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ABSTRACT We address the problem of sparse multi-band signal reconstruction in the case of unknown band
position through the discrete multi-coset sampling (DMCS). In this article, the signal has complex frequency
components, and theminimum coset number is determined on the assumption that there is only one frequency
component with same characteristics. According to the frequency characteristics, we analyze the influence
of the parameterized compressed matrix on the two reconstruction algorithms, and get that a single algorithm
does not have universal adaptability to different frequency components. In order to solve this problem, under
the discrete multi-coset sampling model, a joint optimization algorithm with discriminant factor (DF-JOA)
is proposed to identify the different characteristics and automatically select an appropriate algorithm for
signal reconstruction, numerical simulation experiments show the effectiveness of the algorithm. We also
simulate the reconstruction success ratio of amplitude and the total coset number under different compressed
matrices, determine the influence law, and confirm the improvement of signal reconstruction probability by
joint optimization algorithm. Our method ensures the spectrum reconstruction of the multi-band signal. This
article can guide how to better select the coset parameters under the condition that the channels of the discrete
multi-coset sampling system are limited but the minimum coset number can be guaranteed. It will have a
great significance to the sub-Nyquist sampling technique.

INDEX TERMS Discrete multi-coset sampling, sparse reconstruction, minimum coset number, discriminant
factor, joint optimization algorithm.

I. INTRODUCTION
The signal is the carrier of the message and the tool to carry
the message, the sampling of the signal is the basic way
to obtain the signal information. At the beginning of the
20th century, Whittaker [1], Nyquist [2], Kotel’nikov [3],
and Shannon [4] made a great contribution to the field of
signal sampling theory and laid the foundation. It requires
that the sampling rate is not less than two times the highest
frequency of the signal. People also have never stopped study-
ing the sampling theory [5]–[7]. With the rapid development
of many fields (such as bandwidth communication and radio
frequency technology), narrowband signals are modulated to
a very high frequency spectrum. That make it more and more
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difficult for sampling frequency to meet the requirements of
sampling theory [8], and even exceed the capability of analog-
to-digital converter (ADC) to a great extent. The maximum
sampling rate of ADC is affected bymaterials and technology,
so it has become a difficult problem in the field of signal
processing.

In the late 1960s, people began to study the sub-Nyquist
sampling of multi-band signals. In 1967, Landau [9] pro-
posed that the minimum sampling rate of a spectral sparse
signals in the sum of the bandwidths of all subbands, which
is lower than the corresponding Nyquist rate. Under this
condition, the original signal can be reconstructed perfectly.
In 1977, Papoulis [10] conducted the theory of non-uniform
sampling. Then Venkataramani and Bresler [11] proposed a
periodic non-uniform sub-Nyquist sampling technique called
multi-coset sampling, and effectively used it to reduce the
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sampling rate of multi-band signal in [12]–[14]. Similarly,
Mishali and Eldar [15], [16] raised a modulated wideband
converter model for multi-channel sub-Nyquist sensing, and
derived the minimum sampling rate that can accurately
recover the signal. Unlike the former, it is a uniform sampling
system. In 2006, a new sampling concept, ‘‘compressive
sensing (CS)’’, proposed by Candès et al. [17], Donoho [18],
and Candès and Wakin [19]. Compared with the Shannon-
Nyquist sampling theorem, CS is not limited by the signal
bandwidth, but makes use of the sparsity of the signal. For
example, some real signals are sparse in some transform
domains [20], [21].

With the addition of the concept of compressive sensing,
it is well introduced the research of sub-Nyquist sampling
technology. Tian and Giannakis [22] introduced CS to wide-
band spectrum sensing, using sub-Nyquist rate samples to
detect and classify multi-band signals through wavelet-based
edge detectors. Fleyer et al. [23] adopted the structure of
multi-rate synchronous sampling and used the reconstruction
algorithm of compressive sensing to solve the underdeter-
mined equations. In [13], [24], [25], multi-coset sampling
was applied to the field of blind power spectrum sampling.
With the help of compressive sensing, the power spectrum
estimation of the signal at a rate lower than that of Nyquist
sampling is realized, and there is no limitation of sparsity and
no need to reconstruct the signal.

