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ABSTRACT In this document, the parameter identification of a quadrotor is discussed. More precisely,
the aim of this paper is to present results on the application of known methods for estimating the dynamic
parameters that capture better the behavior of a quadrotor in comparison with the nominal parameters
given by the manufacturer. To take into account the limitations of position, velocity, and acceleration of the
quadrotor, an optimized trajectory to excite the quadrotor dynamics adequately is obtained. A proportional-
integral-derivative (PID) control scheme is used to implement experimentally the tracking of the optimized
trajectory. The obtained data is processed off-line to construct the standard and filtered regression models
from which the parameter identification is achieved. Specifically, the least-squares and gradient descent
algorithms are applied to the regression models giving four sets of estimated parameters. The four sets
of parameters obtained in this work are compared with the parameters provided by the manufacturer by
computing the error between simulations and experiments. In addition, the output prediction errors of the
regression models are computed, thus providing another validation form. All the comparisons show that the
estimated parameters are more precise than the nominal ones. The given results support the functionality of
the described methodology.

INDEX TERMS Optimized trajectory, parameter identification, quadrotor, real-time experiments, regression
model.

I. INTRODUCTION
During the last decade, the interest of the scientific and
industrial community has been focused on unmanned aerial
vehicles (UAVs). These vehicles can be operated by remote
control or autonomously. Those propelled by four rotors are
called quadrotors. These flying robots are used in many appli-
cation fields due to their simple structure, small size, high
maneuverability, and hovering capability. The main applica-
tions of quadrotors are surveillance, deployment, and explo-
ration tasks. In particular, they are used in harvesting and
wildlife monitoring, search and rescue, support and recon-
naissance on high-risk zones, wind turbine blades and solar
panel inspection, supply delivery, and natural disaster zone
mapping [1]–[4].

Quadrotors typically consists of a symmetrical lightweight
airframe, four brushless DC motors mounted upon it, four
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fixed-pitch propellers attached to the motors, drivers for each
motor, an inertial measurement unit (IMU), a global posi-
tioning system (GPS) unit, high-density LiPo batteries and
a flight computer loaded with control algorithms [3], [5], [6].

Many works addressing posture regulation and trajectory
tracking of quadrotors by using different control schemes and
techniques were developed in recent years. The PID control
scheme has been studied and implemented to stabilize differ-
ent kinds of physical systems; it is used in the industry due to
its simple structure. The obtained results from different works
support the functionality of this control scheme in quadrotors,
even when the parameters of the vehicle are inaccurate or
unknown.

The PID structure was used in [7] and [8] to control a
quadrotor. An intelligent controller scheme was added to the
PID scheme in [9]. Also, many robust control schemes have
been used to achieve pose regulation and trajectory track-
ing for quadrotors. Control schemes based on the H∞ phi-
losophy [10], the feedback linearization methodology [11],
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sliding mode control [12], [13], and model predictive con-
trol [14] can be found in the literature.

Despite the existence of robust control schemes, the knowl-
edge of the dynamic model is essential to develop
model-based controllers [15]–[20] and to predict the sys-
tem behavior using numerical simulations. A shortcoming is
that the exact knowledge of the parameters of the dynamic
model of the quadrotor is not always available. Besides,
many schemes make assumptions about the structure and
conditions of use of the quadrotors, which give rise to sim-
plified dynamic models. For example, the vehicle weight is
uniformly distributed and has symmetric geometry, themove-
ment in the horizontal plane is at low speed, and the roll
and pitch angles are small. However, they are not suitable
at high-velocity flight, aggressive maneuver, and close to
ground flight [3]. Modeling and control techniques neglect-
ing aerodynamic effects at high-velocity are inadequate for
quadrotor trajectory tracking tasks [21]. System identification
is a useful alternative to precisely obtain some parameters that
are difficult to estimate. This procedure is carried out process-
ing data taken from real-time experiments. The effectiveness
of the parameter identification for robot manipulators was
validated experimentally in multiple works [22]–[25]; those
procedures can be extended to other complex systems, such
as quadrotors.

A review of the parameter identification of quadrotors is
given next. A time-domain system identification software
was implemented in [26] to estimate a linearized model of a
quadrotor taking the quadrotor flight test data. A parameter
identification technique using the state estimation method
employing the unscented Kalman filter was described in [27].
A time-domain identification procedure for a pitch, roll,
and yaw subsystem of a quadrotor was presented in [28].
Parameters of a quadrotor were obtained in [29] by using
the CAD model of the airframe and three different test rigs.
The parameter identification results were validated experi-
mentally. The dynamic model of a Parrot AR.Drone obtained
by means of a parameter identification process was presented
in [30]. The discussion of the obtained results by implement-
ing a continuous-time predictor-based subspace identification
approach was presented in [31]. In [32], the least-squares
algorithm was used to estimate the parameters of the transfer
functions used to represent part of the dynamic model of
a quadrotor. In [33], a nonlinear closed-loop multi-variable
extremum seeking parameter identification algorithm was
proposed to estimate the parameters of a quadrotor. The
results of the parameter identification algorithm support the
identification method. In [34], a model identification process
and a robust controller design for a commercial quadrotor
were presented. Comparisons between a PID scheme and an
internal model control were given. Parameter identification
for a continuous-time black-box model of a quadrotor was
achieved in [35].

Real-time experiments are carried out either on laboratory-
built or commercial platforms aiming to validate the results
of several research works. Concerning quadrotors, a known

platform in the research area is the Quanser QBall 2.
This platform has been used in recent works [36]–[41]
due to its programming simplicity, which is developed in
MATLAB-Simulink. Another valuable point at its favor is
the integration with the motion capture system Optitrack to
sense its position. The manufacturer has provided a set of
parameters being possible for the user to achieve a simula-
tion phase before implementing in real-time any controller.
However, providing parameters that represent the dynamics
of the QBall 2 quadrotor more accurately would be attractive
for the users.

While literature indicates that much effort has been put into
identifying of manipulators and other mechanisms, the the-
oretical and experimental research for the parameter identi-
fication of quadrotors is relatively meager, which suggests
an opportunity field. Moreover, many works consider a lin-
earized or simplified model of the quadrotor and assume a
symmetrical configuration with uniformly mass distribution.
In addition, the experimental tests used for the parameter
identification procedures reported in the literature review
have not been specially optimized for this purpose. An orig-
inality point in our research is that the construction of the
regression models considers the inertia tensor as a symmetric
matrix with six elements instead of a diagonal matrix, thus
representing better the dynamics of quadrotor QBall 2.

