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ABSTRACT The conventional singular spectrum analysis is to divide a signal into segments where there
is only one non-overlapping point between two consecutive segments. By putting these segments into the
columns of a matrix and performing the singular value decomposition on the matrix, various one dimensional
singular spectrum analysis vectors are obtained. Since different one dimensional singular spectrum analysis
vectors represent different parts of the signal such as the trend part, the oscillation part and the noise part
of the signal, the singular spectrum analysis plays a very important role in the nonlinear and adaptive signal
analysis. However, as the length of each one dimensional singular spectrum analysis vector is the same as
that of the original signal, there is a redundancy among these one dimensional singular spectrum analysis
vectors. In order to reduce the required computational power and the required units for the memory storage
for performing the singular spectrum analysis, this article proposes a method to reduce the total number of
the elements of all the one dimensional singular spectrum analysis vectors. In particular, the length of the
shift block for generating the trajectory matrix is increased from one to a positive integer greater than one
under a certain criterion. In this case, the total number of the columns of the trajectory matrix is reduced.
As a result, the total number of the off-diagonals of all the two dimensional singular spectrum analysis
matrices is reduced. Hence, the total number of the elements of all the one dimensional singular spectrum
analysis vectors is reduced. In order to guarantee exact perfect reconstruction, this article reformulates the
de-Hankelization process. In particular, the first element of the off-diagonals of all the two dimensional
singular spectrum analysis matrices is taken as the elements of the one dimensional singular spectrum
analysis vectors. Exact perfect reconstruction condition is derived. Simulations show that exact perfect
reconstruction can be achieved while the total number of the elements of all the one dimensional singular
spectrum analysis vectors is significantly reduced.

INDEX TERMS Singular spectrum analysis, decimation, exact perfect reconstruction, polyphase
representation.

I. INTRODUCTION
Singular spectrum analysis is a kind of nonlinear and adaptive
time frequency analysis [1]. The signals are represented as the
sum of the one dimensional singular spectrum analysis vec-
tors [1]. Based on the rationale of judiciously selecting one
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dimensional singular analysis vectors, successful applica-
tions [22] include signal denoising [2]–[5], underlying trend
extraction [6], pattern recognition [7] and peak detection [12].
However, unlike the conventional linear and nonadaptive time
frequency analysis such as the maximally decimated filter
bank analysis [8], [9], the singular spectrum analysis is a kind
of oversampled time frequency analysis [1]. In particular,
the total number of the elements of all the one dimensional

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 170311

https://orcid.org/0000-0002-2963-0861
https://orcid.org/0000-0002-0633-7224
https://orcid.org/0000-0002-8181-0958


X. Wang, B. W.-K. Ling: Length Reduction of Singular Spectrum Analysis With Guarantee Exact Perfect Reconstruction

singular spectrum analysis vectors is L times the length of
the original signal. Here, L is the total number of the one
dimensional singular spectrum analysis vectors [1]. For some
applications such as data compression, the increase in the
total number of the elements in the representation would
significantly degrade the application performance [10].

In the mean time, a uniform decimation has been applied
to the subband components of a uniform filter bank to reduce
the total number of the elements of all the represented
components [19]–[21]. If this technique is applied to the
singular spectrum analysis, then the rows of the trajectory
matrix are the polyphase components of the original sig-
nal [16]–[18]. However, the two dimensional singular spec-
trum analysis matrices are obtained via performing the eigen
value decomposition on the trajectory matrix [1]. Hence,
the one dimensional singular spectrum analysis vectors are
in general not the polyphase components of the original
signal. As a result, whether exact perfect reconstruction of
the original signal can be achieved or not via representing the
rows of the trajectory matrix as the polyphase components of
the original signal is unknown. This article is to address this
issue.

Besides, Hankelization is to map the one dimensional sig-
nal to a trajectory matrix and the de-Hankelization is to map
the two dimensional singular spectrum analysis matrices to
the one dimensional singular spectrum analysis vectors. The
most common de-Hankelization method is via the diagonal
averaging approach [13]–[15]. That is, the average value of
each off-diagonal of each two dimensional singular spec-
trum analysis matrix is computed [13]–[15]. These average
values of these off-diagonals of each two dimensional sin-
gular spectrum analysis matrix from the elements of each
one dimensional singular spectrum analysis vector [13]–[15].
Likewise, the norm approach is proposed to determine the
elements of the one dimensional singular spectrum analysis
vectors [11]. However, the lengths of these one dimensional
singular spectrum analysis vectors are shorter than that of
the original signal if the rows of the trajectory matrix are
the polyphase components of the original signal. Therefore,
summing up of these one dimensional singular spectrum
analysis vectors cannot reconstruct the original signal. This
article is to address this issue.

Overall, the novelty and the contribution of this article is to
propose a method to reduce the total number of the elements
of all the one dimensional singular spectrum analysis vectors.
Here, the length of the shift block is increased to reduce
the total number of the columns of the trajectory matrix.
On the other hand, exact perfect reconstruction is guaranteed.
To achieve this objective, the de-Hankelization is reformu-
lated. In particular, the first element of the off-diagonals of
all the two dimensional singular spectrum analysis matrices
is taken as the elements of the one dimensional singular
spectrum analysis vectors. Up to the authors’ understanding,
this approach for performing the de-Hankelization as well
as this approach for reducing the total number of the ele-
ments of all the one dimensional singular spectrum analysis

vectors with the guarantee exact perfect reconstruction have
not investigated before.