At present, the spectrum reconstruction for sub-Nyquist
sampling is still in the research stage, many algorithms have
been applied to spectrum sensing, and achieved good results.
However, there is still a lot of work to be done on the algo-
rithm research of different frequency characteristics and the
influence of compressed matrix on the signal reconstruction.

The rest of the article will carry on the related work,
and is organized as follows. In section II, the mathematical
model of discrete multi-coset sampling is established, and
the structural parameters of the system are determined. Based
on the theoretical model, section III introduces the core idea
of signal reconstruction and the research basis of establish-
ing the minimum coset number as the text. According to
the analysis of two algorithms in section IV, a joint opti-
mization algorithm with discriminant factor is proposed in
section V to adaptively identify frequency features for signal
spectrum reconstruction. In section VI, we get the influence
of frequency amplitude and total coset number on signal
reconstruction under different compressed matrices. Finally,
the conclusions are given in section VII.

II. DISCRETE MULTI-COSET SAMPLING
The Nyquist sampling technique samples discretely the
time continuous signal x (t) at a fixed time interval T
to obtain the sampling sequence x [m] = x (mT ) for
m = 0, 1, . . . ,M − 1. Discrete multi-coset sampling is
a multi-channel discrete periodic non-uniform sub-Nyquist
sampling technique [25], [26], the structural framework and
schematic diagram of the sampling system is shown in Fig.1.
It samples x (t) at t = (nL + ci)T for i = 1, 2, . . . , p and

FIGURE 1. (a) is the framework and (b) is the schematic diagram of the
discrete multi-coset sampling system.

n = 0, 1, . . . ,N − 1, where the total coset number L is posi-
tive integer, the fixed time interval LT is greater than or equal
to the Nyquist sampling period T , p is the number of channels
required by the multi-coset sampling system, the offset ci
satisfies 0 ≤ c1 < · · · < ci < · · · < cp ≤ L−1. The channel
samples the signal at the rate 1/(LT ) Hz after the sampling
offset ciT . L, ci, and p constitute the structural parameters of
the sampling system. Then the sampling sequence of the i-th
channel can be listed as:

xci [n] = x [nL + ci] (1)

where n = 0, 1, 2, . . . ,N − 1.
According to Fig.1 and Eq. (1), the discrete multi-coset

sampling sequence is a partial sequence dominated by ci vari-
ables in the Nyquist sampling sequence, where m = nL + ci,
M = NL.

The discrete Fourier transform (DFT) of the Nyquist
sequence is as follows:

Y [k] =
M−1∑
m=0

x [m] exp (−j · 2πmk/M) (2)

where k = 0, 1, 2, . . . ,M − 1.
Similarly, the DFT of the sampling sequence of the

i-th channel of the multi-coset sampling is:

yi [kc] =
N−1∑
n=0

xci [n] exp (−j · 2πnkc/N ) (3)

where kc = 0, 1, 2, . . . ,N − 1.
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FIGURE 2. Schematic diagram of spectrum division.

We can sort out the results ofM -term Fourier transform of
the Nyquist sampling sequence into a matrix YL (spectrum
division matrix) with the size of L ×N . The entire frequency
band is divided into L subbands (the row vector of matrixYL)
as shown in Fig.2. Its subband Yl for l = 1, 2, . . .L is:

Yl = [Y [(l − 1)N ] ,Y [(l − 1)N + 1] ,

. . . Y [(l − 1)N + N − 1]] (4)

where the size of Yl is 1× N .
So, the spectrum division matrix YL can be expressed as:

YL = [Y1,Y2, . . . ,Yl, . . . ,YL]T (5)

The column vector YL (kc) for kc = 0, 1, 2, . . . ,N − 1 of
the spectrum division matrix YL is:

YL (kc) = [Y [kc] ,Y [N + kc] , . . . ,

Y [(l − 1)N + kc] , . . . ,Y [(L − 1)N + kc]]T (6)

where the size of YL (kc) is L × 1.
We define the compressed matrix A with the size of p×L,

its element is αi,l = exp (j · 2πci (l − 1) /). Its row vector
is recorded as αi for i = 1, 2, . . . , p. Then, the vector αi is
multiplied by the vector YL (kc), we have