Another part of our contribution is the application of opti-
mized trajectories in parameter identification of quadrotors,
which has not been reported to the best of our knowledge.
It is here that this work presents novel results. This method-
ology allows taking into account the physical limitations of
mechanical systems such as the workspace or velocity limits.
Besides, optimized trajectories allow exciting the dynamics
of the system so that the identification process provides
accurate results. It is noteworthy to mention that optimized
trajectories minimize the sensitivity of the system to noise
and reduce the variance of the estimated parameters [42].
Examples of works where optimized trajectories have been
used for identification are in [43]–[47]. The optimization
problem is generally solved using an algorithm developed to
minimize the value of a cost function. Recent works using
optimization algorithms to address the problem of the cost
reduction of electricity dispatch in a smart grid [48], privacy
masking on time-varying unbalanced directed networks [49],
the collision avoidance [50], and the trajectory optimization
in order to reduce flight costs and pollution for commercial
aircraft [51] have been found in the literature review.

In this paper, a parameter identification procedure inspired
by the methodology used for robot manipulators and indus-
trial robots is applied to the identification of a Qball 2 quadro-
tor. It is worth mentioning that all the procedures which
inspired this research are well-studied and have demon-
strated a high degree of accuracy on parameter estimation
results. The procedure includes the computation of an opti-
mized trajectory, its experimental implementation with a PID
scheme, off-line processing of the obtained data, the con-
struction of a regression model, and the implementation of
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an identification scheme. The procedure is tested for sev-
eral variants by using either the standard regression model
or the filtered regression model as corresponds. Another
tested combination is to use either the least-squares scheme
or the gradient descent strategy to estimate the parameters.
Thus, four sets of parameters are obtained for the quadrotor
QBall 2. It is worthwhile to notice that the given procedure
is general and can be applied to quadrotors having access
to the same signals used in the method. As mentioned ear-
lier, this experimental quadrotor has been used in recent
research [36]–[41], and a new set of parameters with bet-
ter accuracy may improve the performance of the reported
model-based control schemes.

As suggested in [6], [23], [24], [42], [44], [45], [47], [52]–
[56], in this work, the nominal parameters provided by the
manufacturer and the new estimated parameters are assessed
by comparing real-time experiments with simulations results,
and by comparing the output prediction error of the regression
model, which is also often called identifier error. Our results
indicate that the new estimated parameters show more sim-
ilarity to the experiments and lower output prediction error
than the nominal parameter given by the manufacturer.

The rest of this paper is organized as follows. In Section II,
an overview of the proposed parameter identification pro-
cedure is presented. The application of the procedure to a
quadrotor is described in Section III. In Section IV, the dis-
cussion of the experimental validation is presented. Finally,
the conclusions of this work are given in Section V.

II. QUADROTOR PARAMETER IDENTIFICATION
Different parameter identification methods applied to
mechatronic systems were presented in the literature
review [22]–[25], [43]–[47], [57]. Some of these methods
can be adapted and modified to achieve the parameter iden-
tification of quadrotors. This Section presents the parameter
identification methodology applied to quadrotors by using
an optimized trajectory. The steps that define the applied
procedure are described as follows.

1) Mathematical model parameterization.

• Model: the linear parameterization property should
be satisfied by the quadrotor.

2) Experiment design.

• Optimized trajectory design: to improve the
parameter identification results, an optimized tra-
jectory must be obtained.

• Controller implementation: a controller must be
implemented to perform the trajectory tracking of
the optimized trajectory.

3) Data processing.

• Since the needed signals to construct the regres-
sion models can not be obtained directly by the
available hardware, off-line data postprocessing is
performed in order to condition the available data
and to compute such signals.

• Filter: the sampled signals must be filtered owing
to the present noise coming from the data
acquisition.

• Numerical differentiation: in many mechatronic
systems, there are no sensors to measure certain
signals which is motivated by the cost reduction.
Therefore, some numerical methods should be
implemented to estimate the required signals.

• Signal transformation: the kinematic relation from
the inertial reference frame to the body reference
frame is used to obtain the needed signals for the
parameter identification procedure.

4) Parameter estimation.

• Estimation algorithm: a linear regressionmethod is
applied to estimate the system parameters by using
the regressionmatrix constructed with the acquired
data and the system output vector.

A graphic representation of the applied procedure is pre-
sented in Figure 1. It is worth mentioning that the methodol-
ogy described in this work and depicted in Figure 1 is based
on what is discussed in [22]–[25], [42], [44]–[47], [52]–[63].

A. QUADROTOR DYNAMIC MODEL
The dynamic model of a rigid body specifies the relationship
between its motion and the applied force and torque. In the
case of quadrotors, the dynamics are strongly coupled. Four
actuators define the behavior of the position and orientation
dynamics of the quadrotor, and a minimal change in just one
actuator produces significant changes in the whole dynam-
ics [5].

The control inputs are the total thrust and the torques
produced on each rotation axis. The dynamic model of the
quadrotor can be obtained under the assumption that it is a
symmetric rigid body moving in a 3D space and its center
of mass coincides with the geometrical center of the body
reference frame. This model is represented with respect to
the body reference frame as [5], [64],

mv̇+ mS(ω)v+ mgR(η)T ez =

 0
0
Fz

 , (1)

I ω̇ + S(ω)Iω = τ , (2)

ṗ = R(η)v, (3)

η̇ = W (η)ω, (4)

where m is the quadrotor mass, g is the gravity acceleration
constant, v = [u v w]T ∈ R3 and ω = [p q r]T ∈ R3

represent the linear and angular velocity vectors in the body
frame, respectively. The matrix I ∈ R3×3 denotes the inertia
tensor, ez = [0 0 1]T is the unitary vector along the z-axis
in the inertial reference frame, p = [x y z]T ∈ R3 and η =
[φ θ ψ]T ∈ R3 represent the position and orientation vectors
in the inertial frame, respectively. Considering the aeronau-
tical convention ‘‘ZYX’’, the vehicle orientation is given by
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FIGURE 1. Block diagram representation of parameter identification procedure used in our experimental results.

the orthogonal rotation matrix R(η) ∈ R3×3 expressed as

R(η) =

cθcψ sθcψ sφ − sψcφ sθcψcφ + sψ sφ
cθ sψ sθ sψ sφ + cψcφ sθ sψcφ − cψ sφ
−sθ cθ sφ cθcφ

 ,
with sx , cx and tx defining the functions sin(x), cos(x) and
tan(x), respectively. Besides, W (η) ∈ R3×3 denotes the
transformation matrix

W (η) =

1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 ,
Fz ∈ R is the total thrust provided by the four actuators along
the z axis in the body frame, τ = [τφ τθ τψ ]T ∈ R3 denotes
the torque vector in the body frame, and S(ω) is the skew
symmetric matrix expressed as