The outline of this article is as follows. The conventional
singular spectrum analysis is reviewed in Section II. The pro-
posed method for reducing the total number of the elements
of all the one dimensional singular spectrum analysis vectors
is presented in Section III. Numerical simulation results are
presented in Section IV. Finally, a conclusion is drawn in
Section V.

II. REVIEW ON THE CONVENTIONAL SINGULAR
SPECTRUM ANALYSIS
This section summarizes the procedures for performing the
conventional singular spectrum analysis. Let the length of
a signal be N . Denote the signal as x(n). Let the vector
representation of x(n) be x = [x(0) . . . x(N−1)]T ∈ RN

Here, the superscript ‘‘T ’’ is denoted as the transposition
operator and Ra is denoted as the set of the a dimensional
real valued vectors. Denote the trajectory matrix as

X =

 x(0) x(1) . . . x(N−L)
...

...
. . .

...

x(L−1) x(L) . . . x(N−1)

 ∈ RL×(N−L+1).

Here, <a×b is denoted as the set of the a×b real valued
matrices.

Let the left unitary matrix and the right unitary matrix
obtained by performing the singular value decomposition
on x be U ∈ RL×L and V ∈ <(N−L+1)×(N−L+1), respec-
tively. Also, let the diagonal matrix obtained by performing
the singular value decomposition on X be 3 ∈ <

L×L .
That is, X = U

[
3 0L×(N−2L+1)

]
VH . Here, 0a×b is

denoted as the a×b zero matrix and the superscript ‘‘H ’’
is denoted as the conjugate transposition operator. As the
total number of the columns in the zero matrix is N−2 L+1
which is required to be a non-negative integer, N ≥2 L−
1 is required to be satisfied. Let the columns of U and
the columns of V be ui ∈ RL for i = 0, . . . ,L−1 and
vi ∈ RN−L+1 for i = 0, . . . ,N−L, respectively. That is,
U =

[
u0 . . . uL−1

]
and V =

[
v0 . . . vN−L

]
. Denote

ui =
[
ui,0 . . . ui,L−1

]T for i = 0, . . . ,L−1 and vi =[
vi,0 . . . vi,N−L

]T for i = 0, . . . ,N−L. Also, let the diag-
onal elements of 3 be λ1 for i = 0, . . . ,L−1. Define

Xi = λiuivHi = λi

 ui,0
...

ui,L−1

[ vi,0 . . . vi,N−L ]H =
 λiui,0v∗i,0 . . . λiui,0v∗i,N−L

...
. . .

...

λiui,L−1v∗i,0 . . . λiui,L−1v
∗
i,N−L

 ∈ RL×(N−L+1) for i =

0, . . . ,L−1 as the two dimensional singular spectrum anal-
ysis matrices. Here, the superscript ‘‘∗’’ is denoted as the
conjugate operator. Then, it can be checked easily that X =∑L−1

i=0 Xi.
Let the j th off-diagonal ofXi be yi,j for i = 0, . . . ,L−1 and

for j = 0, . . . ,N−1. Denote the ith one dimensional singular
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spectrum analysis vector µi =
[
µi,0 . . . µi,N−1

]T
∈

RN for i = 0, . . . ,L−1·To perform the de-Hankelization
approach [1], the conventional diagonal averaging method
is employed. That is, the elements of the one dimensional
singular spectrum analysis vectors are defined as:

µi,k =



∑k

j=0
λiui,jv∗i,k−j 0 ≤ k ≤ L−1∑L−1

j=0
λiui,jv∗i,k−j

L
L ≤ k ≤ N-L∑L−1

j=k−N+L
λiui,jv∗i,k−j

N−k
N−L+1 ≤ k ≤ N−1

for i = 0, . . . ,L−1 and for 0 ≤ k ≤ N−1

III. RROPOSED METHOD FOR REDUCING THE TOTAL
NUMBER OF THE ELEMENTS OF ALL THE ONE
DIMENSIONAL SINGULAR SPECTRUM
ANALYSIS VECTORS
A. CONSTRUCTION OF THE TRAJECTORY MATRIX
Let the length of the shift block for generating the trajectory
matrix be D ∈ Z+. Here, Z+ is denoted as the set of
the positive integers. For the conventional singular spectrum
analysis [1],D = 1. In this article, we consider the case that
D > 1. In this case, the trajectory matrix as x(0) x(D) . . . x(N−L)

...
...

. . .
...

x(L−1) x(D+L−1) . . . x(N−1)

∈ <L×(N−LD +1).
(1)

Since the index of the first element in the last column of the
trajectory matrix is N−L which is required to be an integer
multiple of D, N−LD ∈ Z+ is required to be satisfied. It is
worth noting that the k th row of X is the k th polyphase
component of x(n) for k = 0, . . . ,L−1 [8]. Define the
mapping from the set of x to the set of X be f . That is,
f (x) = X. Obviously, f is invertible if and only if L ≥ D
This is because there is no data loss when L ≥ D and vice
versa.