αiYL (kc) =
L∑
l=1

αi,lY [(l − 1)N + kc]

=

L∑
l=1

exp (j · 2πci (l − 1)/L)

×

M−1∑
m=0

x [m] exp (−j · 2πm ((l − 1)N+kc)/M)

=

M−1∑
m=0

x [m]
L∑
l=1

exp (−j · 2π ((m− ci) (l − 1)N

+mkc) /M)

= L · exp (−j · 2πcikc/M)

·

N−1∑
n=0

xci [n] exp (−j · 2πnkc/N )

= L · exp (−j · 2πcikc/M) · yi [kc] (7)

According Eq. (3), the results of N -term Fourier transform
of the i-th channel can form a row vector yi, and then p

row vectors form a matrix Yc (multi-coset sampling spec-
trum matrix) of p × N dimension. So, the matrix Yc can be
expressed as:

Yc =
[
y1, . . . , yi, . . . , yp

]T (8)

Through Eq. (4)-(8), we can get

YDMCS = AYL (9)

where YDMCS = L · Yc ◦ B, B is the compensation matrix
ofYc, its element is βi,kc = exp (−j · 2πcikc/M), and its size
is also p × N , ◦ denotes Hadamard product (corresponding
element multiplication).

Combining what has been discussed above, the discrete
multi-coset sampling mathematical model is established
based on the DFT of original signal Nyquist sampling
sequence and the DFT of the discrete multi-coset sampling
sequence. It obtains different sampling sequence by adjust-
ing the sampling time interval and the time offset on each
channel. The output sequences on each channel are mapped
to the frequency domain to realize the spectrum cutting and
compression conversion of the original signal.

Discrete multi-coset sampling can be divided into the
following steps:

(1) Determine the structural parameters L, ci, p of the
system.

(2) Each channel samples N points.
(3) Transform the multi-coset sampling sequence by DFT,

and then multiplied the compensation coefficient.
It can be seen from the mathematical model of discrete

multi-coset sampling, its single channel sampling frequency
f = 1/(LT ) Hz, frequency range [0, f /2), is less than or
equal to Nyquist sampling frequency F = 1/T Hz, frequency
range [0,F/2). It can be concluded that F = Lf . According
to Nyquist sampling theorem, the maximum frequency fmax
of the original signal should satisfy fmax < F/2, namely
L > 2fmax/f .
We do not know the exact value of the maximum fre-

quency in the original signal, but we should obtain effective
information from other relevant information of the signal as
a prior knowledge to determine the estimated value of the
range of the maximum frequency. It will be convenient for us
to determine the structural parameters L and ci of the system.
If fmax � f will make the total coset number L � 1.

At this time, the spectrum characteristic of the multi-coset
sampled signal belongs to the serious undersampled signal,
so it is impossible to obtain the accurate information of the
high-frequency signal. We need to reconstruct the spectral
feature of the original signal from the multi-coset sampled
undersampled signal.

III. SIGNAL RECONSTRUCTION AND MINIMUM
COSET NUMBER
A. SIGNAL RECONSTRUCTION OF DISCTETE
MULTI-COSET SAMPLING
Compressive sensing theory points out that if the sig-
nal is sparse or sparse in a certain transform domain,
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the high-dimensional sparse signal can be projected into a
low-dimensional space by an observation matrix indepen-
dent of the transform domain. Then by solving an opti-
mization problem, the original signal can be reconstructed
with high probability from these few projections, and such
a low-dimensional signal contains enough information of the
original signal.

DFT is a classical sparse method, which transforms the
non-sparse Nyquist sampling sequence x [m] into sparse
sequence Y [k]. The spectrum division matrix YL is
sparse matrix, and the column vector YL (kc) of matrix is
sparse vector. According to the Eq. (9), the column vector
YDMCS (kc) of the matrix YDMCS is the low-dimensional vec-
tor formed by the projection of the high-dimensional sparse
vector YL (kc) by the compressed matrix A.
In the discrete multi-coset sampling system, we can

take the undersampled spectrum information of the discrete
multi-coset sampling sequence as the system output data
under the condition that the system parameters are known.
And then, according to the compressive sensing theory,
the spectral information of the original signal Nyquist sam-
pling sequence is reconstructed by solving the optimization
problem. Its reconstruction system framework diagram is
shown in Fig.3.

