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ABSTRACT Enhanced images by the traditional gamma correction (GC) method still have low contrast
within high illuminance regions. In order to enhance the visibility in dark regions and simultaneously
achieve high contrast in bright regions for low-light images, this paper proposes a novel method via a pair
of complementary gamma functions (PCGF) by image fusion. We first define PCGF and then show its
outstanding potential for low-light image enhancement by some preliminary experimental results. In order
to release its performance and verify its effectiveness, we further design a simple enhancement method
for low-light images based on it by an elaborately designed fusion strategy. Two input images for fusion
are derived from the enhanced image by PCGF and that by proposed sharpening method, respectively.
Experiments show that our proposed method can significantly enhance the detail and improve the contrast
of low-light image. The qualitative experiment results show that the proposed method is effective and the
comparative quantitative assessment shows that it outperforms other state-of-the-art methods.

INDEX TERMS Gamma correction (GC), CRT gamma, pair of complementary gamma functions, low-light
image enhancement, image dehazing, underwater image restoration.

I. INTRODUCTION
High quality images play an important role in object detec-
tion [1], image classification [2], and saliency detection [3]
and so on. However, it is generally difficult for us to obtain
high quality images because of the limitations of image
acquisition technology and environment. Under the condi-
tion of low illuminance, due to the surrounding environ-
ment or lack of self-exposure, images captured by optical
imaging devices are overall visually dark, blurred in detail
and poor visible. Many methods, such as histogram-based
methods [4]–[12], Retinex-based methods [7], [13]–[22] and
fusion-based methods [23]–[26], have been proposed to
enhance low-light images.

Histogram-based methods are based on the modification of
histogram to enhance the contrast of images with low illumi-
nation. Histogram equalization (HE) [4] and contrast-limited
adaptive histogram equalization (CLAHE) [5] are commonly
used due to their effectiveness in improving image contrast
and detail, but their drawbacks are over-enhancement and
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the introduction of artifacts in color images. To overcome
these defects, in [6] a contrast enhancement method using
layered difference representation of 2D histograms is pro-
posed. In [7], a hybrid histogram modification method is
proposed by combining gamma correction and traditional
histogram equalization. However, the enhanced images look
filled with gloom darkness. In [8] a so-called contextual and
variational contrast enhancement (CVC) method is proposed
by a histogram mapping which emphasizes large gray-level
differences. However, these methods will meet difficulties
when dealing with very dark regions because of the limitation
of stretching range.

Retinex-based algorithms (such as SSR [14], MSR [15],
and MSRCR [16]) are effective for image processing. How-
ever, the enhanced result for low-light image is often
gray-out. In order to solve this problem, researchers have
made much improvement for Retinex-based methods [7],
[17]–[22], [27]. These methods can make the enhancement
effect more significant, but the execution time is too long to
be conducive to real-time processing.

Fusion-based algorithms have been widely used for image
enhancement, which blend several enhanced images by
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different methods into a single one. In [23] and [24], two
fusion-based methods are developed to improve the quality of
low-light images. However, the contrast in bright regions isn’t
high enough. In [44], a new single-image dehazing solution
is proposed based on the adaptive structure decomposition
integrated multi-exposure image fusion, which can greatly
enhance local details of foggy images. In [45], a novel image
fusion framework based on non-subsampled shearlet trans-
form is proposed, which can improve the fusion quality of
multi-modal images. In [46], a novel multi-modality medical
image fusion method is presented based on phase congruency
and local Laplacian energy, which can well preserve struc-
tured information and well extract detailed information. The
effect of fusion-based method is obvious, and the execution
time is not long. However, it is not clear how input images
affect the performance during fusion.

Almost these methods still have low contrast within high
illuminance regions. In order to enhance the visibility of dark
regions and simultaneously achieve high contrast of bright
regions for low-light images, this paper proposes a novel
enhancement method by fusion. We first define a pair of
complementary gamma functions (PCGF). Then, we put for-
ward a new sharpening approach further improve the details
and contrast of low-light images. Finally, we design a simple
fusion method to merge the value component of the enhanced
image in HSV space by PCGF and the value component of the
enhanced image in HSV space by sharpening.

