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ABSTRACT A modern challenge in electrical engineering education is to keep the math at a sufficient
level, with a goal to find an optimal balance between calculus competence and operative skills needed for
real-life technical applications. It is not uncommon that some gaps emerge during this quest, which makes
it difficult for undergraduates to entirely understand topics related on prior knowledge. This paper aims to
draw attention to several important moments concerning total response of Continuous Linear Time Invariant
systems, which are superficially or incorrectly explained in many textbooks, and to offer logical arrangement
which can be easily understood and accepted by students. The base of discussion relies on classical calculus
background, particularly on Picard’s theorem on existence and uniqueness. This theorem is rarely mentioned
in signals and systems textbooks. However, mathematical models of many types of signals don’t satisfy the
condition for continuity, which can easily produce difficulties in the learning process. It is shown that some
reported disagreements and issues related to initial conditions, can be easily cleared out by using the smooth
transition from classical calculus to mathematics used in system theory. It is also shown that the classical
method is always the primary tool, even for determining the impulse response, while the impulse response
is unnecessary or sufficient to determine the total system response, regardless of whether the convolution
integral is used.

INDEX TERMS Convolution integral, differential equations, Dirac delta, initial conditions, impulse
response, linear system, steady-state response, transient response, total response.

I. INTRODUCTION
After an introductory discussion about general proper-
ties of signals and systems, typical undergraduate signals
and systems course accentuate the importance of contin-
uous Linear Time Invariant (LTI) systems for which the
input (excitation) and output (response) are related through
the constant-coefficient linear differential equations (DE)
[1]–[7]. At that point, undergraduates are taught to understand
time-domain analysis of DE, as an elementary tool for exam-
ination of LTI systems. Later on, discussion is extended to
state-space system representations, typically in the Laplace
transform domain. Although time-domain analysis looks
obsolete compared to techniques based on Laplace transform,
it still stands as a valuable prerequisite for understanding
other modeling methods and more advanced principles in
many engineering disciplines.
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Together with system modeling using DE, undergradu-
ates are taught that excitations are usually discontinuous,
which can easily produce singularities on the right-hand
side (RHS) of DE. In addition, they are taught that excitations
can also contain singularities. As practice shows, this is the
moment when students easily miss the logical connection
with basic undergraduate mathematics and accordingly gain
a poor understanding of all other topics that follow [8]–[10].

To make things worse, some courses suffer from over-
simplified explanations or even inaccuracies in the same or
other linked topics, what can additionally reduce student’s
confidence in acquired knowledge [8]–[12].

Generally, singularities in RHS of DE are a known prob-
lem, treated in many different ways, based on various
demanding calculus methods. Most of these methods are
generally considered to be beyond the abilities of an aver-
age undergraduate [8], [13], [14]. Ironically, some simplified
concepts from a highly advanced mathematical discipline -
theory of distributions [8], [15], are considered to be the
most appropriate for treatment of the problem. Set of these
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concepts are usually referred as generalized calculus (GC).
One of the best introductory texts about singularity signals
and GC can be found in [8].

In order to facilitate acceptance of GC with application
to time-domain analysis of signals and systems, two main
approaches are used: application of classical method which
utilizes undergraduate calculus tools with the slight impact of
GC, and the convolution method - which is strongly based on
impulse response concept followed by a convolution integral.
If both of them are taught carelessly in the same course, or in
a group of related courses, they can raise more questions than
they answer.

The problem is clearly illustrated by two opposite dis-
cussions in two distinguished textbooks, concerning total
response of LTI system, and interpretation of total response
components [2], [4]. In these textbooks, both methods are
discussed and evaluated.

According to [4] the convolution method looks more labo-
rious compared to the classical method, but its advantages
outweigh the extra work because the classical method has a
couple of ‘‘serious’’ drawbacks:
• Inability to separate the total response into zero-state and
zero-input components which are important in the study
of the systems.

• The classical method is restricted to post-initial condi-
tions, whereas pre-initial conditions are usually known.

• The classical method is restricted to a certain class of
inputs; it cannot be applied to any input.

Thus, the classical method is not recommended for the study
of continuous/discrete-time signals and systems. [4].

Contrary to [4], recommendation found in [2] (mis)leads
to quite the opposite conclusion. Therefore, determination of
the total system response by convolution is not demonstrated
in [2]. In contrast, the classical method is advocated but
explained only for the case where post-initial and pre-initial
conditions are the same.