B. CONSTRUCTION OF THE TWO DIMENSIONAL
SINGULAR SPECTRUM ANALYSIS MATRICES

In general, V ∈ <
(
N−L
D +1

)
×

(
N−L
D +1

)
,

vi =
[
vi,0 . . . vi,N−LD

]T
∈ R

(
N−L
D +1

)
for i = 0, . . . , N−LD

andX = U
[
3 0

L×
(
N−L
D −L+1

)]VH .As the total number of

the columns in the zeromatrix is N−LD −L+1which is required
to be a non-negative integer, N ≥ (D+1)L−D is required to
be satisfied. Now,

Xi = λiuivHi = λi

 ui,0
...

ui,L−1

[vi,0 . . . vi,N−LD

]H

=


λiui,0v∗i,0 . . . λiui,0v∗i,N−LD

...
. . .

...

λiui,L−1v∗i,0 . . . λiui,L−1v∗i,N−LD

 ∈ <L×(N−LD −1)
(2)

for i = 0, . . . ,L−1. It can be checked easily that X =∑L−1
i=0 Xi is still satisfied.

C. IMPROVED DE-HANKELIZATION PROCESS
It is worth noting that Xi for i = 0, . . . ,L−1 consists of
N−L
D +L off-diagonals. Besides,

yi,j ∈


<
j+1 0 ≤ j ≤ L−2

<
L L−1 ≤ j ≤

N−L
D

<

N−L
D
+L−j N−L

D
+1 ≤ j ≤

N−L
D
+L−1

for i = 0, . . . ,L−1. To perform the de-Hankelization, yi,j for
i = 0, . . . ,L−1 and for j = 0, . . . , N−LD +L−1 is represented

by a scalar. Therefore, µi =
[
µi,0 . . . µi,N−LD +L−1

]T
∈

R
N−L
D +L for i = 0, . . . ,L−1. Obviously, the length of µi

for i = 0, . . . ,L−1 is smaller than the length of x. Hence,
the total number of the elements of all the one dimensional
singular spectrum analysis vectors is significantly reduced.

For performing the conventional diagonal averaging based
de-Hankelization [1], we have:

µi,k =



∑k

j=0
λiui,jv∗i,k−j

k+1
0 ≤ k ≤ L−1∑k−1

j=0
λiui,jv∗i,k−j

L
L ≤ k ≤

N−L
D∑L−1

j=k−
N−L
D

λiui,jv∗i,k−j

N−L
D
+L−k

N−L
D
+1 ≤ k

≤
N−L
D
+L−1

(3)

for i = 0, . . . ,L−1 and for 0 ≤ k ≤ N−L
D +L−1· It

is worth noting there are N−L
D +L equations and N−L

D +L+

1 variables
(
ui,0, . . . , ui,L−1, vi,0, . . . , vi,N−LD

)
in the above

diagonal averaging based de-Hankelization process. How-
ever, these equations consist of the sum of one or more than
one quadratic term. As it is required to access many different
storage units especially when the size of the matrix is large,
solving these equations requires a high computational power
and thememory storage units.Moreover, there are (L−1)! and(N−L

D

)
! vector equations governing the orthogonal conditions

among the columns of U and V, respectively. Furthermore,
U,D,V and X are also related together by the singular value
decomposition. Hence, it is very difficult to find µi using Xi
for i = 0, . . . ,L−1.
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To address this difficulty, this article proposes to refor-
mulate the de-Hankelization process without solving those
complicated equations. It is worth noting that Xi for i =
0, . . . ,L−1 is a rank one matrix which is completely char-
acterized by the first element of its off-diagonals. Hence, µi,j
is chosen as the first element of yi,j for i = 0, . . . ,L−1 and
for j = 0, . . . , N−Ln +L−1· That is

µi,k

=


λi,0ui,0v∗i,k 0 ≤ k ≤

N−L
D

λiu
i,k−

N−L
D

v∗

i,
N−L
D

N−L
D
+1 ≤ k ≤

N−L
D
+L−1

(4)

for i = 0, . . . ,L−1

D. RECONSTRUCTION OF THE TWO DIMENSIONAL
SINGULAR SPECTRUM ANALYSIS MATRICES AND
THE TRAJECTORY MATRIX
Let the reconstructed two dimensional singular spectrum

analysis matrix be X̃i ∈ <
L×

(
N−L
D +1

)
and its jth

row be x̃i,j where x̃Ti,j ∈ <
N−L
D +1 for i =

0, . . . ,L−1 and for j = 0, . . . ,L−1. For i =
0, . . . ,L−1, set x̃i,0 =

[
µi,0 . . . µi,N−LD

]
and x̃i,k =

µ
i, N−LD +k

gi

[
µi,0 . . . µi,N−LD

]
for k = 1, . . . ,L−1. Here,

gi = λiui,0v∗i,N−LD
for i = 0, . . . ,L−1 is defined for per-

forming the de-Hankelization. Define X̃ =
∑L−1

i=0 X̃i ∈

<
L×

(
N−L
D +1

)
Then, the trajectory matrix X can be recovered

from X̃. That is X̃ = X. This is because X̃i = Xi for
i = 0, . . . ,L−1.