The main contributions of this paper can be summarized in
following three aspects:

1) We define a pair of complementary gamma functions
(PCGF). PCGF can achieve a delicate balance between
underexposure and overexposure, so it can greatly
improve the contrast of dark regions and bright regions
in the image at the same time. Proposed PCGF can
hopefully applied in foggy image dehazing, underwater
image enhancement and saliency detection and so on.

2) We design a simply and effectively weight summation
method based on the average of the value component
in HSV space. Either weighting factor is directly pro-
portional to the average value component of the cor-
responding mapped image derived from PCGF, so the
output image can achieve a moderate brightness.

3) We design an image fusion strategy which can achieve
excellent enhancement results for low-light images.
One input image is derived from PCGF to achieve
a satisfactory global contrast and a moderate whole
luminance. While the other is derived by combining
traditional unsharp masking method and histogram
equalization method to further improve local details.

The remainder of this paper is organized as follows.
In Section II, we deliver a brief review of traditional gamma
correction. In Section III, We then describe the proposed
pair of complementary gamma functions (PCGF) and show
its outstanding potential by some preliminary experimental
results. In Section IV, we detail our low-light image enhance-
ment method based on PCGF by fusion. The experimental

results are presented and discussed in Section V. Finally,
the conclusion and prospect are given in Section VI.

II. RELATED WORK
The response of cathode ray tubes (CRTs) caused by electro-
static effects in the electron gun or many imaging devices has
the following nonlinear output [33]:

y = x1/γ , 1
/
γ = 2.2 (1)

where x and y are the normalized input image and the nor-
malized output image, respectively. Gamma correction (GC)
is associated with the above CRT gamma (1) and it is just the
inverse of CRT gamma (1) as follows [34]:

y = xγ , γ < 1 (2)

where γ < 1 is a constant, usually taken as 1
/
2.2 or 0.4545.

For RGB images, the transformation is executed for three
channels separately. GC has been frequently used for image
enhancement.

Fig. 1 shows two original low-light images and enhanced
ones by GC, from which it can be seen that enhanced images
have better visual effects on the whole. However, their bright
areas are also enlarged which makes them too bright and also
reduces the local contrast within high illuminance regions.
Obviously, CRT gamma has the opposite effect on low-light
images.

FIGURE 1. Low-light image enhancement by GC: (a) original low-light
images; (b) enhanced images by GC.

Ju et al. propose gamma correction prior (GCP) for dehaz-
ing which is described as [31]:

y = 1− (1− x)γ , γ < 1 (3)

In the process, the input image x is firstly inverted into
1 − x, then it is processed by GC and finally inverted back
to output the processed image y. It is said that the outputs
of GC and GCP from haze images are inhomogeneous and
homogeneous, respectively. In fact, Dong et al. [29] propose
the inverse strategy for the first time and then it is used for
low-light image enhancement [26], [30].

III. PAIR OF COMPLEMENTARY GAMMA FUNCTIONS
A. PAIR OF COMPLEMENTARY GAMMA FUNCTIONS
(PCGF)
From Fig. 1, it is obvious that GC can improve the overall
brightness of low-light images, but the bright area is also
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increased which makes the enhanced image too bright and
perhaps still has poor visibility. Therefore, GC is often used
as a preprocessing step. Fig. 2 gives some original low-light
images and their two corresponding maps by CRT gamma (1)
andGC (2), fromwhich it can be seen that the CRT gamma (1)
can make image edge and contour clear while the inverse
GC (2) can make low-illumination regions become visible.

FIGURE 2. Maps of original low-light images by GC and CRT gamma:
(a) original low-light images; (b) CRT gamma (1); (c) GC (2).