In our paper it is shown that disagreements found in [2]
and [4], and issues related to initial conditions, can be easily
cleared out by using the natural transition from typical under-
graduate mathematics, to the mathematics used in system
theory. It is also shown that the classical method is always
the primary tool, even for determining the impulse response,
while the impulse response is unnecessary or sufficient to
determine the total system response, regardless of whether
the convolutional integral is used. Discussion in the paper is
performed with application to SISO continual systems, while
a conclusion for discrete case and MIMO systems can be
easily done by analogy.

II. LTI SYSTEM DESCRIPTION BY DE
Even though state-space modeling is the primary tool in the
community of control engineers, modeling with high order
DE is widely thought to be more natural in some other engi-
neering communities [16]–[18]. Additionally, state-space for-
mulation merely obscures the problems that are discussed in
the paper [8], [10].

DE with constant coefficients of N -th order can be used as
a model for a wide range of LTI systems:

P(D)y(t) = Q(D)x(t), (1)

where P(D) =
N∑
k=0

akDk , Q(D) =
M∑
k=0

bkDk , x(t) represents

excitation, or system input, y(t) is the system response, or sys-
tem output, ak and bk are constant coefficients, and D is a
linear operator defined as Dn = dn/dtn. It is assumed that
a0,, aN , b0 are not zero, and that N ≥ M , [2], [4]. RHS of (1)
can be expressed as f (t) = Q(D)x(t), P(r) is called char-
acteristic polynomial, and P(r) = 0 is called characteristic
equation. Roots r1, r2,. . . , rN of the characteristic equation
are called characteristic roots, or natural frequencies of the
system.

Equation (1) describes the system in the definition interval
(t1, t2). Together with N auxiliary conditions in the form of
y(k−1)(t0) = Yk−1, k = 1, . . .N , it uniquely represents a
system in terms of excitation only if:
• continuity of the RHS is satisfied in (t1, t2), and
• auxiliary conditions are defined inside (t1, t2), i.e.
t1 < t0 < t2.

This pair of conditions are known as Picard’s theorem (PT)
of existence and uniqueness [6], [19]–[24]. From the physical
point of view, behavior of the system for t > t0 joins the past
with t < t0 continuously at t = t0, whatever may have been
the state in the past [24]. However, in the context of practical
dynamical systems where transients are usual phenomena,
continuity condition is frequently unsatisfied.

III. RHS WITH DISCONTINUITIES AND TYPES OF
AUXILIARY CONDITIONS
Let we assume that excitation x(t) appears at t0 = 0, and takes
a form:

x(t) = x1(t)+ x2(t) = g(t)u(t)+ Q1 (D) δ (t) , (2)

where u(t) is Unit step function, Q1(D)δ(t), is a linear com-
bination of delta impulse δ(t) and its derivates, and g(t) is
a smooth function in (t1, t2). It is assumed in the paper that
smooth function possesses derivatives of all orders in its
domain.

Since delta impulse δ(t) and its derivates are called sin-
gularity signals, or simply singularities, Q1(D)δ(t) is called
singular part, whereas g(t)u(t) is called nonsingular part of
x(t). Both nonsingular and singular part can contribute to the
occurrence of singularities in f (t). If f (t) contains singular-
ities, y(t) can be discontinuous in origin. Sufficient physical
interpretation of this phenomenon can be found in most of the
reference textbooks [1]–[10].

In respect to the origin, auxiliary conditions are defined in
two forms:

– Post-initial conditions, defined in t0 = 0 + ε,

ε > 0, ε→ 0, abbreviated t0 = 0+, and
– Pre-initial conditions, defined in t0 = 0 − ε,

ε > 0, ε→ 0, abbreviated t0 = 0−.
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If y(t) is continuous in origin, pre-initial and post-initial
conditions are equal. Contrary if y(t) is discontinuous in
origin, pre-initial and post-initial conditions are not equal.

By decomposition (t1, t2) in three parts,

(t1, t2) = (t1, 0) ∪ {0} ∪ (0, t2),

three characteristic cases are distinguished [1]–[6]:
1) If f (t) doesn’t contain singularities in origin, post-

initial and pre-initial conditions are the same, ε can
be strictly 0, i.e. t0 = 0, and auxiliary conditions
are called only initial conditions. Since PT is satis-
fied in both (t1, 0) and (0, t2), determination of system
response can be performed using classical calculus
methods, typically the method of undetermined coef-
ficients, D operator method, or method of variation of
constants [20]–[23]. Origin is automatically included
in result due to continuity of y(t).