FIGURE 3. Reconstruction system framework diagram.

B. MINIMUN COSET NUMBER
In the blind sampling process of discrete multi-coset sam-
pling, we know that the vector is a sparse vector, and there
are only a few non-zero values in each vector, but we do not
know its position accurately. As mentioned in the [27], [28],
it is assumed that the vector x is a solution of y = Ax, and
define the sparsity K = ‖x‖0, if K ≤ rank (A)/2 (rank (A)
is the rank of the compressed matrix A), then x is the unique
sparsest solution of the equation.

The spectrum division matrix YL is formed by the results
of the DFT of the Nyquist sampling sequence of original
signal. There is at least one frequency in the signal, so
K = ‖YL (kc)‖0 ≥ 1. In order to meet the above requirement
of the unique sparsest solution, we should make rank(A) ≥ 2,

that is, the number of channels of the discrete multi-coset
sampling system is p ≥ 2.
According to Eq. (2) and Euler theorem, there is a con-

jugate relationship between the values of spectrum informa-
tion after DFT. For example, there is a frequency f0 in the
signal. After the transformation, it forms two spectral values
Y
[
kf0
]
and Y

[
M − kf0

]
, and there is a conjugate relationship

between them. It can be expressed as:

Y
[
kfo
]
= conj

(
Y
[
M − kfo

])
(10)

where conj (·) means to conjugate the element.
So, there are two special cases for the spectrum division

matrix YL:
(1) There is a multiple relation f0 = nf between

the frequency f0 of the original signal and the discrete
multi-coset sampling frequency f . That will put Y

[
kf0
]
and

Y
[
M − kf0

]
in the same column vector of the spectrum divi-

sion matrix YL. Their positions in the vector have

pos
(
Y
[
kfo
])
+ pos

(
Y
[
M − kfo

])
= L + 2 (11)

where pos (·) denotes the position number of the element in
the vector.

At this time, K = ‖YL (kc)‖0 ≥ 2, the number of channels
of sampling system should satisfy p ≥ 4.

(2) There are multiple frequencies in the original signal.
They are only general frequencies and there is no multiple
relation to the sampling frequency f mentioned in the first
case. For a certain frequency fi, we have

pos
(
Y
[
kfi
])
+ pos

(
Y
[
M − kfi

])
= L + 1 (12)

If there is a special relationship fi = fj + nf (fi and fj are
two of the frequencies), this will make at least two of Y

[
kf1
]
,

Y
[
kf2
]
, . . . , Y

[
M − kf2

]
, Y

[
M − kf1

]
in the same column

vector. However, there is no fixed relationship between the
positions of elements in the same vector.

Similarly, the number of channels of sampling system
should satisfy p ≥ 4.
In both cases, it is possible to place several different non-

zero values in the same column vector.We can get, the greater
the sparsity K , the more the minimum number of channels
needed to reconstruct the signal.

What is studied in this article is the minimum number of
channels for the reconstruction of the original signal by the
discrete multi-coset sampling system, namely p = 4.

IV. RECONSTRUCTION ALGORITHMS AND
EXISTING PROBLEMS
A. THE CONSTRAINTS OF COMPRESSED MATRIX
For the traditional compressive sensing measurement matrix,
the linear independence of the measurement matrix is pro-
posed in the [29] and the Spark theorem is proposed in
the [30]. They are the basic guarantee that the compression
vector can be recovered by the reconstruction algorithm, and
they are also the important theoretical basis for designing the
measurement matrix.
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However, in the discrete multi-coset sampling model, the
compressed matrix A cannot be designed subjectively, but a
matrix with a certain pattern based on the structural parame-
ters L, ci, p of the periodic non-uniform sampling.
The linear independence of the matrix means that there

is no correlation between the atoms. The atoms need to
be linearly independent with a low coefficient of mutual
coherence, so that the original signal can be reconstructed
with high probability. The mutual coherence of atoms is
the absolute value of the normalized inner product between
different atoms, and the atomic mutual coherence coefficient
of matrix A is expressed as:

