptions presented in Table 5. These
cost numbers are obtained by contextualizing the assump-
tions in [58]. Furthermore, we recall the optical backbone
termination points and street furniture illustrated in Fig. 4.
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FIGURE 10. Spatial satisfaction for the upgraded macro BS network. The
macro BS sites are depicted by big white circles.

TABLE 5. Costs relative to 1000 cost unit.

FIGURE 11. Map of the normalized site deployment cost.

Based on this data we have computed a normalized site
deployment cost map shown in Fig. 11.
Using the spatial satisfaction and site deployment cost

maps as an input for the techno-economic method of Fig. 3,
we obtain candidate site locations depicted in Fig. 12.We note

FIGURE 12. Candidate site locations placed on the spatial satisfaction
map when assuming 300 sites per km2 density. Small blue and white
circles refer to candidate site locations. Small white circles refer to
221 sites accepted to an example deployment.

TABLE 6. Assumptions for NSGA-II.

that blue dots in Fig. 12 refer to possible small cell site
locations, called as candidate sites. The number of actually
deployed small cells will be smaller than the number of
candidate sites. The candidate site locations of Fig. 12 were
obtained assuming 300 candidate sites/km2 density that is
related to 0.45 target satisfaction and 0.53 cost cap.

4) MULTIOBJECTIVE OPTIMIZATION ALGORITHM
We apply the non-dominated sorting genetic algorithm
(NSGA)-II that is popular due to its excellent performance
when considering the computational complexity and ability
not to lose good solutions [69], [70].

We recall that the NSGA-II algorithm is described well
in [69]. It is applied in our context by starting from an
initial network. The further network creation is performed
by first selecting parent networks using tournament selec-
tion and then creating children networks from the parents
using crossover and mutation. From current and newly cre-
ated networks, next generation networks are selected after
applying non-dominated and crowding distance sortingmeth-
ods. In non-dominated sorting, networks are sorted based
on their performance ranks in terms of the satisfaction and
cost objectives. Then a number of best networks is selected
based on their ranks. If the number of networks exceeds the
target, then networks with higher distance from its neigh-
bours in terms of the objective functions are preferred. The
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TABLE 7. Summary of planning approaches.

described network formulation iterations continue until only
an insignificant change in the satisfaction and cost functions
is seen among iterations. We use NSGA-II with assumptions
listed in Table 6 [71].

V. PERFORMANCE RESULTS AND DISCUSSION
A. PLANNING APPROACHES AND CANDIDATE SITE
DISTRIBUTIONS
We analyze performance of the proposed data-driven plan-
ning framework considering two approaches:

• Data Driven Planning for user satisfaction and TCO
(DDP1): Here planning applies user distribution and
candidate site locations based on the NMS data from
the current network and site deployment cost. The 10%-
ile user satisfaction (see (1)) is computed in terms of
throughput and TCO is obtained according to equa-
tion (8) using values in Table 5.

• Data Driven Planning for user throughput and TCO
(DDP2): This planning approach is otherwise simi-
lar with DDP1 but it applies throughput instead of
satisfaction.

The difference between above approaches looks minor,
but it is important to notice that in DDP1 planning aims
to fulfil the user demand while in DDP2 planning focus
on the data supply. That is, DDP2 leads in some cases
data overprovision that unnecessarily consumes network
resources.

For comparison purposes, we also evaluate the following
two approaches that apply the conventional clutter data:

• Clutter and Cost Based Planning for user through-
put and number of small cells (CCBP): This planning
approach applies the clutter based user distribution and
candidate site locations are selected based on the site
deployment cost. Final site locations are selected using
the 10%-ile user throughput and number of small cells
as objectives.

• Clutter and Satisfaction Based Planning for user
throughput and number of small cells (CSBP): As in
CCBP the clutter based user distribution is applied. Can-
didate site locations are selected based on the spatial user
satisfaction and final site locations are selected by using
the 10%-ile user throughput and number of small cells
as objectives.

In addition, for comparison purposes we have also carried
out planning by assuming a uniform user distribution and
an uniform grid of candidate site locations. Then final site
locations are selected using the 10%-ile user throughput and
number of small cells as objectives. This planning approach
is called as Grid Based Planning for user throughput (GBP).
We note that CCBP is emphasizing more the operator

interests while CSBP reflects better the user needs. The grid
based approach of GBP is typically applied in theoretically
oriented planning studies (e.g. [38], [46]) and here it provides
a comparison benchmark. Summary of the five planning
approaches is presented in Table 7.