E. RECONSTRUCTION OF THE ORIGINAL SIGNAL
Let the vector of the reconstructed signal based on X̃ be

x̃ =
[
x̃(0) . . . x̃(N−1)

]T
∈ RN .

Here, the polyphase components of x̃ are chosen as the
rows of X̃ as shown in Figure 1. In particular, by picking
up the first D rows of X̃ and upsampling each row with
the appropriate delays, x̃ is formed by adding these delayed
upsampled rows together.

F. SUMMARY OF THE PROCEDURES FOR PERFORMING
THE DECIMATED SINGULAR SPECTRUM ANALYSIS
USING THE PSEUDO CODE
To summarize the procedures for performing the decimated
singular spectrum analysis, the pseudo code is described
below:
Decomposition Phase:
Step 1: Construct the trajectory matrix X where

X =

 x(0) x(D) . . . x(N−L)
...

...
. . .

...

x(L−1) x(D+L−1) . . . x(N−1)

 .

FIGURE 1. Relationship between the vectors containing the polyphase
components of x̃ and the rows of X̃.

Step 2: Perform the singular value decomposition on X to
obtain U,3 and V. That is, X = U

[
3 0

L
(
N−L
D −L+1

) ]
VH .

Step 3: Compute the two dimensional singular spectrum
analysis matricesXi whereXi = λuuivHi for i = 0, . . . ,L−1.
Step 4: Compute gi = λiui,0v∗i,N−LD

for i = 0, . . . ,L−1.

Step 5: Compute the elements in the one dimensional
singular spectrum analysis vectors µi,k where

µi,k

=


λiui,0v∗i,k 0 ≤ k ≤

N−L
D

λiu
i,k−

N−L
D

v∗

i,
N−L
D

N−L
D
+1 ≤ k ≤

N−L
D
+L−1

for i = 0, . . . ,L−1 and for k = 0, . . . , N−LD +L−1.
Synthesis Phase:
Step 6: For i = 0, . . . ,L−1, compute the rows of

the reconstructed two dimensional singular spectrum anal-
ysis matrices x̃i,k for k = 0, . . . ,L−1 where x̃i,0 =[
µi,0 . . . µi,N−LD

]
and x̃i,k =

µ
i,N−LD +k

gi

[
µi,0 . . . µi,N−LD

]
for

k = 1, . . . ,L−1. Then, the reconstructed two dimensional
singular spectrum analysis matrices X̃i for i = 0, . . . ,L−1
are formed.

Step 7: Compute the reconstructed trajectory matrix X̃
where X̃ =

∑L−1
i=0 X̃i .

Step 8: Compute the reconstructed signal x̃ where the
polyphase components of x̃ are chosen as the rows of X̃. That
is, pick up the first D rows of X̃, upsample each picked up
row and delay it, then x̃ is the sum of these delayed upsampled
rows.

G. REVIEW ON THE SINGULAR SPECTRUM OF A SIGNAL
For the conventional singular spectrum analysis, the distri-
bution of the energy of the eigentriple to the total energy
of all the eigentriples of the trajectory matrix is called
the singular spectrum of a signal. That is, the distribution

of
|λ|2i∑L−1
i=0 |λ|

2
i
· It has been shown theoretically and validated

experimentally that each singular value of the trajectory
matrix can be approximated by averaging a portion of
the periodogram of the signal [1]. More precisely, define
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s =
[
x(0) . . . x(N−L)

]T
∈ RN−L+1 as a vector formed

by taking the first N−L+1 consecutive points from x. Also,
define ŝ = [ŝ(0) . . . ŝ(N−L)]T ∈ CN−L+1 as a vector con-
taining the unitary discrete Fourier transform coefficients of
s.Here,Ca is denoted as the set of the a dimensional complex
valued vectors. Suppose that L � N−L+1. Then, the energy
of each eigentriple |λ|2i of the normalized covariance matrix
C = 1

N−L+1XX
T
∈ <

L×L can be approximately computed
by the average value of a portion of ŝ as follows [1]

|λi|
2
≈

1
l

(i+1)l−1∑
j=il

|ŝ(j)|2 for i = 0, . . . ,L−1, (5)

where l =
⌊
N−L+1

L

⌋
and bzc represents the integer part of a

real number z.

H. EXACT PERFECT RECONSTRUCTION
Since the total number of the elements of all the one
dimensional singular spectrum analysis vectors is reduced,
in general it is not guaranteed to achieve exact perfect recon-
struction. This article aims to address this issue.

If L ≥ D, then exact perfect reconstruction of x can be
achieved. That is, x̃ = x. This result is summarized in the
following theorem:
Theorem 1: Suppose that N−LD ∈ Z+ andN ≥ (D+1)L−D.

Exact perfect reconstruction of x can be achieved usingµi and
gi for i = 0, . . . ,L−1 if and only if L ≥ D.

Proof: For the givenµi and gi for i = 0, . . . ,L−1, x̃i,0 =[
µi,0 . . . µi,N−LD

]
and x̃i,k =

µ
i,N−LD +k

gi

[
µi,0 . . . µi,N−LD

]
for

k = 1, . . . ,L−1 are constructed. Hence, we have

X̃i =



λiui,0v∗i,0 . . . λiui,0v∗

i,
N−L
D

...
. . .