Inspired by (3), we define a new function as follows:

y = 1− (1− x)1/γ , γ < 1 (4)

Mapping the right side of (4) by the traditional GC, we can
derive the following function:

y =
(
1− (1− x)1/γ

)γ
, γ < 1 (5)

Fig. 3 shows two original low-light images and
their corresponding maps by (2)-(5), respectively. From
Figs. 3 (a) and (b), it can be seen that the enhanced images
by GC still haven’t abundant details and satisfactory contrast.
From Figs. 3 (a) and (c), it can be found that the output image
by (3) is darker than the original low-light images. While
from Figs. 3 (a) and (e), it can be found that the output image
by (5) is brighter than the original low-light images.

The following is a qualitative analysis from the perspective
of function. All the below analysis is based on the premise of
x ∈ (0, 1). First of all, for ε < 0, the power exponent function
y = xε satisfies that:

y = xε > 1

In other words, for κ1 < κ2, the power exponent function
y = xκ1 satisfies that:

xκ1 > xκ2

Hence, for γ < 1, we have for GC (2):

y = xγ > x (6)

and

(1− x)γ > 1− x (7)

Therefore, we can further obtain:

y = 1− (1− x)γ < 1− (1− x) = x (8)

As a result, the mapping defined by (3) makes any low-light
image much darker than the original low-light image and the
output can be seen its underexposed version.

Likewise, for γ < 1, we have for CRT gamma (1):

(1− x)1/γ < 1− x (9)

Therefore, we have

y = 1− (1− x)1/γ > 1− (1− x) = x (10)

Finally, from (6) and (10), we can get:

y =
(
1− (1− x)1/γ

)γ
> xγ > x (11)

As a result, the mapping defined by (5) makes any low-light
image much brighter than GC and the output can be seen its
overexposed version.

From the above results and analysis, we can see that there is
a complementary relationship between (3) and (5), so in order
to better enhance low-light images and achieve a delicate
balance, we can integrate them into an intrinsic whole and
thus construct the following pair of complementary gamma
functions (PCGF):{

y1 = 1− (1− x)γ

y2 =
(
1− (1− x)1/γ

)γ (12)

We will hopefully obtain moderate exposed images with high
quality by the above PCGF (12).

B. IMAGE ENHANCEMENT BY PCGF
By naïve blending strategy, we can derive the final enhanced
image:

y = c1y1 + c2y2 (13)

where yi is the mapped image from the original low-light
image according to (12) and the weighting factor is deter-
mined by:

ci =
SVi∑
i
SVi

(14)

where V̄i is the average value of mapped image yi in HSV
space. Since either weighting factor is directly proportional
to the average value component of the corresponding mapped
image, the output image will have a moderate brightness.

Figs. 4(a) and 4(b) show the corresponding enhanced
images of those low-light images shown in Fig. 3(a) by PCGF
which is performed on all RGB channels and only on the
value component (V) in HSV space, respectively. In Fig. 4(a),
all RGB channels of any original low-light image are mapped
by PCGF (12). Then the enhanced image is obtained accord-
ing to (13) and (14).While in Fig. 4(b), any low-light image is
firstly transformed from RGB space to HSV space, the value
component is mapped by PCGF (12), then two obtained value
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FIGURE 3. Maps of original low-light image by different functions: (a) original low-light images; (b) GC:
y = xγ , γ < 1 (2); (c) y = 1−

(
1− x

)γ
, γ < 1 (3); (d) y = 1−

(
1− x

)1/γ
, γ < 1 (4); (e) y =

(
1−

(
1− x

)1/γ
)γ

,

γ < 1 (5).

components are added according to (13) and (14) to output
the value component in HSV space. Finally, the previous
obtained value component (V), together with the hue com-
ponent (H) and the saturation component (S) of the original
low-light image, is transformed back to RGB space, and the
desired enhanced RGB image is finally output.

It can be seen from Fig. 4 that mapping V in HSV space
achieves better visual results than independently mapping all
RGB channels. In fact, HSV color space provides a good
color representation for human perception and can com-
pletely separate color information from brightness informa-
tion, as means that the original color of any pixel will not be
influenced by any processing of the value component [43].
Thus we will only treat the value component in HSV space
during the fusion process in the next section.