S(ω) =

 0 −r q
r 0 −p
−q p 0

 .
1) STANDARD REGRESSION MODEL
The dynamic parameters in the quadrotor model (1) and (2)
include the mass m and the inertia tensor I . Specifically, I is
a symmetric matrix given by

I =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 .
Then, the dynamic model of the quadrotor given in (1) and (2)
can be rewritten as [6]

u̇+ qw−rv+ gbx = 0, (5)

v̇+ ru−pw+ gby = 0, (6)

and

m(ẇ+ pv−qu+ gbz) = Fz, (7)

Ixx ṗ+ Ixy(q̇− pr)+ Ixz(ṙ + pq)

+ Iyz(q2 − r2)+ (Izz − Iyy)qr = τφ, (8)

Ixy(ṗ+ qr)+ Ixz(r2 − p2)+ Iyyq̇

+ Iyz(ṙ − pq)+ (Ixx − Izz)pr = τθ , (9)

Ixy(p2 − q2)+ Ixz(ṗ− qr)+ Iyz(q̇+ pr)

+ Izzṙ + (Iyy − Ixx)pq = τψ , (10)

with gbx = −g sin (θ), gby = g cos (θ) sin (φ), and gbz =
g cos (θ) cos (φ). The system described in (7)-(10) can be
rewritten in the form of the linear regression model

8(v,ω, η, v̇, ω̇)2 = F, (11)

where 8(v,ω, η, v̇, ω̇) ∈ R4×7 denotes the regression
matrix,2 ∈ R7 is the constant parameter vector, and F ∈ R4

represents the system output vector. Explicitly, the compo-
nents of the regression model (11) are given as follows:

8(v,ω, η, v̇, ω̇) =


ẇ+ pv−qu+ gbz 0 0

0 ṗ q̇− pr
0 pr ṗ+ qr
0 −pq p2 − q2

0 0 0 0
ṙ + pq −qr q2 − r2 qr
r2 − p2 q̇ ṙ − pq −pr
ṗ− qr pq q̇− pr ṙ

 ,
2 =

[
m Ixx Ixy Ixz Iyy Iyz Izz

]T
,

F =
[
Fz τφ τθ τψ

]T
. (12)

Notice that in equations (5) and (6), the parameters 2 ∈ R7

are not present. For simplicity, equation (11) does not take
into account the expressions in (5) and (6).

2) FILTERED REGRESSION MODEL
A filtered regression model may be obtained in order to
avoid either measurement or off-line calculation of the lin-
ear and angular accelerations [25], [54], [58]–[60]. The
system (7)-(10) is rewritten in the following manner[

d
dt
8a(v,ω)+8b(v,ω, η)

]
2 = F, (13)

where [
mv
Iω

]
= 8a(v,ω)2,[

mS(ω)v+ mgR(η)T ez
S(ω)Iω

]
= 8b(v,ω, η)2.
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Notice that 8a(v,ω) ∈ R4×7 and 8b(v,ω, η) ∈ R4×7 do
not take into account equations (5) and (6), similarly to the
computation of8 in the linear regression model (11). There-
fore, the specific expression of 8a(v,ω) and 8b(v,ω, η) are
given by

8a(v,ω) =


w 0 0 0 0 0 0
0 p q r 0 0 0
0 0 p 0 q r 0
0 0 0 p 0 q r

 ,

8b(v,ω, η) =


pv− qu+ gbz 0 0

0 0 −pr
0 pr qr
0 −pq p2 − q2

0 0 0 0
pq −qr q2 − r2 qr

r2 − p2 0 −pq −pr
−qr qr pr 0

 .
A low-pass filter can be defined as

f (s) =
λ

s+ λ
, (14)

where λ represents the cut-off frequency of the filter, and s is
the Laplace operator. Therefore, the filteredmodel is obtained
by multiplying equation (13) by the low-pass filter (14),
leading to

[sf (s)8a(v,ω)+ f (s)8b(v,ω, η)]2 = f (s)F. (15)

Thus, the filtered regression model is given by

8F (v,ω, η)2 = FF , (16)

with

8F (v,ω, η) = 8aF (v,ω)+8bF (v,ω, η) (17)

being

8aF (v,ω) = sf (s)8a(v,ω)

8bF (v,ω, η) = f (s)8b(v,ω, η)

FF = f (s)F.

Details on the discrete computation of 8F and FF will be
given later.

B. EXPERIMENTAL DATA ACQUISITION
1) TRAJECTORY PARAMETRIZATION
The identification process presented in this work is carried out
using the data obtained from the experiments of the tracking
optimized trajectories. These signals are selected as finite
Fourier Series, similarly to the works [24], [42], [43], [45]–
[47], [52], [53]. The desired trajectory and its time derivatives
are given by

qdi(t) =
N∑
l=1

ai,l
wf l

sin(wf lt)−
bi,l
wf l

cos(wf lt)+ ci, (18)

q̇di(t) =
N∑
l=1

ai,l cos(wf lt)+ bi,l sin(wf lt),

q̈di(t) =
N∑
l=1

−ai,lwf l sin(wf lt)

+ bi,lwf l sin(wf lt) cos(wf lt),

where qdi represents the i-th element of the desired position
vector

qd = [xd yd zd ψd ]T ∈ R4, (19)

q̇di and q̈di denote the first and second-order time derivative of
qdi, respectively, wf = 2π/T is the fundamental frequency,
with T being the periodic cycle time, N is the number of
harmonics, and ci is the offset of the desired position qdi. Each
trajectory contains 2N+1 parameters. The parameters ai,l and
bi,l determine the amplitude of the sinusoidal functions, and
together with ci, can be obtained with an optimizationmethod
or randomly.

2) TRAJECTORY OPTIMIZATION
The problem with choosing the parameters ai,l , bi,l , and ci
randomly is that the user will not know if the system to
identify is able to perform such a trajectory. For this reason,
an optimized trajectory is commonly used.