2) If f (t) does contain singularities in the origin and
pre-initial conditions are defined, i.e. y(k−1)(0−) =
Yk−1, k = 1, . . .N , PT is satisfied only for (t1, 0) since
singularities are in [0, t2), and x(t) = 0 inside (t1, 0).
Therefore classical calculus methods can be applied for
the system response determination only for t < 0.

3) If f (t) does contain singularities in the origin, and
post-initial conditions are defined, i.e. y(k−1)(0+) =
Yk−1, k = 1, . . .N , then PT is satisfied only for
(0, t2) since singularities are in (t1, 0], and x(t) = g(t)
inside (0, t2). Therefore classical calculus methods can
be applied for the system response determination, but
only for t > 0.

In summary, classical methods based on PT can be applied
in complete (t1, t2) for case a), (0, t2) for case c), and (t1, 0)
for case b). For cases, b) and c), classical calculus methods
are not directly applicable in respect to full interval (t1, t2).

IV. CLASSICAL SOLUTION OF (1), SUITABLE FOR THE
CASES WHERE PT IS SATISFIED
When PT is satisfied in observing interval, the solution of (1),
can be found as a sum of two distinct components:

y(t) = yp(t)+ yh(t), (3)

where yh(t) is called homogeneous or complementary solu-
tion, and yp(t) is called a particular solution. The homoge-
neous solution yh(t) is in the form of a linear combination of
characteristic modes of the system [1]–[5]. For example, if all
characteristic roots are real and different, then

yh(t) =
N∑
i=1

Cieri·t , (4)

where Ci, i = 1, 2, . . . ,N are arbitrary constants and eri·t

is called i-th characteristic mode. Frequently, this part of the
solution is called a natural response of the system.

The particular solution yp(t) is not unique; it can be any
function that satisfies (1). It consists of noncharacteristic

mode terms yp2(t), and can contain characteristic mode terms
yp1(t):

yp(t) = yp1(t)+ yp2(t) =
N∑
i=1

Kieri·t + yp2(t). (5)

Arbitrary constants Ki, i = 1, 2, . . . ,N are closely linked
to Ci: the sum Ci + Ki is uniquely determined by (1), and set
of auxiliary conditions. This is important but usually over-
looked or deliberately omitted fact in university textbooks.
The simplest form of particular solution where Ki = 0 is
usually used, and then particular solution consists entirely of
noncharacteristic mode terms, i.e. yp(t) = yp2(t). This form
of a particular solution is frequently called a forced response,
and the same form is assumed in the paper.

Particular solution yp(t) = yp2(t) can be found using
several classical methods. For standard technical signals,
the method of undetermined coefficients, and D operator
method are usually suggested. In contrast, the method of
variation of constants is recommended only for uncommon
types of excitation. Mainly, D operator method, also known
as annihilator method [4], [21]–[23] is extremely efficient for
typical engineering excitations, it can be easily proved, and it
can be easily translated to Laplace transform method. Fur-
thermore, the author’s experience is that D operator method
is readily accepted by undergraduates.

In order to derive a particular solution, (1) can be rear-
ranged in a form:

yp2(t) =
Q(D)
P(D)

x(t) = H (D)x(t) = yp(t), t > 0, (6)

where rational function H (D) = Q(D)/P(D), with D as an
argument, is sometimes called the system operator [9]. When
excitation is in the form of complex exponentials,

g(t) = C · er0t , r0 = σ0 + jω0, r0 /∈ {r1, r2, . . . , rN },

where C is a constant, it is easy to prove that the particular
solution is in the form [1]–[4]:

yp(t) = C · H (r0)er0t . (7)

One can notice that yp(t) given in (7) consists entirely of
noncharacteristic mode terms; therefore, it can be always
distinguished from yh(t). Finally, arbitrary constants Ci, i =
1, 2, . . . ,N are determined, so the (3) satisfies auxiliary
conditions.