δ
(
Ai,j
)
=

∣∣a0i aj∣∣
‖ai‖2

∥∥aj∥∥2 (13)

where 1 ≤ i, j ≤ L, and i 6= j, ai is the i-th column of A.
In the compressed matrix A of the discrete multi-coset

sampling model, due to the characteristics of element αi,l ,
there are many atoms with high mutual coherence coefficient.
For example, there are structural parameters such as L = 21,
p = 4, ci = {0, 3, 6, 8}. There is such a relationship as
δ
(
A6,13

)
= δ

(
A6,20

)
= δ

(
A13,20

)
= 1, it means that

the atoms are equal. And another situation is that the coef-
ficient of mutual coherence is also relatively high, which is
0.5617 such as δ

(
A2,15

)
. These situations cannot satisfy the

linear independence of matrix atoms, so that the signal cannot
be accurately reconstructed.

The Spark constant is defined as the minimum number of
linearly related columns of the matrix. The Spark theorem for
sparse reconstruction is: For any vector y ∈ Rm, if and only
if Spark(A) > 2K , there is at most one signal ‖x‖0 = K that
makes y = Ax. For the compressed matrix A in the model,
its fixed pattern cannot fully satisfy the theorem. As shown
in the example above, a6 = a13, makes Spark(A) = 2. In this
case, sparsity K < 1, obviously cannot meet the requirement
of reconstructing.

B. ORTHOGONAL MATCHING PURSUIT ALGORITHM
1) DETAILED INTRODUCTION OF THE ALGORITHM
For the basic equation y = Ax of compressive sensing,
mathematically, it is to solve the underdetermined equation
under certain conditions. The reconstruction algorithms of
compressive sensing can be divided into two categories: con-
vex optimization algorithm and greedy algorithm. Convex
optimization algorithm is more accurate than greedy algo-
rithm, but requires higher computational complexity.

Therefore, greedy algorithm is widely used at present,
which realizes the approximation of signal vector by selecting
appropriate atoms and through a series of gradual increasing
methods [31]. The orthogonal matching pursuit (OMP) algo-
rithm which is common in greedy algorithm is applied in this
article [32]–[34].

The flow of OMP algorithm:
Input: Compressed matrix A(M ×N ,M � N ), projection

vector y (M × 1), signal sparsity K .

Output: The K -sparse approximation θ̂ of the target signal.
In the following process, rt denotes the residual error,

t denotes the number of iterations, ∅ denotes empty set,
3t denotes the index set of column ordinal numbers for
t iterations, λt denotes index of the column serial number
obtained by the t-th iteration, aj denotes the j-th column of the
matrixA,At (matrix of sizeM× t) denotes the set of column
vectors of the matrix A selected by the index 3t , 0 denotes
transpose when matrix or vector is real and conjugate trans-
pose when complex, θt is the column vector of size t × 1.
(1) Initialize: r0 = y, 3t = ∅, A0 = ∅, t = 1, θ̂ is a zero

vector of N × 1 dimension.
(2) Calculate λt = arg max

j=1,2,...,N

∣∣r0t−1aj∣∣, get the index of

the column serial number λt .
(3) Make 3t = 3t−1 ∪ λt , At = At−1 ∪ aλt .
(4) Calculate the least square solution of y = Atθt :

θ̂t = argmin
θt
‖y− Atθt‖ =

(
A0t At

)−1
A0t y.

(5) Update residual error:

rt = y− At θ̂t = y− At
(
A0t At

)−1
A0t y.

(6) t = t + 1, if t ≤ K return to step (2) to continue the
iteration, otherwise, stop the iteration and proceed to step (7).

(7) Reconstruct the non-zero term of θ̂ at the index set 3t
position until the final iteration of θ̂t .

In the above algorithm flow, it is important to note that:
(1) In step (2), the main principle is to make use of the

different contribution of the non-zero terms of the sparse
vector in the compressed process. Then we calculate the
maximum value of the absolute value of the inner product
between the atom of the compressed matrix and the residual
vector to find the suitable atom and determine the location of
the non-zero term.

(2) As can be seen from step (6), the number of iterations
of the algorithm is the sparsity K of the signal.