As was discussed in [47], the optimization problem can be
established as

qd (t) = argmin(J ), (21)

where J is the cost function. For the case of quadrotor desired
trajectories, the cost function is subject to the following con-
straints, which include initial and final conditions,

|xd (t)| ≤ xmax,

|yd (t)| ≤ ymax,

|ψd (t)| ≤ ψmax,

zmin ≤ zd (t) ≤ zmax,

|q̇di(t)| ≤ q̇imax,

|ẍd (t)| < ∞, (22)

|ÿd (t)| < ∞, (23)

|ψ̈d (t)| ≤ ψ̈max, (24)

z̈min ≤ z̈d (t) ≤ z̈max, (25)

qdi(t0) = qdi(tf ) = q0i,

q̇di(t0) = q̇di(tf ) = 0,

q̈di(t0) = q̈di(tf ) = 0,

where xmax, ymax, and zmax are the maximum bound for the
position,ψmax is the maximum bound for the angleψ(t), zmin
is the minimum bound for the position in the z(t) coordinate,
qdi stands for any of the elements of the vector qd given
in (19), q̇imax and q̈imax are the bounds for the velocity
and acceleration, respectively, q0i denotes the initial condi-
tions for position and yaw angle of the quadrotor. According
to [62], if q̇di(t0), q̇di(tf ), q̈di(t0), and q̈di(tf ) are different from
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zero, the identification accuracy and the trajectory tracking
may be imprecise.

There are different proposals to optimized the desired tra-
jectory with the cost function J in (21), as can be seen in [24],
[42]–[46], [55], [62]. In this work,

J = cond(W ),

which is the condition number of the matrix W. In particu-
lar, W is an array of the samples of the regression matrix
8(v,ω, η, v̇, ω̇) in (12) and is defined in (20), as shown at
the bottom of the page, where T is the sampling period and
is equal to 0.002 [s], k is the total number of samples, vd , ωd ,
ηd , v̇d , and ω̇d are obtained from the kinematic relations in
equations (3) and (4) as

vd = R(ηd )
−1ṗd ,

ωd = W (ηd )
−1η̇d ,

v̇d = R(ηd )
−1[p̈d − Ṙ(ηd )vd ],

ω̇d = W (ηd )
−1[η̈d − Ẇ (ηd )ωd ],

with pd = [xd yd zd ]T ∈ R3 and ηd = [φd θd ψd ]T ∈ R3.
The desired angles φd (t) and θd (t) are calculated as

θd (t) = tan−1
(
cos(ψd )ẍd + sin(ψd )ÿd

z̈d + g

)
, (26)

φd (t) = tan−1
(
cos(θd )(sin(ψd )ẍd − cos(ψd )ÿd )

z̈d + g

)
, (27)

which are motivated from de position dynamics in the inertial
frame, see for example [65].

3) TRAJECTORY TRACKING PID CONTROLLER
Due to the high instability of the system, an open-loop
experiment can not be conducted. Therefore, the optimized
trajectories qdi(t) in (18) should be implemented with a con-
trol scheme. The implemented controller is a position and
orientation PID control for trajectory tracking defined as

Fz =
fz

cos(φ) cos(θ)
, (28)

θcd = tan−1
[
m
fz

(
fx cos(ψd )+ fy sin(ψd )

)]
, (29)

φcd = tan−1
[
m cos(θcd )

fz

(
fx sin(ψd )− fy cos(ψd )

)]
, (30)

τ = W (η)−T
(
Kpoη̃ + Kio

∫ t

0
η̃dt + Kdo ˙̃η

)
, (31)

where f p = [fx fy fz]T is the force vector in the inertial
reference frame given by

f p = mp̈d + mgez + Kppp̃+ Kip

∫ t

0
p̃dt + Kdp ˙̃p, (32)

Kpp ∈ R3×3, Kip ∈ R3×3, and Kdp ∈ R3×3 are diagonal
positive definite matrices for position control actions; Kpo ∈
R3×3, Kio ∈ R3×3, and Kdo ∈ R3×3 are diagonal positive
definite matrices for orientation control actions; p̃ = pd − p
is the position error, pd is the desired position, η̃ = ηcd − η

is the orientation error, with ηcd = [φcd θ
c
d ψd ]

T , φcd and θcd
are defined in (29) and (30) as [65]. Notice that under the
assumption that the position error p̃(t) is null for all the time
t ≥ 0, then θcd = θd and φcd = φd .

C. DATA PROCESSING
The next step in the identification procedure is to process
the obtained signals from the real-time experiment; thus,
the regression matrices 8 and 8F are computed. The regres-
sion matrix 8 in (12) is a function of v, ω, η, v̇, and ω̇, while
the regression matrix8F in (17) depends only on v, ω and η.
Considering that only measurements of position p(t), orien-
tation η(t) and the angular velocity ω(t) are available, the fol-
lowing process is carried out to obtain the necessary signals.
Notice that due to the controller limitations, a perfect tracking
of the optimized trajectory is not achieved, which causes an
error between the desired trajectory and the one obtained
experimentally. Therefore, only the measured signals are
used in the parameter identification procedure, see [24]. As
seen later, the process involves the implementation of some
filters.

1) Filtering. A digital low pass filter fp(z) was designed
to eliminate the high-frequency noise resulting
from the sampling and quantization. Zero-phase
forward-backward filtering is implemented in order
to avoid distortion of position, orientation, angular
velocity, and system output samples [22], [23], [25],
[44], [47], [61], [63]. This filtering scheme is easy
to implement in MATLAB by using the filtfilt
function with a low-pass Butterworth filter with a
cutoff frequency of 0.001 [Hz] using a 4-term sym-
metric Blackman-Harris window with L = 31 that
indicates the number of samples contained in the win-
dow [25], [61], [63], [66]. This filtering procedure
was applied to the position p(hT ), orientation η(hT ),
angular velocity ω(hT ), and system output F(hT ) sig-
nals, where h = 0, 1, 2, . . . , k − 1, being k the
total sample number and T = 0.002 [s] the sampling
period.

2) Numerical differentiation. In order to compute the
velocities and Euler angles change rate, the central dif-
ference algorithmwas used to avoid phase shifting [22],
[23], [63], [67]. The central difference algorithm is

W =


8(vd (0),ωd (0), ηd (0), v̇d (0), ω̇d (0))
8(vd (T ),ωd (T ), ηd (T ), v̇d (T ), ω̇d (T ))

...

8(vd ([k − 1]T ),ωd ([k − 1]T ), ηd ([k − 1]T ), v̇d ([k − 1]T ), ω̇d ([k − 1]T ))

 , (20)
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given by

ȧf (hT ) =
af (h+ 1)T − af (h− 1)T

2T
, (33)

where af (hT ) ∈ Rk is the filtered vector obtained as the
output of the digital low pass filter fp(z). More specif-
ically, if af is either pf (hT ), vf (hT ) or ωf (hT ), then
either the signals ṗf (hT ), v̇f (hT ) or ω̇f (hT ), respec-
tively, are obtained with (33).

3) Signal transformation. The parameter identification
is obtained by using the parameterized model in (11)
and the filtered regression model in (16), both are
represented in the body reference frame. Due to this,
the numerical derivative ṗf (hT ) obtained by using (33)
is transformed into the body reference frame by using
the kinematic relation in (3). The result is the lin-
ear velocity vf (hT ) in the body reference frame. Sub-
sequently, the derivatives v̇f (hT ) and ω̇f (hT ) needed
in the regression matrix of the parameterized model
in (11) are obtained by using the central difference
algorithm in (33).