IV. LOW-LIGHT IMGAE ENHANCEMENT BASED ON PCGF
BY FUSION
From Fig. 4, it can be seen that PCGF can effectively enhance
low-light images. It not only significantly improves the
overall brightness of low-light images, but also enhances
the details by stretching the dark regions and compressing
the bright regions to a certain extent. However, the details
and local contrast are still not prominent enough. To further
improve the quality, we build on a simple fusion strategy.
Image fusion is widely used for low-light image enhance-
ment [23], [24], underwater image enhancement [32], image
dehazing [44], multi-focus image processing [45], [46] and

so on. Similar to [23] and [24], our approach is to blend a
set of inputs and weight maps derived from a single original
low-light image, which contains three main steps: deriving
input images for fusion, defining weight maps, and fusing of
the input images incorporating the defined weight maps.

The whole flow chart of proposed low-light image
enhancement method based on PCGF by fusion is illustrated
by Fig. 5. The value component (V) of an original low-light
image is firstly processed by gamma enhancement according
to (13) and by detail enhancement according to (19) which
will be presented below, then two obtained value components
are fused by the Laplace pyramids method shown as in (22)
below. The value component (V) resulting from the fusion
process and the hue component (H) and the saturation com-
ponent (S) of the original low-light image are together trans-
formed back to RGB space to output the desired enhanced
RGB image.

In the following, we will show how to obtain input images
for fusion and the corresponding weight maps and will also
illustrate the fusion process in detail.

A. INPUT IMAGES FOR FUSION
The first input (I1) for fusion is directly derived from the
enhanced value component of the original low-light image
in HSV space by PCGF according to (13) and (14).

The second input (I2) for fusion is derived from the
enhanced version of the original low-light image through
combining sharpening and histogram equalization (HE).
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FIGURE 4. Enhanced images of low-light images shown in Fig. 3 (a) by (7): (a) mapping RGB channels; (b) mapping the value component in HSV space.

Image sharpening such as unsharp masking (UM) and classi-
cal HE are commonly used to improve details and contrast of
low-light images, respectively. The typical formula for UM is
as follows [39]–[41]:

S = I + α · (I − G ∗ I ) (15)

where I and S are the input image and sharpened image,
respectively; G is a Gaussian kernel function; α is a preset
constant to control the level of contrast enhancement which
is selected between 0.5 and 1.5; ∗ denotes the convolution
operation. Some improved UM methods have been proposed
in [40] and [41]. In [40], an adaptive sharpening strength
selection method is given. While in [41] a pixel-wise method
for enhancement strength is determined according to local
blurriness measure of the original input image. However,
if we only perform the sharpening procedure, image details
will not be significantly enhanced due to the overall darkness
of low-light images.

In the following we will design a strategy to obtain the sec-
ond input image for fusion by combining traditional UM
method and HE method. Setting α = 1 in traditional
UM (15), we can get:

S1 = V + (V − G ∗ V ) (16)

where V represents the value component of the original low-
light image in HSV space. However, UM itself isn’t inade-
quate and doesn’t work fine for low-light images, so we can
improve the contrast by executing HE on V in (16) and hence
we have:

S2 = 2H (V )− G ∗ H (V ) (17)

where H (·) denotes the HE operation. In order to further
reduce artifacts, we can average the value component V and
the above obtained S2 and hence derive the second input
image for fusion:

I2 =
V + S2

2
(18)

Finally, we have the second input image for fusion:

I2 = (V + 2H (V )− G ∗ H (V ))
/
2 (19)

B. WEIGHT MAPS FOR FUSION
Light exposure has great impact on images’ quality. There-
fore, we select exposedness weight map to obtain regions
with good exposure from input images for fusion. Exposed-
ness weight map is utilized in [23], [24] and [32] to
evaluate the degree of exposure, which is expressed as a
Gaussian-modeled distance to the average normalized range
value 0.5 as follows:

wi(x, y) = exp

{
−
(Ii(x, y)− 0.5)2

2× 0.252

}
(20)

where Ii (x, y) represents the ith input image with the pixel
location (x, y). Fu et al. [23] conducted many experiments on
2000 images and found that the average of the mean values
approximately equals 0.5 and the average of the standard
deviations approximately equals 0.25. So the above exposed-
ness weight map is reasonable. Higher values will be assigned
to those pixels which are close to 0.5. This kind of weight map
assigns small values to pixels with under-exposed and over-
exposed regions while normal-exposed pixels obtain high
values. Hence, it achieves an unbiased assignment.