By choosing appropriate σ0, and ω0 in (7), many useful
engineering excitations can be easily processed [4], [9]. Also,
if C = C(t) is a polynomial, or g(t) is in the resonance with
the system, i.e. r0 ∈ {r1, r2, . . . , rN }, some simple rearrange-
ments should be done, and (6) can be used for determination
of yp(t) [4], [21]–[23].
It is essential to notice that system operator H () has the

same algebraic form as a corresponding transfer function in
Fourier or Laplace transform domain. The most properties
of H () and particular solution yp(t) can be smoothly and
transparently forwarded to Fourier and Laplace transform
calculus.
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V. FORMS OF A TOTAL SYSTEM RESPONSE IN RESPECT
TO AUXILIARY CONDITIONS
A. TOTAL SYSTEM RESPONSE, CASE A)
For the case a) total response can be solved separately for
t > 0 and for t < 0: y(t) = y1(t)u(−t)+ y2(t)u(t). For t > 0
u(t) =1 and RHS of the (1) is equal to f (t) = Q(D)g(t). Then
y2(t) = yh(t) + yp(t) with arbitrary constants determined,
so the y2(t) satisfies auxiliary conditions. As explained ear-
lier, for t < 0, RHS of the (1) can be reduced to x(t) = 0,
yielding yp(t < 0) = 0. Hence, for t < 0, y1(t) = yh(t) with
arbitrary constants determined, so the y1(t) satisfies auxiliary
conditions.

1) EXAMPLE, CLASSICAL SOLUTION, CASE A)
Let we consider a system described by (1) with the following
definitions:

P(D) = D2
+ 6D+ 8, Q(D) = 3, x(t) = e−tu(t),

with post-initial conditions y′(0+) = y(0+) = 1/3. Then
x(t) = e−t for t > 0. Since the absence of singularities
in the RHS, pre-initial conditions are equal to post-initial
conditions. The roots of the characteristic polynomial are
r1/2 = −2,−4, giving homogenous solution

yh(t) = C1e−2t + C2e−4t .

Using D operator method, particular solution is determined
as

yp(t) = H (D)e−1·t = H (−1)e−t = e−t .

Total response for t > 0 and its first derivative are

y2(t) = yp(t)+ yh(t) = e−t + C1e−2t + C2e−4t

y′2(t) = −e
−t
− 2C1e−2t − 4C2e−4t .

For t = 0+,

y2(0+) = 1+ C1 + C2 = 1/3, and

y′2(0
+) = −1− 2C1 − 4C2 = 1/3,

giving C1 = −2/3,C2 = 0.
For t < 0 x(t) = 0, therefore

y1(t) = C3e−2t + C4e−4t , and

y′1(t) = −2C3e−2t − 4C4e−4t .

In origin, for t = 0−, y1(0−) = C3+C4 = 1/3, and y′2(0
−) =

−2C3 − 4C4 = 1/3, giving C3 = 5/6,C4 = −1/2.
The total response is then:

y(t) = y1(t)u(−t)+ y2(t)u(t) =

=

(
5
6
e−2t −

1
2
e−4t

)
u(−t)+

(
e−t −

2
3
e−2t

)
u(t).

B. TOTAL SYSTEM RESPONSE, CASE B)
1) CONVOLUTION METHOD, CASE B)
For the cases where PT is not satisfied, classical methods that
undergraduates have already learned in introductory math-
ematical courses are not directly applicable. This problem
is usually overcome by GC, which introduces concepts of
impulse response and convolution [1]–[6].

In almost all related textbooks, pre-initial conditions are
widely explained as system energy stored in system states,
and they are considered as separate excitations. Therefore,
using the superposition principle, the result can be found by
separating the total system response into a sum of zero-input
and zero-state components, i.e. y(t) = yZI (t) + yZS (t). This
terminology is widespread in the literature. Still, there are
exceptions, for example, in [2] where the zero-state response
is called a forced response, and zero-input response is called
a natural response.

The zero-input component yZI (t) satisfies (1) with RHS
equal to zero. Since RHS is continual, PT is satisfied in
the complete interval (t1, t2), and solution can be determined
as a classical solution of homogenous DE, with auxiliary
conditions equal to pre-initial conditions. For example, if all
characteristic roots are real and different, then

yZI (t) =
N∑
i=1

Cierit , (8)

where arbitrary coefficients Ck are resolved in respect to
auxiliary conditions.

Zero-state component is a response of a system that is
initially at rest, to excitation with possible singularities. It is
determined in two phases. In the first phase, with the assump-
tion that the system is causal, the impulse response h(t) of the
system is found. In the second phase, the impulse response is
used for final zero-state calculation.