D. PARAMETER ESTIMATION
The parameter estimation procedure presented in this doc-
ument considers two linear regression models. The first
is the so-called standard regression model represented by
equation (11) and the second one is the filtered regression
model represented by equation (16). All the elements of their
respective regression matrix are obtained following the steps
described in Section II-C. More specifically, 8 is presented
in equation (12) for the standard regression model, and8F is
defined in (17) for the filtered regression model.

1) STANDARD REGRESSION MODEL CONSTRUCTION
Once the signals Ff , vf , ωf , ηf , v̇f , and ω̇f are computed,
the following standard regression model is defined

8(vf ,ωf , ηf , v̇f , ω̇f )2 = Ff , (34)

where 8(vf ,ωf , ηf , v̇f , ω̇f ) ∈ R4×7 is the regression matrix
evaluated along the off-line processed signals, and2 ∈ R7 is
the parameter vector to be estimated.

2) FILTERED REGRESSION MODEL CONSTRUCTION
After obtaining the signals vf , ωf and ηf needed to construct
the matrices 8a and 8b, the discretization of the filtered
regression model are defined. By defining g(s) = sf (s) from
equation (15), the discrete representation of the filters f (s)
and g(s) are given by [25], [57], [58],

fD(z) =
1− e−λT

z− e−λT
, (35)

gD(z) =
λz− λ
z− e−λT

, (36)

where z is the z-transform operator. By replacing the discrete
filters (35) and (36) into equation (15) the discrete filtered

regression model (15) evaluated along the off-line processed
signals is defined by[
gD(z)8a(vf ,ωf )+fD(z)8b(vf ,ωf , ηf )

]
2= fD(z)F, (37)

where8a(vf ,ωf ) ∈ R4×7 and8b(vf ,ωf , ηf ) ∈ R4×7 are the
regression matrices of known functions, and 2 ∈ R7 is the
parameter vector. The implementation of the discrete filtering
schemes is performed in MATLAB by using the function
filter(b,a,x), where b and a represents row vectors
containing the coefficients for the numerator and denomina-
tor either of the transfer functions (35) or (36), respectively,
and x represents the signal to be processed. In order to reject
the high-frequency noise components from the measured
signals and avoiding to lose important information from the
system dynamics, the cut-off frequency of the filter must be
selected considering the highest frequency from the system
excitation signals, see [25] and [58]. In this case, the highest
frequency corresponds to the value of the fundamental fre-
quency ωf = 36 [◦/s] times the highest number of harmonics
quantity, which is N = 5, thus the highest frequency in the
excitation trajectory is 180 [◦/s]. Then, the cut-off frequency
of the filters was selected as λ = 30 [rad/s] similarly to [25],
which provided a good high-frequency rejection without los-
ing any useful information. Equation (37) is finally defined
as

8dF (vf ,ωf , ηf )2 = FdF , (38)

where

8dF (vf ,ωf , ηf ) = gD(z)8a(vf ,ωf )

+ fD(z)8b(vf ,ωf , ηf ),

FdF = fD(z)F. (39)

3) ESTIMATION ALGORITHMS
Once the linear-in-the-parameter reconstruction of the system
dynamics is obtained either by the standard regression model
in (34) or by the filtered regression model in (38), an esti-
mation of the actual parameter vector 2 should be found.
The estimated parameter vector will be denoted as 2̂. In this
paper, two well-known methods are used to compute 2̂: the
least-squares and gradient descent schemes.

LEAST-SQUARES ALGORITHM
The least-squares algorithm used for the parameter identifi-
cation through the models (34) and (38) is given by [66], [68]

2̂(hT ) =

[
h∑
i=0

0T (iT )0(iT )

]−1 h∑
i=0

0T (iT )ϒ(iT ), (40)

where 2̂(hT ) ∈ R7 is the estimation of the real parame-
ter vector 2 ∈ R7, 0 ∈ R4×7 represents the regression
matrix (either8(vf ,ωf , ηf , v̇f , ω̇f ) in (34) or8dF (vf ,ωf , ηf )
in (38)) and ϒ ∈ R4 represents the system output vector
(either Ff in (34) or FdF in (38)). In other words, to obtain
2̂ from the standard regression model (34), the least-squares
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algorithm is applied with 0 = 8(vf ,ωf , ηf , v̇f , ω̇f ), and
ϒ = Ff . On the other hand, 0 = 8dF (vf ,ωf , ηf ) and
ϒ = FdF in (39) when implementing (40) for the filtered
regression model in (38).

GRADIENT DESCENT ALGORITHM
As described in [68], the gradient descent algorithm is a
steepest descent approach to minimize the square of the
identification error e2(t), with the identification error defined
as

e = 02̂−ϒ,

where e ∈ R4 is the identification error vector, 2̂ ∈ R7 is the
estimation of the real parameter vector 2 ∈ R7, 0 ∈ R4×7

represents the regression matrix and ϒ ∈ R4 represents the
system output vector. Since

∂eT e

∂2̂
= 2

∂e

∂2̂
e = 20e,

by considering 0 and ϒ constants, we have that

d
dt
eT e = 2

[
∂e

∂2̂
e
]T
˙̂
2.

Therefore, update law is given by

˙̂
2 = −σ0e (41)

where σ > 0 is an adaptation gain. Thus, the estimation of
the parameter vector 2̂ is obtained by the discrete integration
of the update law in (41) as

2̂(hT ) = −
h∑
i=0

σT0(iT )e(iT ). (42)

For the application of (42) to the standard regression
model (34),0 = 8(vf ,ωf , ηf , v̇f , ω̇f ), andϒ = Ff . Besides,
for the filtered regression model (38), 0 = 8dF (vf ,ωf , ηf ),
and ϒ = FdF . In this work, the adaptation gain was selected
as σ = 30.

III. APPLICATION OF THE IDENTIFICATION PROCESS IN
THE QBall 2 QUADROTOR
A. EXPERIMENTAL PLATFORM DESCRIPTION
In this document, the proposed identification methodology
is applied to the QBall 2 quadrotor from Quanser shown
in Figure 2. The controller implementation was performed in
MATLAB-Simulink and Quarc software, which are required
to develop, compile, and upload the executable code in the
on-board computer. The IMU of the QBall 2 consists of a
3-axis accelerometer and a 3-axis gyroscope. The OptiTrack
motion capture system available at the Laboratory of Control
of the Instituto Politécnico Nacional-CITEDI consists of six
synchronized Flex 3 cameras connected to a ground station.
The experiments were carried out using a sampling rate
of 500 [Hz] for the inertial measurement unit of the quadrotor
and a sampling rate of 30 [Hz] for the motion capture system.
The quadrotor signals φ(t) and θ (t) are obtained by the

FIGURE 2. Quanser QBall 2 quadrotor.