Finally, the normalized weight maps for fusion are given
by:

Swi (x, y) =
wi (x, y)∑
i wi (x, y)

(21)

C. IMGAE FUSION PROCESS
In order to overcome undesirable halos and artifacts resulting
from naive blending for fusion, we employ the pyramid fusion
proposed by Burt and Adelson [35]. Both input images are
decomposed into Laplace pyramids, while both correspond-
ing weight maps are decomposed into Gaussian pyramids.
Then blend Laplacian inputs and Gaussian weight maps of
each level. Finally, the enhanced image is given by:

Ioutput (x, y) =
∑
l

Ud

(
2∑
i=1

Gl (Swi (x, y))L l (Ii (x, y))

)
(22)
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FIGURE 5. Flow chart of proposed low-light image enhancement method based on pair of complementary
gamma-correction functions by fusion.

where l represents the number of layers of the pyramids,
Ud is the up-sampling operator with d = 2l − 1, G (·)
and L (·) represent Gaussian operator and Laplace operator,
respectively. By a large number of experiments, we find that
decomposition into four layers can achieve excellent perfor-
mance with low calculation load.

V. EXPERIMENTS AND DISCUSSION
In this section, we evaluate the performance of the pro-
posed method. First, we present our experiment settings.
Then, we evaluate the proposed method by comparing it with
other state-of-the-art methods in both subjective and objective
aspects.

A. EXPERIMENTS PREPARATIONS
To fully evaluate the proposed method, one hundred images
with low illumination from various scenes have been tested.
Test images come from Lee and Kim [6], Fu et al. [23],
Wang et al. [24], Guo et al. [26], and our team. All images are
processed in MATLAB R2017b on a PC running Windows
10 OS with 32G RAM and 2.1GHz CPU.

The methods for comparison include global contrast
enhancement method based on the layered difference rep-
resentation (CE) [6], efficient contrast enhancement using
adaptive gamma correction with weighting distribution
(AGCWB) [7], fusion-based enhancement method (FE) [23],
bio-inspiredmulti-exposure fusion framework (BIMEF) [25],
low-light image enhancement via illumination map esti-
mation (LIME) [26], structure-revealing low-light image
enhancement via robust Retinexmodel (SRM) [27], low-light
image enhancement using the camera response model
(LECARM) [28] and the proposed PCGF method.

B. SUBJECTIVE EVALUATION
Three low-light images, which are named Street, Sea
and Church are shown in Fig. 6(a) from left to right.
Figs. 6(b) to 6(h) successively illustrate the enhanced results
from CE [6], AGCWB [7], FE [23], BIMEF [25], LIME [26],
SRM [27], LECARM [28] and the proposed PCGF method.
Some zoom-in detailed patches are also shown on the right
of each enhanced image. From Fig. 6, we can find that
LIME causes color distortion; output images by FE are
somewhat over-enhancement; the whole brightness by both

CE and AGCWB is still insufficient; the enhanced Sea
image by BIMEF has a faint halo round the sun and the
enhanced Church image by BIMEF has a faint halo near
upper right of the roof; the enhanced Sea image by SRM
has low local details outside of the ship; the light in all
three enhanced images by LECARM is not well focused.
Meanwhile, it can be seen that for the Street image, our
enhanced image has sharp focus of the light beam on the
left of the woman and clear leaves. For the Sea image, our
enhanced image has clear outline around the sun and mod-
erate texture outside of the ship. For the Church image, our
enhanced image has clear contour for the cloud behind the
cross on the roof and it has clear edge on the roof. By and
large, our method can preserve image details and naturalness
effectively.