Determination of h(t) is performed by solving differential
equation in the same form as (1), with δ(t) as excitation, and
with respect to zero pre-initial conditions [1]–[4], [6], [7]:

P(D)h(t) = Q(D)δ(t), h(k−1)(0−) = 0, k = 1, . . .N . (9)

Although singular for t = 0, eq. (9) is regular and homoge-
nous for t > 0. It has the form P(D)h(t) = 0. To solve
it, auxiliary conditions must be defined inside (0, t2), so the
post-initial conditions h(0+), . . . , h(N−1)(0+), should be
determined employing GC rules, for example by successive
integration of (9), or by impulse matching principle [1]–[4].
Finally, the solution for t > 0, is obtained, as a classical
solution of homogenous differential equation.

Determination of post-initial conditions in (9) can be quite
complex for N > 3, and can be entirely avoided utilizing
auxiliary impulse response h1(t) [1], [4]:

P(D)h1(t) = δ(t), h(k−1)1 (0−) = 0, k = 1, . . .N . (10)

The auxiliary impulse response is a causal signal and can be
described in a form of h1(t) = hA(t)u(t) where hA(t) consists
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of a linear combination of the system’s characteristic modes.
Therefore, h(t) can be determined by the use of generalized
differentiation:

h(t) = Q(D)h1(t) = Q(D)(hA(t)u(t)).

However, for N ≥ M generalized differentiation is unneces-
sary [1], [4]:

h(t) = (Q(D)hA(t)) u(t), N > M ,

h(t) = δ(t) · bN /aN + (Q(D)hA(t)) u(t), N = M . (11)

In respect to PT, expression (10) has same properties as (9):
it is singular for t = 0, and for t > 0 it is regular, homoge-
nous, and has the form P(D)h1(t) = 0. But contrary to
demanding procedure for determination of post-initial con-
ditions required for (9), post–initial conditions for (10) can
be calculated very simply:

h(N−1)1 (0+) = 1/aN , h
(k−2)
1 (0+) = 0, k = 2, . . . ,N . (12)

Derivation of (12) is given in the Appendix.
According to standard undergraduate textbooks, the impu-

lse response h(t) of a LTI system contains a complete input–
output description of the system. If the impulse response is
known, zero-state response to any input x(t) can be found
using convolution integral, without continuity restrictions
required by PE:

yZS (t) = h(t) ∗ x(t) =

=

∞∫
−∞

h(τ )x(t − τ )dτ = u(t) ·

t∫
0−

h(τ )x(t − τ )dτ .

2) CONVOLUTION METHOD, CASE B), EXAMPLE
Let we consider a system described by (1) and the following
definitions:

P(D) = D2
+ 6D+ 8, Q(D) = D2

+ 4D+ 3,

with excitation in the form x(t) = u(t)−2δ(t), and pre-initial
conditions y′(0−) = +14, y(0−) = −37/8. Obviously,
RHS of DE contain singularities in origin, and pre-initial and
post-initial conditions are not equal.

The first part is determination of the zero-input response:

yZI (t) = C1e−2t + C2e−4t . (13)

Undetermined constants are resolved using pre-initial condi-
tions: C1 = −18/8, C2 = −19/8.
The second part is determination of the zero-state response.

In the beginning, determination of auxiliary impulse response
is performed, by solving (10), with respect to post-initial
conditions defined by (12). Therefore, solution for h1(t),
t > 0 is given by:

h1(t) = C1e−2t + C2e−4t , h1(0+) = 0, h′1(0
+) = 1/1.

Since derivative of the auxiliary impulse response is

h′1(t) = −2C1e−2t − 4C2e−4t , t > 0,

undetermined constants are:

C1 + C2 = 0
−2C1 − 4C2 = 1

}
C1 =

1
2
,C2 = −

1
2
.

Hence
h1(t) = (e−2t/2− e−4t/2)u(t) = hA(t)u(t).

Finally, according to (11) and D operator technique [4],
[21]–[23], the impulse response is obtained as:

h(t) = δ(t)+
(
Q(D)(e−2t/2− e−4t/2)

)
u(t) =

= δ(t)+
(
Q(−2)e−2t/2− Q(−4)e−4t/2)

)
u(t) =

= δ(t)−
(
1
2
e−2t +

3
2
e−4t

)
u(t). (14)

In the end, the zero-state response is calculated by use of
convolution:

yZS (t) =

t∫
0−

h(τ )u(t − τ )dτ − 2h(t) ∗ δ(t) =

= (1/8) · (3+ 27e−4t + 10e−2t )u(t)− 2δ(t).