Let us recall the spatial distribution of the candidate site
locations (small blue and white dots) represented in Fig. 12.
This small cell site distribution reflects the planning approach
DDP1 where both site deployment cost and spatial user satis-
faction maps have been taken into account. In Fig. 13 we have
spatial distributions of the candidate site locations for the rest
of the introduced planning approaches. In Fig. 13 (a) both
site deployment cost and throughput are taken into account,
in Fig. 13 (b) focus is in site deployment cost and in Fig. 13 (c)
spatial user satisfaction is applied. Finally, in Fig. 13 (d)
candidate site locations form a uniform grid. We note that
the underlying map colors refer to the user satisfaction and
candidate site density was set to 300 sites/km2.
While DDP1 and DDP2 lead to seemingly quite similar

candidate site distributions (see Fig. 12 and Fig. 13 (a)), it is
seen from Figs. 13 (b) and (c) that emphasizing site deploy-
ment cost or spatial satisfaction may very strongly drive the
selection of candidate site locations. That is, in Fig. 13 (c)
candidate sites are strongly concentrated in red areas where
user demand is high, and in Fig. 13 (b) the candidate sites
are on the low site deployment cost clutters, see also Fig 11.
If joint criteria over site deployment cost and spatial through-
put is applied as in Fig. 12 and Fig. 13 (a), then site loca-
tions do not frequently appear in low-cost, low-demand areas
although it still seems that deployment cost impact on the
candidate location selection.

B. PERFORMANCE COMPARISONS FOR PARETO
NETWORKS
The Pareto optimal solution of a multiobjective optimization
problem is found if it is not possible to improve any objective
without degrading at least one other objective. Accordingly,
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FIGURE 13. 300 Candidate sites per km2 density for the planning approaches on spatial satisfaction map. Small blue and white
circles refer candidate site locations. Small white circles represent the 221 selected sites for exemplary small cell deployment.

FIGURE 14. 10%-ile user satisfaction gain relative to upgraded macro
only network.

the Pareto network refers to the best small cell extension what
the applied planning approach with given parameter values
can produce. To find Pareto network for a certain number of
small cells we created sets of candidate sites as in Fig. 12
and Fig. 13, and then used planning objectives of Table 7 to

select the candidate sites such that network performance was
optimized. The resulting performance was then compared
against the upgraded macrocell deployment.

Fig. 14 presents the achieved 10%-ile user satisfaction
gains with respect to the upgraded macro case for Pareto
networks obtained using different planning approaches
of Table 7. The DDP1 presents clearly the best performance
in terms of 10%-ile user satisfaction. With DDP1 the 10%-ile
user satisfaction can be 5-9 times better than for the upgraded
macro deployment. Of course, for such high performance
increase, the required number of small cells is well over
100 while there was just 10 macrocell sites in the system.
For other planning approaches gains are smaller but still
notable. The performance of DDP2, CSBP, GBP are close to
each other while the cost driven planning approach CCBP is
clearly worst. We note that deployments with 221 small cells
(white dots) are shown also in Fig. 12 and Fig. 13.
Fig. 15 shows the performance of different planning

approaches in terms of 10%-ile user throughput. Since
throughput is now used as a performance measure it is natural
that DDP2 provides better results than DDP1. Yet, as dis-
cussed previously, the user satisfaction is better measure for
the performance since it does not lead to service overprovi-
sion.While CCBP is again performing worst, the simple GBP
approach seems to work well when the number of small cells
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FIGURE 15. 10%-ile user throughput gain relative to upgraded macro only
network.

FIGURE 16. Network normalized cost with respect to network number of
small cells.

is high. This is due to fact that the uniform user distribution
match well with the uniform candidate site grid and good
mutual distance between small cells lower the interference
between small cells.

Fig. 16 shows the incurred network cost for the different
planning approaches with respect to the number of small
cells. The high user satisfaction gain of DDP1 is achieved
with costs lower than in CSBP and GBP. On the other hand,
the CCBP provides lowest costs but as seen from Fig. 14
and Fig. 15 it has also worst performance among all plan-
ning approaches. Moreover, it is noted that cost differences
between planning approaches increase with increased num-
ber of small cells. We note that slope of the cost line for CSBP
and GBP is larger than for other planning approaches since
CSBP and GBP do not consider site specific deployment
costs but just use the number of small cells as a planning
objective.

FIGURE 17. 10%-ile, 50%-ile and 90%-ile user satisfaction gains for
221-network.

FIGURE 18. 10%-ile, 50%-ile and 90%-ile user throughput gains for
221-network.