...

λiui,L−1v∗i,0 . . . λiui,L−1v∗

i,
N−L
D


= Xi

for i = 0, . . . ,L−1. It is worth noting that X =
∑L−1

i=0 Xi·

since L ≥ D, f is invertible. This implies that x can be
perfected reconstructed using µi and gi for i = 0, . . . ,L−1.
This proves the necessary part.

On the other hand, if L < D, then the information is lost.
As a result, x cannot be perfectly reconstructed using µi and
gi for i = 0, . . . ,L−1. This proves the sufficient part and the
proof is completed.

From Theorem 1, it can be seen that exact perfect recon-
struction only depends on the length of the shift block for
generating the trajectory matrix, the number of the singular
spectrum analysis components and the length of original
signal. It is independent of the signal itself. Also, it is inde-
pendent on whether the mode mixing phenomenon occurs or
not.

I. ANALYSIS ON THE REQUIRED COMPUTATIONAL
POWER AND MEMORY ANDMEMORY STORAGE
It is worth noting that our proposed method only requires
L
(N−L

D +1
)
memory units to generate X. On the other

hand, the conventional singular spectrum analysis approach
requires L(N−L+1) memory units to generate X. Table 1,
Table 2, Table 3 and Table 4 show the required computational
powers for performing the singular value decomposition on
X, computing the one dimensional singular spectrum analysis
vectors, reconstructing the original signal and performing the
overall operations, respectively. It can be seen from Table 1 to
Table 4 that our proposed method requires a smaller number
of multiplications and the additions as well as a smaller
number of the memory storage compared to the conventional
diagonal averaging based de-Hankelization method.

TABLE 1. The required computational powers for performing the singular
value decomposition on X.

TABLE 2. The required computational powers for computing the one
dimensional singular spectrum analysis vectors.

TABLE 3. The required computational powers for reconstructing the
original signal.

IV. COMPUTER NUMERICAL SIMULATION RESULTS
Without the loss of the generality, consider an identically and
independently Gaussian distributed random signal with the
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TABLE 4. The required computational powers for performing the overall
operations.

mean being equal to zero and the variance being equal to one.
Here, N = 16 is illustrated. This is because the signal with
a very long length is difficult to be illustrated numerically.
Moreover, L = 4 is illustrated which is equal to 25% of
the signal length. This ratio is illustrated because it is usually
used in the singular spectrum analysis. Furthermore, D = 3
is illustrated. This is because it refers to the nearly maximal
decimation case. It can be checked easily that both N−L

D ∈

Z+ and N ≥ (D+1)L-D are satisfied. For a particular
realization, it is found that

x =
[
x0 x1 x2 x3

]T
∈ <

16. (6)

where

x0 = [−1.0667 0.9337 0.3503 −0.0290],

x1 = [0.1825 −1.5651 −0.0845 1.6039],

x2 = [0.0983 0.0414 −0.7342 −0.0308]

and

x3 =
[
0.2323 0.4264 −0.3728 −0.2365

]
.

Hence, we have

X =


−1.0667 −0.0290 −0.0845 0.0414 0.2323
0.9337 0.1825 1.6039 −0.7342 0.4264
0.3503 −1.5651 0.0983 −0.0308 −0.3728
−0.0290 −0.0845 0.0414 0.2323 −0.2365


∈ <

4×5. (7)

Therefore, these two dimensional singular spectrum analysis
matrices are

X0 =


−0.3893 −0.0097 −0.4823 0.2243 −0.0949
1.1795 0.0294 1.4614 −0.6795 0.2874
0.1230 0.0031 0.1524 −0.0709 0.0300
−0.0585 −0.0015 −0.0725 0.0337 −0.0143


∈ <

4×5, (8)

X1 =


−0.0585 0.2467 0.0202 −0.0150 0.0770
−0.0550 0.2317 0.0190 −0.0140 0.0723
0.3576 −1.5073 −0.1233 0.0914 −0.4705
0.0330 −0.1393 −0.0114 0.0084 −0.0435


∈ <

4×5, (9)

X2 =


−0.6161 −0.2683 0.3685 −0.1787 0.2600
−0.1873 −0.0816 0.1120 −0.0543 0.0790
−0.1335 −0.0581 0.0799 −0.0387 0.0563
0.0423 0.0184 −0.0253 0.0123 −0.0179


∈ <

4×5 (10)

and

X3 =


−0.0028 0.0023 0.0091 0.0108 −0.0098
−0.0035 0.0029 0.0116 0.0137 −0.0124
0.0032 −0.0027 −0.0106 −0.0126 0.0114
−0.0459 0.0378 0.1506 0.1779 −0.1608


∈ <

4×5. (11)

It is worth noting that Xi for i = 0, . . . ,L−1 are not the
Hankel matrices. Besides, we have