Finally,

y(t) =
(
−18e−2t − 19e−4t

)
/8+

+( 1/8) · (3+ 27e−4t + 10e−2t )u(t)− 2δ(t). (15)

3) CLASSICAL METHOD, CASE B)
A disadvantage of the classical solution approach quoted
in [4] is the restriction to post-initial conditions, due to vio-
lation of PT on (t1, t2). If post-initial conditions are deter-
mined employing GC, for example by impulse matching
method [3], [4], then total system response can be deter-
mined separately for (0, t2), with respect to post-initial con-
ditions, and for (t1, 0), with respect to pre-initial conditions,
since in both subintervals PT is satisfied. Because the proce-
dure for calculation of post-initial conditions with respect to
pre-initial conditions (or vice versa) can be quite demanding,
it is rarely described in textbooks. For example, it is not
described in [2], and is explicitly discouraged in [4]. How-
ever, by addition of impulse response concept to the classical
method, any total response can be easily determined.

Again, the superposition principle is a starting point: y(t) =
yZI (t)+ yZS (t). For zero-input response all conditions are the
same as in the previous section and given by (13). Contrary,
determination of yZS (t) should be developed since the classi-
cal method can not deal with pre-initial conditions [4].

Let we consider excitation x(t), which is in the form of (2).
If Q1(D) = 0, then the singular part does not exist, and
zero-state response can be found by solving equation:

P(D)yZS (t) = Q(D) (g(t)u(t)) ,

y(k−1)ZS (0−) = 0, k = 1, . . .N . (16)

If RHS of (16) contain singularities, post-initial conditions
are not zero and should be calculated using some of the
available procedures. Furthermore, according to the impulse
matching principle, yZS (t) does not contain impulses when
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N ≥ M and can be determined using the simplified proce-
dure. Similar to (10), the auxiliary zero-state response can be
calculated by solving equation:

P(D)yZS1(t) = g(t)u(t), y(k−1)ZS1 (0−) = 0, k = 1, . . .N . (17)

There are no singularities in RHS of (17), so it is satisfied
that

y(k−1)ZS1 (0−) = y(k−1)ZS1 (0+) = 0, k = 1, . . .N ,

and the classical method can be used. The result is a causal
function

yZS1(t) = yZS1A(t)u(t),

where yZS1A(t) is a smooth function. Finally, the zero-state
response is determined as

yZS (t) = Q(D)yZS1(t) = Q(D) (yZS1A(t)u(t)) .

Since yZS (t) does not contain impulses generalized differ-
entiation is unnecessary:

yZS (t) = Q(D)yZS1(t) = (Q(D)yZS1A(t)) u(t).

Therefore, despite the fact that RHS of DE contains sin-
gularities in origin, if the excitation is nonsingular, there
is no need for impulse response calculation or generalized
differentiation. In this case, total response determination is
more efficient than procedure based on convolution integral.

If excitation contains both singular and nonsingular parts
as in (2) then DE looks like:

P(D)yZS (t) = Q(D) (g(t)u(t))+ Q(D)Q1(D)δ(t),

y(k−1)ZS (0−) = 0, k = 1, . . .N .[]

Using superposition, we can separately solve a set of two
auxiliary equations, both with zero pre-initial conditions:

P(D)yZS2(t) = Q(D) (g(t)u(t)) ,

y(k−1)ZS2 (0−) = 0, k = 1, . . .N , (18)

P(D)yZS3(t) = Q(D)δ(t), y(k−1)ZS3 (0−) = 0, k = 1, . . .N .
(19)

Equation (18) is same as (16), whereas (19) is in the form
of the impulse response, so it can be derived as (9), i.e.
yZS3(t) = h(t), see (9). Finally, the total zero-state response
is determined as
yZS (t) = yZS2(t)+ Q1(D)yZS3(t) = yZS2(t)+ Q1(D)h(t).

(20)

In this case, generalized differentiation is necessary. It is
easy to check that calculation effort needed for the described
procedure is similar to calculation of convolution integral.

4) CLASSICAL METHOD, CASE B), EXAMPLE
Let we use pre-initial conditions and same excitation as in
previous examples. The zero-input response is the same, and
the zero-state response is obtained by solving DE with zero
pre-initial conditions y′ZS (0

−) = 0, yZS (0−) = 0:
P(D)yZS (t) = Q(D)g(t)u(t)+ Q(D)Q1(D)δ(t) =

= Q(D) · 1 · u(t)− Q(D) · 2 · δ(t).