In Fig. 17 we have 10%-ile, 50%-ile and 90%-ile relative
user satisfaction gains in case of 221 small cells. To that end,
it is observed that the DDP1 leads to a network topology
that outperforms all other planning approaches at 10%-ile
performance but not at 90%-ile performance where users are
over-provisioned. Actually, from Fig. 18 it is observed that
the 10%-ile satisfaction gain take place in a network topology
that, on the other hand, maximize the 90%-ile throughput.

Fig. 17 and Fig. 18 also show that the CCBP approach
provides the lowest performance in all percentiles in terms
of both user satisfaction and throughput. This is a heavy
penalty for the cost benefit it admit by placing the candidate
sites on the low-cost clutter. The further densification of
CCBP small cell extension does not pay back since it leads
to overdense small cell deployment in the low-cost clutter as
seen from Fig. 13 (b). This performance degradation is also
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FIGURE 19. CDF of user SINR for 221-network.

seen from the SINR performances that are shown in Fig. 19.
The GBP approach has the best SINR performance, as its
topology is obtained from equally spaced candidate sites.
However, by ignoring cost considerations, the GBP approach
ends up becoming 18.10% more expensive than the CCBP
approach. Yet, the best SINR is not directly mapped to the
satisfaction in Fig. 17 and throughput in Fig. 18 due to its
uniform user distribution assumption and inconsideration of
satisfaction objective.

VI. CONCLUSION AND FUTURE WORK
We proposed and analyzed a data driven planning framework
that considers practical challenges faced in the deployment
of a heterogeneous 5G hyperdense network. In the literature
review we identified trends and gaps of recent pre-5G and 5G
network planning works and noticed that most of the studies
employ a greenfield network planning scenario assuming
a single radio access technology. This framework is rarely
practical since pre-5G networks appear almost everywhere
and 5G is typically deployed on top of existing macrocellular
3G/4G network. Although there are recent studies that con-
sider network function virtualization and flexible deployment
of 5G, they mostly focus on the placement of NG-RAN
functions in the transport network without seeing the radio
performance. Even more importantly, network planning stud-
ies typically do not consider users’ service demand and lack
of realistic models for radio propagation and spatial user
distribution/data consumption. Moreover, there are very few
studies that aims to identify candidate site locations for small
cells in a realistic network planning setting. To fill this gap we
have proposed a data-driven multiobjective planning frame-
work that holistically address aforementioned aspects and
enable practical 5G network planning by applying realistic
data-driven models.

We experimented the proposed planning framework by
using a case study for a selected urban hotspot of Addis
Ababa (Ethiopia). We first modeled the existing macrocell

network based on accurate deployment data that includes
radio network configuration for 3G and 4G sites. We also
had in our use the network management system cell-level
and spatial traffic statistics with 50m×50m spatial accuracy
for one month in 2019. Finally, we had data on the street
furniture, existing backbone (with access locations) and a 3D
map of the area. All this data enables a realistic planning of a
5G small cell network extension.

For the 5G small cell network planning we set target
by scaling the current service supply distribution upwards
following the 5G performance targets of NGMN. Then we
identified a set of possible small cell locations (called as
candidate sites) using the above-mentioned data and different
planning approaches. Thereafter we performed a comparative
analysis of the proposed data driven planning framework
against the conventional clutter based planning approaches.
For the analysis we introduced performance measures such as
user satisfaction and total cost of ownership (TCO).We recall
that the former can be defined for different indicators as a
fraction between observed indicators value and target indica-
tor value.

Results hint that notable gains can be obtained if accurate
service demand data is applied in the small cell network
planning. With ratio 12-22 small cells per macro base sta-
tion we obtained 3-9 times improvement in 10%-ile level
of user satisfaction with respect to macrocell only deploy-
ment. As expected, identifying small cell candidate site loca-
tions exclusively based on either users’ dissatisfaction or site
deployment cost may considerably increase user satisfaction
or reduce small cell network costs, respectively. Yet, it is
better strategy to apply the TCO as a planning target since
cost minimization may heavily compromise the network per-
formance while focusing on user satisfaction only increases
notably the network deployment costs. Also, we noticed
that it is more reasonable to apply the user satisfaction as
a performance indicator instead of e.g. throughput to avoid
service overprovision. The uniform grid for candidate site
locations would work well if the number of deployed small
cells is large. Yet, the practical availability of site locations
set constraints for this approach.

Future works include experimenting the framework for
other network environments and multiobjective optimization
algorithms. It is also important to extend the analysis for a
wider span of satisfaction objectives including latency and
reliability. With analysis of service data these extensions will
make it possible to study also the impact of 5G network
slicing on the planning principles. Furthermore, practical
techno-economic impacts of the various new generation radio
access network and transport network technology options
can be investigated using the proposed framework to provide
insights on successful deployment strategy.
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