µ0 =
[
µ̃0,1 µ̃0,2

]T
∈ R8, (12)

where

µ̃0,1 = [−0.3893 −0.0097 −0.4823 0.2243]

and

µ̃0,2 =
[
−0.0949 0.2874 0.0300 −0.0143

]
,

µ1 =
[
µ̃1,0 µ̃1,1

]T
∈ R8, (13)

where

µ̃1,0 = [−0.0585 0.2467 0.0202 −0.0150
]

and

µ̃1,1 =
[
0.0770 0.0723 −0.4705 −0.0435

]
,

µ2 =
[
µ̃2,0 µ̃2,1

]T
∈ R8, (14)

where

µ̂2,0 = [−0.6161 −0.2683 0.3685 −0.1787
]

and

µ̂2,1 = [0.2600 0.0790 0.0563 −0.0179
]
,

and

µ3 =
[
µ̃3,0 µ̃3,1

]T
∈ R8, (15)

where

µ3,0 = [−0.0028 0.0023 0.0091 0.0108
]

and

µ̃3,1 = [−0.0098 −0.0124 0.0114 −0.1608
]
,

as well as g0 = −0.0949, g1 = 0.0770, g2 = 0.2600
and g3 = −0.0098· Obviously, the elements of µi and gi
for i = 0, . . . ,L−1 are expressed as the elements of Xi.

Then, we can compute X̃i for i = 0, . . . ,L−1. It can be
checked easily that X̃i = Xi for i = 0, . . . ,L−1. Here,
the elements of X̃i are expressed as the elements of µi and
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gi for i = 0, . . . ,L−1 Next, we can compute X̃ and x̃. It can
be checked that X̃ = X and

x̃ = x. (16)

That means, exact perfect reconstruction on x is achieved.
On the other hand, since L ≥ D, Theorem 1 also gives the
same conclusion. That means, the theoretical result agrees
perfectly with the numerical simulation result.

Now, consider the case with both the same realization of
the signal and the same value of L but with different value
of D. In particular, D = 4 is illustrated. This refers to the
maximal decimation case. It can be checked easily that both
N−L
D ∈ Z+ and N ≥ (D+1)L−D are satisfied. In this case,

X =


−1.0667 0.1825 0.0983 0.2323
0.9337 −1.5651 0.0414 0.4264
0.3503 −0.0845 −0.7342 −0.3728
−0.0290 1.6039 −0.0308 −0.2365


∈ <

4×4. (17)

Also,

X0 =


−0.2262 0.5041 0.0050 −0.0887
0.7496 −1.6704 −0.0165 0.2938
0.0668 −0.1489 −0.0015 0.0262
−0.6038 1.3455 0.0133 −0.2367


∈ <

4×4, (18)

X1 =


−0.7516 −0.2859 0.3337 0.3108
0.0950 0.0361 −0.0422 −0.0393
0.5277 0.2007 −0.2343 −0.2182
0.4578 0.1742 −0.2033 −0.1893


∈ <

4×4, (19)

X2 =


−0.0966 −0.0565 −0.1866 −0.0851
0.0811 0.0474 0.1567 0.0714
−0.2471 −0.1445 −0.4776 −0.2177
0.1095 0.0640 0.2116 0.0964


∈ R4×4 (20)

and

X3 =


0.0077 0.0207 −0.0537 0.0953
0.0081 0.0219 −0.0566 0.1004
0.0030 0.0080 −0.0208 0.0369
0.0075 0.0203 −0.0524 0.0931

∈ <4×4.
(21)

Similarly,Xi for i = 0, . . . ,L−1 are not the Hankel matrices.
Besides, we have:

µ0 =
[
µ̃0,1 µ̃0,2

]T
∈ <

7, (22)

where

µ̃0,1 =
[
−0.2262 0.5041 0.0050

]
and

µ̃0,2 = [−0.0887 0.2938 0.0262 −0.2367],

µ1 =
[
µ̃1,0 µ̃1,1

]T
∈ R7, (23)

where

µ̃1,0 =
[
−0.7516 −0.2859 0.3337

]
and

µ̃1,1 =
[
0.3108 −0.0393 −0.2182 −0.1893

]
,

µ2 =
[
µ̃2,0 µ̃2,1

]T
∈ R7, (24)

where

µ̃2,0 =
[
−0.0966 −0.0565 −0.1866

]
and

µ̃2,1 =
[
−0.0851 0.0714 −0.2177 0.0964

]
,

and

µ3 =
[
µ̃3,0 µ̃3,1

]T
∈ <

7, (25)

where

µ̃3,0 =
[
0.0077 0.0207 −0.0537

]
and

µ̃3,1 =
[
0.0953 0.1004 0.0369 0.0931

]
,

as well as g0 = −0.0887, g1 = 0.3108, g2 = −0.0851
and and g for g3 = 0.0953· Likewise, the elements of µi
and gi, for i = 0, . . . ,L−1 are expressed as the elements of
Xi. Next, we compute X̃i for i = 0, . . . ,L−1. We also have
X̃t = Xi for i = 0, . . . ,L−1. Here, the elements of X̃i are
expressed as the elements of µi and gi for i = 0, . . . ,L−1.
Then, we can compute x̃ and x̃.We still have X̃ = X and

x̃ = x. (26)

That means, exact perfect reconstruction on x is achieved.
On the other hand, since L ≥ D, Theorem 1 also gives the
same conclusion.