(3) In step (4), A0t At is a square matrix of order t .
In order to satisfy the existence of

(
A0t At

)−1, its rank should
be t . It means that the column vector selected in the com-
pressed matrix should satisfy rank

(
A0t At

)
= t , and after the

K-th iteration, rank
(
A0KAK

)
= K .

2) PROBLEMS OF THE MODEL IN THE PROCESS
OF RECONSTRUCTION
In step (2) of the OMP algorithm, the appropriate atom is
selected each time according to the inner product value, and
the location of the non-zero term in the sparse is determined.

For the first case of the spectrum division matrix YL,
if the position number of the non-zero term Y

[
kfo
]
in the

sparse vector is lf0 , then according to the Eq. (11) the position
number of Y

[
M − kfo

]
is L+2− lf0 . Obviously, the elements

αi,lf0
and αi,L+2−lf0 in the compressed matrix corresponding

to the non-zero terms also have a conjugate relationship.
In the process of compression, we can get

αi,lf0
Y
[
kfo
]
= conj

(
αi,L+2−lf0

Y
[
M − kfo

])
(14)
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This will make them have the same contribution to the
projection vector.

When we use the projection vector for reconstruction,
after the absolute value of the inner product of each atom
and the projection vector is calculated in the first iteration,
the results of the two atoms are equal. The OMP algorithm
will select one of them as the result of the first iteration.
If do this, after the residual is updated, the contribution of
the other non-zero term will be weakened when the inner
product value is calculated again. It is unable to select the
atom effectively and determine its position, so that the atomic
index obtained after the final iteration is not accurate. As a
result, the reconstruction of the sparse vector is invalid.

3) SIMULATION ANALYSIS
The function of the original signal with time variable is

x (t) =
q∑
i=1

ai cos (2π fit) + w (t), w (t) is the signal noise.

There is a frequency f1 = 593.1 Hz in the original signal, and
its amplitude is a1 = 9.34.

The discrete multi-coset sampling frequency is
f = 65.9 Hz, and the coset number is p = 4. During the
sampling process, the signal-to-noise ratio of each channel
is SNR = 3 dB. In order to meet the requirements of
reconstructed signal, we set structural parameters L = 21
and ci = {0, 6, 14, 19}. Then each channel carries out the
discrete sampling N = 102400 points.

FIGURE 4. (a) is the reconstructed spectrum diagram and (b) is the
original signal spectrum diagram.

According to Fig.3 and the OMP algorithm flow, we can
get the reconstructed spectrum division matrix Y′L and spec-
tral value Y ′ [k]. The reconstructed spectrum diagram is draw
according to Y ′ [k], as shown in Fig.4a. The reconstructed
frequencies are 593.1Hz and 988.5Hz. In the Y′L, we have
pos (Y [k593.1]) = 10 and pos (Y [k988.5]) = 16, they do not
satisfy the Eq. (11). This signal reconstruction is invalid.

Compared with the discrete multi-coset sampling, we per-
form the Nyquist sampling on the original signal. Its sam-
pling frequency is F = Lf = 1383.9 Hz, and sampling
points is M = NL = 2150400. We can get the spectral
value Y [k] and the spectrum diagram is shown in Fig.4b.
The frequency values are 593.1Hz and 790.8Hz. In the YL,
we have pos (Y [k593.1]) = 10 and pos (Y [k790.8]) = 13,
which satisfy the Eq. (11).

Comparing the two results, it is found that the frequency
790.8Hz moves to 988.5Hz after reconstruction, and the

amplitude has a large error. This is because the two non-zero
terms of the frequency f1 = 593.1 Hz are in the same column
vector YL (kc = 0) of YL. When we reconstruct the vector
YDMCS (kc = 0), after calculating the absolute value of inner
product,

∣∣r00 a10∣∣ = ∣∣r00 a13∣∣ appears. The algorithm selects
the 10th column atom for subsequent calculation, and updates
the residual error. In next iteration, this weakens the con-
tribution of the 13th column atom corresponding to another
non-zero term. Their positions in the sparse vector cannot be
found accurately, resulting in reconstruction failure.