TABLE 1. Nominal parameters of the QBall 2 quadrotor provided by the
manufacturer.

IMU of the quadrotor. The position p(t) and the angle ψ(t)
are obtained by the motion capture system OptiTrack. The
nominal parameters of the experimental platform given by
the manufacturer are presented in Table 1. Let us notice that
in the model (1)–(4), the inertia products Ixy, Ixz and Iyz have
been taken into account, in contrast to the nominal parameters
in Table 1.

B. OPTIMIZED TRAJECTORY
Due to the limited area for the indoor experiments, the follow-
ing constraints were selected xmax = 1 [m], ymax = 1 [m],
zmin = 0.7 [m], zmax = 1.5 [m], and ψmax = 180 [◦].
To avoiding high speed in the movement of the quadrotor,
the desired roll and pitch angles in (26) and (27), respectively,
were constrained to φmax = 5.73 [◦] and θmax = 5.73 [◦],
the linear velocities were bounded to ẋmax = ẏmax = żmax =

0.5 [m/s], and the yawmaximum angular velocity was limited
to ψ̇max = 28.65 [◦/s]. Owing to the fact that the maximum
acceleration is unknown, the acceleration constraints were
selected as in (22)–(25) where −9.81 [m/s2] ≤ z̈d (t) < ∞
and ψ̈max = ∞. The initial position were established as
x0 = 0 [m], y0 = 0 [m], z0 = 0.7 [m],ψ0 = 0 [◦]. The funda-
mental frequency was established as ωf = 36 [◦/s]. As was
discussed in [24], [42], [43], [45]–[47], [52], [53] the number
of harmonics is directly related to the highest frequency on
the excitation signal. By using too many will produce noise,
reducing the signal-to-noise ratio, which also increases the
number of zero velocity passings and impairs the excitation
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of the system, and in consequence, the parameter estimation
accuracy. Moreover, by increasing the number of harmonics,
the optimization of the trajectory is complicated since it
increases the number of coefficients to be computed. Thus,
the number of harmonics chosen in this work was N = 5.
The optimization problem is solved using the fmincon

function in MATLAB and the Optimization Toolbox with
random initial conditions for ai,l , bi,l , and ci. Figure 3 shows
the resulting desired position and orientation trajectories.
The obtained coefficients from the optimization process that
describes the desired position and orientation trajectories are
shown in Table 2.

FIGURE 3. Optimized trajectories pd (t) and ηd (t) which are implemented
through the PID controller (28)–(32) to identify the quadrotor parameters.

TABLE 2. Coefficients of the optimized trajectory (18) obtained from
solving (21).

C. PID CONTROL IMPLEMENTATION
The gains of the PID controller (31)-(32) selected to track the
optimized trajectories (18) were obtained by a trial and error

procedure until an acceptable tracking was achieved, and are
defined as

Kpp = diag {11.5 10.0 10.5} ,

Kip = diag {0.04 0.07 1.3} ,

Kdp = diag {5.5 5.0 6.0} ,

Kpo = diag {2.0 2.0 2.6} ,

Kio = diag {0.03 0.05 0.01} ,

Kdo = diag {0.6 0.6 1.0} .

The implementation of the PID controller (31)–(32) ensures
that the optimized trajectory (18) is tracked in real-time.

D. PARAMETER IDENTIFICATION RESULTS
The parameter estimation results were obtained using the
procedure described in Section II. As suggested in the litera-
ture [24], [25], the initial data are not used in the identifica-
tion procedure. Therefore, the identification procedure was
implemented for 10 [s] ≤ t ≤ 50 [s]. This period excludes
the samples of the transitory period. The time evolution of
the estimated parameters 2̂(t) are shown in Figure 4, and
Figure 5, where label LS and label GD correspond to the
standard regression model in (34) with the least-squares algo-
rithm (40) and the gradient descent algorithm (42), respec-
tively. Labels FMLS and FMGD denotes the least-squares
algorithm (40) and the gradient descent algorithm (42),
respectively, by using the filtered regression model (38).
Table 3 shows the four sets of parameters obtained in the
last time sample of the applied methods. It is worth noting
that all the estimated parameters remain bounded and seem
to converge to some value as time increases. Considering the
geometrical characteristics of the quadrotor, and the fact that
its mass is concentrated at the origin of the body reference
frame, the estimated values of the inertial parameters are
consistent.

FIGURE 4. Time evolution of the estimated mass m̂ obtained with the
identification procedure given in Section II.

IV. EXPERIMENTAL VALIDATION OF THE
IDENTIFICATION PROCEDURE
Two methods have been used to validate the obtained
results [25], [57], [63]. First, simulations have been per-
formed with the parameters provided by the manufacturer
shown in Table 1, and with the new estimated parameters
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TABLE 3. Estimated parameters of the QBall 2 quadrotor by using the identification procedure of Section II.

FIGURE 5. Time evolution of the estimated inertia tensor components Îxx ,
Îyy , Îxy , Îxz , Îyz and Îzz obtained with the identification procedure of
Section II.

shown in Table 3. Then, a comparison was made between
the simulations and the experiments to determine which set
of parameters represents closer the behavior of the quadrotor
during the experimental test. The second method computes
and compares the output prediction accuracy of the regression
models (34) and (38), which is defined as the regression
matrix times the estimated parameter vector minus the corre-
sponding output vector. Real-time experiments correspond-
ing to different desired position and orientation trajectories
are employed in order to assess the quality of the new esti-
mated parameters, which are described later. In order to save
space, only the simulation comparison figures corresponding
to the identification experiment are presented.

A. CONDITIONS OF THE SIMULATION FOR THE
COMPARISON WITH RESPECT TO THE
IDENTIFICATION EXPERIMENT
In order to evaluate the accuracy of nominal and estimated
parameters, a comparison between numerical simulations
carried out with the different sets of parameters and the iden-
tification experiment has been performed. The simulations

capture all the effects and conditions in which the experiment
was carried out.