It is worth noting that the signal representation consists of
two major parts. The first part is the signal decomposition
and the second part is the signal synthesis. For the signal
decomposition, if the original signal composites of several
components, then the ideal case for the signal decomposition
is to represent the original signal as the sum of these signal
components. If this is not the case, then the mode mixing
phenomenon occurs. For the empirical mode decomposition,
it represents the original signal as the sum of the intrinsic
mode functions and different intrinsic mode functions are
localized in different frequency bands. Hence, if the compo-
nents of the original signal are localized in different frequency
bands, then the mode mixing phenomenon may not occur.
However, as the objective of the singular spectrum analysis
is to represent the original signal as the sum of the com-
ponents with different significances, where the significances
of the components are determined by the eigenvalues of
the trajectory matrix, there is no control on the occurrence
of the mode fixing phenomenon. Based on this, now con-
sider a signal separation problem. In particular, the length
of the signal is equal to 1000. That is, N = 1000. The
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signal is composed of 4 finite length sinusoidal components.
Their maximum absolute values are equal to 1,0.2,0.1 and
0.05, respectively, as well as their frequencies are equal to
0.005,0.08665,0.16835 and 0.25, respectively. That is,

x(n) = sin(0.01πn)+0.2 sin(0.1733πn)

+0.1 sin(0.3367πn)+0.05 sin(0.5πn) (27)

for n = 0, . . . ,N−1.Here, the finite length sinusoidal signals
are used for the illustration becape of the following two
reasons. First, as the finite length sinusoidal signals can be
modeled by the products of the rectangle window functions
and the corresponding infinite length sinusoidal signals, these
signals are asymptotically separable. Second, these signals
are widely used in many engineering applications such as in
the communication applications. since there are four finite
length sinusoidal components, L = 4 is chosen. In order
to achieve the maximally decimation, D = 4 is chosen.
Figure 2 plots the original signal. Then, we compute Xj
for i = 0, . . . ,L−1. Similarly, Xi for i = 0, . . . ,L−
1 are not the Hankel matrices. Next, we and gi for i =
0, . . . ,L−1. Obviously, the compute µi and gi elements of
µi and gi for i = 0, . . . ,L−1 are expressed in terms of the
elements of Xi. Figure 3 plots these four one dimensional
singular spectrum analysis components obtained based on
both our proposed de-Hankelization method and the conven-
tional diagonal averaging based deHankelization method [1].
Here, it can be seen from Figure 3 that the maximum abso-
lute values of the one dimensional singular spectrum analy-
sis components obtained by our proposed de-Hankelization
method are 1.1881, 0.2950, 0.1095 and 0.0094, respectively.
On the other hand, the maximum absolute values of the one
dimensional singular spectrum analysis components obtained
by conventional diagonal averaging based de-Hankelization
method are 1.0382,0.0600,0.0523 and 0.0073, respectively.
Compare with the maximum absolute values of the original
signal components which are 1,0.2,0.1 and 0.05, respectively,
it can be seen that the errors obtained by our proposed
deHankelization method are lower than those obtained by
the conventional diagonal averaging based de-Hankelization

FIGURE 2. x(n).

FIGURE 3. (a), (b), (c) and (d) Obtained based on both our proposed
de-Hankelization method (red line) and the conventional diagonal
averaging based de-Hankelization method [1] (blue line).

method. Next, we compute X̃i for i = 0, . . . ,L−1. Obvi-
ously, the elements of X̃i are expressed as the elements of
µi and gi for i = 0, . . . ,L−1 We also have X̃i =

Xi for i = 0, . . . ,L−1. Finally, we can compute X̃ and
x̃. We still have X̃ = X and x̃ = x. Figure 4 plots
the reconstruction signal. It can be seen that exact perfect
reconstruction is achieved. On the other hand, as the length
of the reconstructed signal based on the diagonal averaging
based de-Hankelization method is shorter than that of the
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FIGURE 4. x(n).

FIGURE 5. x(n).

original signal, exact perfect reconstruction is impossible for
the diagonal averaging based de-Hankelization method.

Now, consider an example of the signal with the length
the same as that of the previous example. The signal is also
composed of 4 finite length sinusoidal components. Their
maximum absolute values are the same as those of the pre-
vious example, but their frequencies are changed to 0.005,
0.01, 0.015 and 0.02, respectively. That is,

x(n) = sin(0.01πn)+0.2 sin(0.02πn)

+0.1 sin(0.03πn)+0.05 sin(0.04πn) (28)

for n = 0, . . . ,N−1. Likewise, L = 4 and D = 4 are
chosen. Figure 5 plots the original signal. Then, we compute
Xi for i = 0, . . . ,L−1. Similarly, Xi for i = 0, . . . ,L−1
are not the and g for Hankel matrices. Next, we compute µi
and for gi i = 0, . . . ,L−1. Obviously, the elements of µi
and gi for i = 0, . . . ,L−1 are expressed as the elements
of Xi. Figure 6 plots these four one dimensional singular
spectrum analysis components obtained based on both our
proposed deHankelization method and the conventional diag-
onal averaging based de-Hankelization method [1]. Compare

FIGURE 6. (a), (b), (c) and (d) Obtained based on both our proposed
de-Hankelization method (red line) and the conventional diagonal
averaging based de-Hankelization method [1] (blue line).