Therefore g(t) = 1, Q1(D) = −2.
The auxiliary equation in the form of (17) is
P(D)yZS1(t) = 1 · u(t), y′ZS1(0

+) = yZS1(0+) = 0;

The equation doesn’t have singularities in RHS, pre-initial
and post-initial conditions are the same, PT is valid, and the
classical method can be used:

yZSA(t) = 1/8+ C1e−2t + C2e−4t , t ≥ 0.

Using zero post-initial conditions, undetermined constants
are resolved: C1 = −1/4, C2 = 1/8.
Hence,

yZS1(t) =
(
1/8− e−2t/4+ e−4t/8

)
u(t),

and
yZS2(t) =

(
(D2
+ 4D+ 3)(1− 2e−2t + e−4t )/8

)
u(t).

The second auxiliary equation is in form of (19). Since h(t)
is already calculated in (14):

Q1(D)h(t) = −2h(t) = −2δ(t)+
(
e−2t + 3e−4t

)
u(t).

Then, zero state response is completed in a form:

yZS (t) =
(
(D2
+ 4D+ 3)(1− 2e−2t + e−4t )/8

)
u(t)−

− 2δ(t)+
(
e−2t + 3e−4t

)
u(t) =

=
1
8
(3+ 10e−2t + 27e−4t )u(t)− 2δ(t). (21)

Finally, the total response is determined as a sum of zero-state
and zero-input responses and has the same form as eq (15).

C. TOTAL SYSTEM RESPONSE, CASE C)
When postnatal conditions are defined, and excitation con-
tains singularities, PT is satisfied for (0, t2), and total
response can be evaluated using the classical method for
t > 0, i.e. y(t) = yh(t)+yp(t). Zero state response can always
be determined independently on auxiliary conditions, using
classical solution approach, as well as convolution method.
Since the zero-state response is in the form of (5), it can
be used as general form of particular solution as in (3),
i.e. yZS (t) = yp(t), whereas coefficients Ki are automatically
determined. Then yZI (t) = yh(t) and arbitrary constants Ci
from (5) are resolved using post-initial conditions.

1) CLASICAL METHOD, CASE C), EXAMPLE
Let we use post-initial conditions y′(0+) = −2, y(0+) =
3/8, and excitation x(t) = u(t)−2δ(t). Post-initial conditions
are already influenced by impulses in RHS, so for t> 0 it is
enough to treat excitation as x(t) = 1. Total response can be
represented as in (3) where (21) can be used as the particular
solution:

yp(t) = (3+ 27e−4t + 10e−2t )/8,

yh(t) = C1e−2t + C2e−4t , t > 0.

Using post-initial conditions, undetermined coefficients are
resolved as C1 = −18/8, C2 = −19/8, what yields same
total response as in (15) for t> 0.
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VI. SEPARATION OF TOTAL RESPONSE INTO PARTS
If all roots of the characteristic equation are in left-half of the
complex plane, and if t → ∞ then yh(t) →0 and y(t) →
yp(t). Furthermore, if g(t) is not in the resonance with the
system, i.e. r0 /∈ {r1, r2, . .., rN }, the particular solution is
amplified excitation, with complex gainH (r0). In some cases,
yp(t) has quite a clear physical meaning, called steady-state
response, whereas yh(t) is called transient response.
In addition to the total response separation into zero-state

and zero-input components, separation into transient and
steady-state components is equally important. Therefore, it is
of interest that any method used for determination of total
response supports both types of separation:

y(t) = yZI (t)+ yZS (t) = yh(t)+ yp(t).

One of the quoted disadvantages [4] of the classical method
is the inability to separate the total response into zero-state
and zero-input components. Strictly speaking, the classical
method doesn’t offer such a separation in classical procedure
when post-initial conditions are defined - only separation
into yp(t) and yh(t) is available. But using any of described
procedures, the zero-state response can be determined regard-
less of the type of the auxiliary condition, and the zero-input
component can be calculated as

yZI (t) = yh(t)+ yp(t)− yZS (t).

Therefore, in order to achieve separation into zero-state and
zero-input response, both methods is applicable in all three
cases, a), b) and c).