Simulations were performed in MATLAB-Simulink with
a fixed integration step of 0.001 [s]. The optimized trajecto-
ries and their time derivatives are computed as presented in
Section II-B1.
• PID controller: It consists of two main blocks, the first
one calculates the control action for the position and
computes the desired roll φcd and pitch θcd to reach the
desired position in (x, y) plane. The derivatives of the
desired roll φcd and pitch θcd are obtained by the filter
D(s) = 20s/(s+20). The second block contains the ori-
entation control. Saturation nonlinearities were included
at the outputs of the PID controller block to incorporate
the limitations of the actuators. The saturation value for
the total thrust was established as Fmax

z = 34.4 [N],
and for the torque vector as τmax

i = 1.72 [Nm]. These
values were obtained considering themaximum thrust of
a single actuator as 8.6 [N] and the distance to the center
of mass of the quadrotor concerning the rotation axis of
the actuator as l = 0.2 [m].

• Quadrotor dynamic model: It contains the equa-
tions (1)-(4) describing the dynamics of the quadrotor.

• Signal sampling: The sampling of the inertial sensors
and the motion capture system was added by using the
‘‘zero-order hold’’ block with the corresponding sam-
pling frequency for each subsystem. The sampling fre-
quency of the position p, the yaw angle ψ , and the yaw
angle derivative ψ̇ is 30 [Hz]. The sampling frequency
of the roll φ and pitch θ angles and its derivatives φ̇ and
θ̇ is 500 [Hz].

B. VALIDATION USING THE IDENTIFICATION EXPERIMENT
In the remaining of this document, the signals obtained
experimentally are represented with black lines and the label
‘‘Exp’’. The signals obtained in simulation using nominal
parameters (provided by the manufacturer) are depicted with
red lines and the label ‘‘Sim(2nom)’’. The signals obtained
in simulation using the estimated parameters obtained with
the standard regression model (34) and the least-squares
algorithm (40) are presented with blue lines and the label
‘‘Sim(2̂LS)’’. The signals obtained in simulation using the
estimated parameters obtained with the standard regression
model (34) and the gradient descent algorithm (42) are pre-
sented with purple lines and the label ‘‘Sim(2̂GD)’’. The
signals obtained in simulation using the estimated parameters
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obtained with the filtered regression model (38) and the
least-squares algorithm (40) are presented with green lines
and the label ‘‘Sim(2̂FMLS)’’. Finally, the signals obtained
in simulation using the estimated parameters obtained with
the filtered regression model (38) and the gradient descent
algorithm (42) are presented with orange lines and the label
‘‘Sim(2̂FMGD)’’.

FIGURE 6. Validation using the identification experiment: Path drawn
by the quadrotor.

Figure 6 shows the path drawn by the quadrotor in the
real-time experiment using the PID controller to track the
optimized trajectory. Figure 6 also shows the simulation
results in the same conditions as the experiment by using
the nominal parameters and the parameters obtained by the
identification procedure of Section II.

Figure 7 presents the time evolution of the position signals
p(t) obtained experimentally and by numerical simulations
tracking the optimized trajectory. As can be seen, the dif-
ferences between the experiment and the simulations are
relatively small.

Figure 8 shows the time evolution of the orientation signals
η(t) obtained experimentally and using the simulations when
the tracking of the optimized trajectories qd (t) is performed.
The similarity of the Euler angles obtained by experiment
to the given by simulation is remarkable considering the
complexity of the system dynamics and the strong coupling
of them with the position signals.

The time evolution of control signals obtained experimen-
tally and the control signals from the simulations recreating
the experiment with the optimized trajectory are depicted
in Figure 9.

In order to provide a quantitative comparison of the
experiments with the simulations, the root mean square
value (RMS) of the signals

eαnom = αExp − αSim(2nom)

and

eαβ = αExp − αSim(2̂β )

FIGURE 7. Validation using the identification experiment: Position of
quadrotor in experiment and simulations.

FIGURE 8. Validation using the identification experiment: Orientation of
quadrotor in experiment and simulations.

are computed, where α represents any of the signals x, y, z,
φ, θ , ψ , Fz, τφ , τθ , τψ , and β represents one of the four sets
of parameters given by LS, GD, FMLS, and FMGD.

To quickly identify the improvement of the simulation
results using the estimated parameters with respect to the
nominal parameters, the relative percentage of improvement
(Pimp%) was calculated as

Pimp%(α) =
RMS(eαnom)− RMS(eαβ )

RMS(eαnom)
× 100%,

VOLUME 8, 2020 167365



I. Lopez-Sanchez et al.: Experimental Parameter Identifications of a Quadrotor by Using an Optimized Trajectory

TABLE 4. Validation using the identification experiment: RMS values of the position, orientation, and control action errors between experiment and
numerical simulation in the time interval 10 [s] ≤ t ≤ 50 [s].

FIGURE 9. Validation using the identification experiment: Quadrotor
control inputs in experiment and simulations.

where eαnom is the error between experiment and simulation
corresponding to the signal α and the simulation uses the
nominal parameters, and eαβ is the error between experiment
and simulation for the signal α and the simulation uses one
of the sets of the new parameters with β indicating either LS,
GD, FMLS or FMGD.

The RMS value of each one of the signals eαnom and
eαβ and their respective improvement percentages are pre-
sented in Table 4. The positive values of the improvement
percent (in blue) indicate a favorable result of using the
estimated parameters instead of nominal parameters. The
negative values of the improvement percent (in red) indicate a
reduction in similarity with respect to the experiment for the
signals obtained in simulation using the estimated parameter
instead of nominal parameters. Notice that the improvement
is negative mainly for two signals, specifically for ez and eψ ,
while the improvement for the remaining signals is positive,
meaning that any of the new sets of identified parameters
represents better the behavior of the quadrotor.

The another validation method was described in many
parameter identification works [22], [24], [25], [44], [46],
[47], [54]. The validation consists of computing the

difference of the predicted output of the regression mod-
els (34) and (38) obtained in the experimental test. The
predicted output is obtained as the product of the regression
matrix from the experimental test times by the estimated
parameters. Therefore, the output prediction error is given by

eyι(hT ) = 0(hT )2̂ι −ϒ(hT ), (43)

where ι indicates the set of parameters used for the cal-
culation, that is, LS, GD, FMLS, and FMGD. The matrix
0(hT ) ∈ R4×7 represents the regression matrix (either
8(v,ω, ηf , v̇, ω̇) in (34) or 8dF (v,ω, ηf ) in (38)), ϒ(hT ) ∈
R4 represents the system output vector (either Ff in (34)
or FdF in (38)), and eyι(hT ) is the output prediction error
computed for each sample.