with the maximum absolute values of the original signal
components, it can be seen that the errors obtained by our pro-
posed de-Hankelizationmethod are lower than those obtained
by the conventional diagonal averaging based deHankeliza-
tion method. Besides, it is worth noting that the obtained
one dimensional singular spectrum analysis components are
not the corresponding signal components. It can be seen
from Figure 6 that there are many harmonics in the singu-
lar spectrum analysis components. That means, the mode
mixing phenomenon occurs. However, it can be seen from
Figure 6 that the second one dimensional singular spec-
trum analysis component obtained by our proposed
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FIGURE 7. x̃(n).

de-Hankelization method contains a smaller number of har-
monics compared to that obtained by the conventional diag-
onal averaging based de-Hankelization method [1]. Next,
we compute X̃i for i = 0, . . . ,L−1 Obviously, the elements
of X̃i are expressed as the elements of µi and gi for i =
0, . . . ,L−1. We also have X̃i = Xi for i = 0, . . . ,L−1.
Finally, we can compute X̃ and x̃· We still have X̃ =

X and x̃ = x· Figure 7 plots the reconstruction signal.
It can be seen that exact perfect reconstruction is achieved.
On the other hand, as the length of the reconstructed signal
based on the diagonal averaging based de-Hankelization
method is shorter than that of the original signal, exact
perfect reconstruction is impossible for the diagonal aver-
aging based de-Hankelization method. Finally, our proposed
de-Hankelization method is applied to a hyperspectral image.
This image is taken from the Indian Pines dataset where the
AVIRIS imaging spectrometer is used for taking the images
with the range of the imaging wavelength being between
0.4µm and 2.5µm and the bandwidth being below 10 nm.
Therefore, the image is with 200 consecutive bands. A pixel
in this image is randomly selected and these 200 consecutive
radiation intensity values at different bands are obtained.
The xcoordinate and the y-coordinate of Figure 8 refer to
the index of these 200 bands and the radiation intensity
corresponding to different bands, respectively. Obviously,
this signal cannot be represented as the sum of a small number

FIGURE 8. The grey scale values of the hyperspectral image at a
particular pixel.

FIGURE 9. The reconstructed grey scale values of the hyperspectral image
at a particular pixel using the four singular spectrum analysis
components obtained based on our proposed de-Hankelization method.

of the finite length sinusoidal components. That means, this
is not an asymptotically separable signal. In this example,
L = 4 and D = 4 are illustrated. First, we compute Xi
for i = 0, . . . ,L−1. Likewise, Xi for i = 0, . . . ,L−1
are not the Hankel matrices. Second, we compute µi and
gi for i = 0, . . . ,L−1. Obviously, the elements of µi and
gi for i = 0, . . . ,L−1 are expressed as the elements of
Xi. Third, we compute X̃i for i = 0, . . . ,L−1. We also
have X̃i = Xi for i = 0, . . . ,L−1. Here, the elements
of X̃i are expressed as the elements of µi and gi for i =
0, . . . ,L−1. Fourth, we can compute X̃.We still have X̃ = X.
Finally, we compute x̃ Figure 9 shows both the original
grey scale values (blue line) and the reconstructed grey scale
values using the four singular spectrum analysis components
obtained based on our proposed de-Hankelization method
(red line). It can be seen that the red line coincides with the
blue line. That means, the grey scale values can be exactly
reconstructed. That is , x̃ = x. From here, we can see that
exact perfect reconstruction can be achieved if Theorem 1 is
satisfied no matter the original signal is an asymptotically
separable signal or not. On the other hand, as the length of
the reconstructed signal obtained by the diagonal averaging
based de-Hankelization method is shorter than that of the
original signal, exact perfect reconstruction is impossible
for the diagonal averaging based de-Hankelization method.
To demonstrate the advantages of the reduction of the total
number of the elements in all the one dimensional singular
spectrum analysis vectors, the denoising is performed in
these one dimensional singular spectrum analysis vectors via
the thresholding scheme. That is, the elements in the one
dimensional singular spectrum analysis vectors are set to zero
if they are smaller than a threshold value. Here, the lengths of
the one dimensional singular spectrum analysis components
based on our proposed deHankelization method are 53. On
the other hand, those based on the conventional singular spec-
trum analysis approach with D = 1 are 200. Obviously, our
proposed deHankelization method can significantly reduce
the required computational power and the memory storage
for the processing.More precisely, the total time taken for this
denoising operation is computed. It is found that our proposed
method requires 1.2s for the overall operation. On the other
hand, the conventional singular spectrum analysis approach
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withD = 1 requires 8.4 s for the overall operation. Obviously,
performing the denoising via our proposed method is more
efficient than via the conventional singular spectrum analysis
approach with D = 1.

V. CONCLUSION
This article proposes to increase the length of the shift block
for generating the trajectory matrix to reduce the total number
of the elements of all the one dimensional singular spec-
trum analysis vectors. To perfectly reconstruct the original
signal, the de-Hankelization process is redefined in such a
way that the first element of the off-diagonals of all the
two dimensional singular spectrum analysis matrices is used
to construct the one dimensional singular spectrum analysis
vectors. The computer numerical simulation results show that
exact perfect reconstruction can be achieved while the total
number of the elements of all the one dimensional singular
spectrum analysis vectors is significantly reduced.
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