In case b) straight forward outcome is separation into yZI (t)
and yZS (t) parts. If there is an interest to separate the total
response into transient and steady-state part, i.e. particular
and homogenous part, and if there is no resonance, separation
can be performed using visual identification of yp(t), since
yp(t) doesn’t contain any characteristic modes, and have the
same form as excitation. Then the homogenous solution can
be derived as:

yh(t) = y(t)− yp(t) = yZI (t)+ yZS (t)− yp(t). (22)

If there is resonance in the system and separation is
not obvious, particular solution yp(t) in assumed form can
be determined using the classical method, since it doesn’t
depend upon auxiliary conditions, and (22) can be applied.

VII. CONCLUSION
It is shown that both methods, with some augmentation as
presented in the paper, offer the same outcome, and that
both methods possess the same possibilities in determination
of total system response. Any kind of separation is possi-
ble using both methods, without need for recalculation of
pre-initial conditions to post-initial conditions, or vice - versa.

Even when convolution integral is used for total response
determination, the classical method is indispensable: it is used
for determination of h(t). Furthermore, complicated transla-
tion of post-initial conditions from pre-initial conditions is
not needed for h(t) determination: simplified procedure can

be used. The bottom line is that total system response can
be resolved without convolution integral, but only by using
classical method augmented with impulse response concept
and rarely generalized differentiation.

Regarding efficiency, if we make a comparison between
convolution method and classical method in the most similar
scenario, case b), we can see that both methods require an
equal number of steps, with similar complexity, see table 1.

TABLE 1. Comparison of the classical method with the convolution
method for the case b) when the excitation contains a singular part.

In all other situations, the convolution method requires
more calculation effort.

Both of the methods have some distinct advantages: For
convolution method, the impulse response can be calcu-
lated only once, and response to various excitations can be
found using convolution – but only if convolution integral
converges, what is not generally the case. On the other
hand, using D operator method in the classical approach,
steady-state response for the case of standard excitations
can be easily found – but the complete procedure should be
repeated for each excitation.

The third objection to the classical method quoted in [4] is
the restriction to a standard (particular class) of excitations.
But the same objection can also be applied to convolution
method: for some form of x(t) it is difficult to derive yp(t),
but for some other form of x(t) it is challenging to derive
convolution integral, or integral can’t converge. From the
pedagogical point of view, it is always better to use as least as
needed of new concepts (in this case GC) in order to explain
and apply other new concepts: augmented classical method
and initial value issues can be very gradually derived from
undergraduate calculus. As a tool, the classical method is
more straightforward than the convolution method: it relies
only on differentiation, what is algebraically more straight-
forward operation than integration. Therefore, treatment of
auxiliary conditions proposed in the paper, and the classical
method with suggested modifications, are complete and easy
for application, which makes them an excellent alternative to
approaches found in existing textbooks.

The simplicity and elegance of both methods disappear
when it comes to linear time-variant systems. So, the logical
continuation of this topic is the extension to time-varying
systems and a Green function method, which will be the
subject of future research.

APPENDIX
Calculation of impulse response h(t) with the help of auxil-
iary impulse response h1(t), based on a set of equations (10)
and (12), is easy to learn and efficient for application. Deriva-
tion of (12) is somewhere conducted from general impulse
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matching principle [1], [4], whereas in some textbooks it is
treated as well-known prior knowledge, for example in [25].
An alternative derivation of (12), based on Step response
and principles suggested in the paper, is presented in this
appendix.

Let we consider unit-step response s(t) of a system at initial
rest, defined through following DE:

P(D)s(t) = u(t), s(k−1)(0−) = 0, k = 1, . . .N . (23)

Because of the absence of singularity in origin, post-initial
and pre-initial conditions are equal:

s(k−1)(0−) = s(k−1)(0+) = 0, k = 1, . . .N . (24)

According to (10) h1(t) = Ds(t). Therefore (24) can be
written in the form:

h(k−2)1 (0−) = h(k−2)1 (0+) = 0, k = 2, . . . ,N . (25)

Post initial conditions satisfy (23):

P(D)s(0+) = u(0+) = 1 = aNDN s(0+)+
N−1∑
k=0

akDks(0+).

(26)

According to (24)

N−1∑
k=0

akDks(0+) = 0,

which reduces (26) to aNDN s(0+) = aNDN−1h1(0+) = 1.
Finally, using (25) and (26) post–initial conditions required
in (12) are determined:

DN−1h1(0+) = 1/aN , and

DN−2h1(0+) = . . . = DN−Nh1(0+) = 0.
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