Since different regression models are considered in this
work, in order to provide a fair comparison, two sets of the
output prediction error are computed, each one related to
the implemented regression model. The first set is associated
with the standard regression model in (34) and is computed
only by using the regression matrix 8(vf ,ωf , ηf , v̇f , ω̇f )
and the corresponding system output vector Ff . The set
of parameters considered for this calculation are the nom-
inal ones and the obtained through this regression model,
which are presented in Table 3, denoted as LS and GD.
The second set is related to the filtered regression model
in (38) and is computed only by using the regression matrix
8dF (vf ,ωf , ηf ) and the corresponding system output vector
FdF . The parameters considered are those obtained through
the filtered regression model denoted as FMLS and FMGD
in Table 3 and the nominal parameters.
The RMSvalue of each component of the vector eyι defined

in (43) is computed for each set of parameters. The percent-
ages of improvement with respect to the results obtained with
the nominal values were also computed. The results concern-
ing the standard regression model are presented in Table 5
and the results concerning the filtered regression model are
given in Table 6.

C. VALIDATION USING DIFFERENT EXPERIMENTS
Additional to the identification experiment, three different
experiments consisting in the tracking of a circular path at
different speeds were performed to evaluate the quality of the
parameter identification results. The RMS value of the output
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TABLE 5. Validation using the identification experiment: RMS values of
the output prediction error of the regression model (34) in the time
interval 0 [s] ≤ t ≤ 50 [s].

TABLE 6. Validation using the identification experiment: RMS values of
the output prediction error of the regression model (38) in the time
interval 0 [s] ≤ t ≤ 50 [s].

prediction errors was computed, including their respective
percentage of improvement. The desired position pd (t) and
orientation ψd (t) were defined to produce a circular path in
the Cartesian space and designed to be completed in 5 [s]
while different radius were specified. The gains of the PID
controller (31) and (32) used for the additional experiments
are the same as the identification experiment.

The desired trajectories that were used in the experiments
of the three circular paths are defined by

xd (t) = ϑ cos
(
2π
5
t
)

[m] ∀ t,

yd (t) = ϑ sin
(
2π
5
t
)

[m] ∀ t,

zd (t) =

% − (% − 0.3)e−0.1t
3
[m], 0 ≤ t < 5 [s]

% + 0.1 sin
(
2π
5
t
)

[m], t ≥ 5 [s]

ψd (t) = 15 sin
(
2π
5
t
)

[◦] ∀ t, (44)

where ϑ is the radius of the circular path and % is a constant
used to define the altitude trajectory.

1) CIRCULAR PATH EXPERIMENT 1
A real-time implementation of the desired trajectory (44) with
the PID controller (31)–(32) has been performed. The radius
and constant altitude values selected for the circular path
experiment 1 are given by

ϑ = 0.5 [m],

% = 1 [m].

The resulting trajectory is a 0.5 [m] radius circle in the (x, y)
plane and variable altitude.

Tables 7 and 8 presents the RMS values of the output
prediction errors given for the circular path experiment 1 cor-
responding to the standard regression model and the filtered
regression model, respectively. The percentage of improve-
ment of the RMS value of the prediction errors is presented

TABLE 7. Validation using circular path experiment 1: RMS values of
the output prediction error of the regression model (34) in the time
interval 0 [s] ≤ t ≤ 50 [s].

TABLE 8. Validation using circular path experiment 1: RMS values of
the output prediction error of the regression model (38) in the time
interval 0 [s] ≤ t ≤ 50 [s].

as well, where the values in blue mean more similarity
with the output of the regression models using the estimated
parameters than the nominal parameters, while the values in
red represent the opposite. Only two negative values were
obtained in this comparison. In general, all the results rep-
resent an improvement in the output prediction; this indicates
that the new estimated parameter values capture better the real
behavior of the quadrotor.

2) CIRCULAR PATH EXPERIMENT 2
Similarly, another experiment by using the trajectory in (44)
was carried out. The radius and constant altitude values
selected for the circular path experiment 2 are given by

ϑ = 0.8 [m],

% = 0.9 [m].

The RMS values of the output prediction errors for the
regression models (34) and (38) and as well as their corre-
sponding percentages of improvement are shown in Table 9
and 10, respectively. All the obtained values in this experi-
ment show improvements when using the estimated parame-
ters instead of the nominal parameters. For this experiment,
the sets of estimated parameters represent in a better way the
real behavior of the quadrotor.

TABLE 9. Validation using circular path experiment 2: RMS values of
the output prediction error of the regression model (34) in the time
interval 0 [s] ≤ t ≤ 50 [s].

3) CIRCULAR PATH EXPERIMENT 3
The radius and constant altitude values selected for the circu-
lar path experiment 3 are given by

ϑ = 1 [m],

% = 1 [m].
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TABLE 10. Validation using circular path experiment 2: RMS values of
the output prediction error of the regression model (38) in the time
interval 0 [s] ≤ t ≤ 50 [s].

Similar to the data presented in Tables 7-10, the cor-
responding results for the implementation of circular path
experiment 3 are presented in Tables 11 and 12. All the per-
centages of improvement related to the standard regression
model are positive, while only one negative value is obtained
with the filtered regression model. Therefore, these results
indicate that the output prediction results more similar to the
experimental ones were obtained using the new estimated
parameters instead of the nominal parameters.

TABLE 11. Validation using circular path experiment 3: RMS values of
the output prediction error of the regression model (34) in the time
interval 0 [s] ≤ t ≤ 50 [s].

TABLE 12. Validation using circular path experiment 3: RMS values of
the output prediction error of the regression model (38) in the time
interval 0 [s] ≤ t ≤ 50 [s].

V. CONCLUSION
This document describes a procedure for identifying the
parameters of quadrotors. The procedure was inspired by
manipulator identification literature. The standard and fil-
tered regression models were used. Besides, the least-square
algorithm and the gradient descent algorithm were applied.
The procedure identified the mass and the inertia moments of
the quadrotor. An optimized trajectory to take into account the
experimental platform limitations, and to excite the quadrotor
dynamics was crucial in the given procedure. The quadrotor
parameterized dynamic model in the body reference frame
was proposed considering the inertia tensor as a symmetric
matrix. Off-line data processing operations to reduce the
effect of the noise in the sampled signals and to construct the
regression models were described. The presented procedure
was validated with different experimental tests and two vali-
dation criteria. In all the cases, the results using the estimated
parameters turned out to be better than the nominal ones.

In conclusion, the obtained results of the comparisons val-
idate the new estimated parameters, which supports the
parameter identification procedure described in this work.
Furthermore, the results demonstrate that this method can be
used in quadrotors whose dynamic parameters are unknown
or have been modified with payloads. In future work, a com-
parative study with respect to other parameter estimation
approaches will provide a better idea of the advantages or
shortcomings of the given procedure. Investigation of differ-
ent excitation signals will be considered, and other criteria
for the trajectory optimization will be tested to improve the
accuracy of the parameter estimation results.
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