The enhancement results of other five low-light images
by the above different methods are shown in Fig. 7. We can
find that enhanced images by CE are still a little dark and
have poor visual quality. Enhanced images by AGCWD don’t
preserve details in bright regions, for example the crane’s
feather in the Crane image. BIMEF is effective in preserving
the naturalness, but enhanced images are also a little dark.
LIME can effectively improve the overall brightness. How-
ever, some regions such as the trees in theWalkway image and
the Crane image suffer from over-enhancement. The details
of enhanced image by SRM are not prominent enough. Our
method achieves excellent visibility, contrast and details and
the whole images have moderate brightness. While enhanced
images by FE are a bit unnatural; and the enhanced images by
LECARM are more or less over-exposed, whose details are
slightly inferior to our method.

C. OBJECTIVE EVALUATION
Besides the subjective visual appearance and to fur-
ther explain the effectiveness of our method, we employ
NIQE [36], ILNIQE [37], SSEQ [38], and BRISQUE [42]
to objectively evaluate the results of our method. These
no-reference metrics are widely used for performance eval-
uation in the field of low-light image enhancement. A brief
introduction is made for them in the following.

NIQE (Natural Image Quality Evaluator) assesses image
quality without any knowledge of distortions or human
opinions of them through constructing several quality-aware
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FIGURE 6. Low-light image enhancement results by different methods: (a) original images: Street, Sea and Church from left to right;
(b) CE [6]; (c) AGCWB [7]; (d) FE [23]; (e) BIMEF. [25]; (f) LIME [26]; (g) SRM [27]; (h) LECARM [28]; (i) proposed PCGF.

statistical features based on the natural scene statistic model.
ILNIQE (Integrated Local NIQE) can comprehensively cap-
ture local distortion artifacts through integrating quality-
aware features by a local multivariate Gaussianmodel. SSEQ,
which is a Spatial-Spectral Entropy-based Quality index,
can assess distorted image’s quality and achieve very good

predictive performance. BRISQUE (Blind/Referenceless
Image Spatial Quality Evaluator) quantifies naturalness
losses resulting from distortions by using scene statistics of
locally normalized luminance coefficients in the image. The
smaller all these indexes, the better the performance. Besides,
values for PSNR (Peak Signal-to-Noise Ratio) are also given.
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FIGURE 7. Low-light image enhancement results by different methods: (a) original images: Building, Tower, Walkway, Crane and Garden
from left to right; (b) CE [6]; (c) AGCWB [7];(d) FE [23]; (e) BIMEF [25]; (f) LIME [26]; (g) SRM [27]; (h) LECARM [28]; (i) proposed PCGF.
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TABLE 1. Average quantitative comparison of 100 enhanced images.

It is obvious that larger value for PSNR means better quality
of an enhanced image.

Quantitative results for total 100 images which consist of
the same 92 random selected images from and 8 images
shown in Figs. 6 and 7 are given in Table 1. It can be seen
that our method has the best scores for NIQE, ILNIQE and
SSEQ, which means our algorithm has absolute priority in
low-light image enhancement to preserve the details, natu-
ralness and reduce artifacts and distortions. Both scores for
BRISQUE and PSNR by our method rank third out of eight.
LECARM and CE have the best scores for BRISQUE and
PSNR, respectively. Objectively speaking, our method can
achieve satisfying scores. Overall, our method outperforms
almost all other methods and hence is effective for low-light
image enhancement.

VI. CONCLUSION
In this paper, we define a pair of complementary gamma
functions (PCGF) by which we can obtain an underexposed
version and an overexposed version of the original low-light
image so that we can combine them to achieve a moderate
brightness. We show the outstanding potential of PCGF for
low-light image enhancement by some preliminary experi-
mental results. We also design a fusion strategy to release
its performance for low-light images based on PCGF. Two
input images used for fusion are derived from the enhanced
image by PCGF and the enhanced image by proposed sharp-
ening method, respectively. Experiments show that proposed
method can significantly enhance the detail and improve the
contrast of low-light image. Objective and subjective assess-
ment between different methods show its outperformance.
As future work, we plan to develop better fusion methods
to achieve its full potential. Besides, we will try to apply the
proposed PCGF for foggy image dehazing, underwater image
enhancement and saliency detection and so on.
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