C. COMPRESSIVE SAMPLING MATCHING
PURSUIT ALGORITHM
1) DETAILED INTRODUCTION OF THE ALGORITHM
Compressive sampling matching pursuit (CoSaMP) algo-
rithm is an influential reconstruction algorithm proposed
by D. Needell [35], and it is also an improvement of OMP
algorithm. In each iteration, multiple atoms are selected to
gradually increase to achieve signal vector approximation.

The flow of CoSaMP algorithm:
Input: Compressed matrix A(M ×N ,M � N ), projection
vector y (M × 1), signal sparsity K .
Output: The K -sparse approximation θ̂ of the target signal.
In the following process, rt denotes the residual error,
t denotes the number of iterations, ∅ denotes empty set,
J0 denotes the column index number found in each itera-
tion, 3t denotes the index set of column ordinal numbers
for t iterations, aj denotes the j-th column of the matrix A,
At denotes the set of column vectors of the matrix A
selected by the index3t , 0 denotes transpose when matrix
or vector is real and conjugate transpose when complex.
(1) Initialize: r0 = y, 3t = ∅, A0 = ∅, t = 1, θ̂ is a zero
vector of N × 1 dimension.
(2) Calculate uj =

∣∣r0t−1aj∣∣ for j = 1, 2, . . . ,N , and
put all the uj into the set U . Then select 2K maximum
values fromU , and make the column number j of matrixA
corresponding to these values to form the column number
set J0.
(3) Make3t = 3t−1 ∪ J0,At = At−1 ∪ aj (for all j ∈ J0),
if the number of columns of At is greater than the number
of rows, exit the process.
(4) Calculate the least square solution of y = Atθt :

θ̂t = argmin
θt
‖y− Atθt‖ =

(
A0t At

)−1
A0t y

(5) Calculate the absolute value of each item of θ̂t , and
select the largest K items. Then the data of θ̂t correspond-
ing to each absolute value of theK items is recorded in θ̂tK ,
theK column vectors in theAt correspondingly aremarked
as AtK , the column serial number of A are marked as3tK .
Update the index set 3t = 3tK .
(6) Update residual error:

rt = y− AtK θ̂tK = y− AtK
(
A0tKA

)−1
A0tK y.

168664 VOLUME 8, 2020



J. Dong et al.: Joint Optimization Algorithm Using Adaptive Minimum Coset Number Based DMCS

(7) t = t + 1, if t ≤ K , return to step (2) to continue
the iteration, otherwise, stop the iteration and proceed to
step (8).
(8) Reconstruct the non-zero terms of θ̂ at the index set3tK
position until the final iteration of θ̂tK .
It is important to note that:
1) In step (3), after solving the set of sequence numbers,

make sure that the number of rows of matrix At is not less
than the number of columns, which the basis of the least
square solution (the columns are linearly independent). If this
happens in the first iteration, it means that the algorithm is not
suitable for this signal reconstruction.

2) During the iterative process, the set 3t in step (3)
contains up to 3K items (3t−1 contains K items except for
the first iteration, and J0 contains 2K items), step (5) remove
at most 2K items from 3t (remaining K items).
In view of the problem in the model mentioned in

section IV part B, the CoSaMP algorithm can solve it effec-
tively. In each iteration, the algorithm first put the 2K atoms
into the set, and then select themore suitableK atoms. If there
are two non-zero terms with the same contribution, using this
algorithm, it will not occur to select one atom and weaken the
other.

As shown in the simulation of part B of the section IV,
when

∣∣r00 a10∣∣ = ∣∣r00 a13∣∣ occurs, the 10th and 13th columns
of atoms can be recorded in the set at the same time, and
the frequencies 593.1Hz and 790.8Hz can be reconstructed to
complete the spectrum reconstruction of the original signal.

2) PROBLEMS OF THE MODEL IN THE PROCESS
OF RECONSTRUCTION
The CoSaMP algorithm selects multiple atoms in each iter-
ation, which well solves the first case of spectrum division
matrix in the discrete multi-coset sampling mathematical
model. However, for the second case, the reconstruction fail-
ure will be caused by the mutual coherence of the atoms
in the compression matrix in the process of reconstruction.
When calculating the inner product between the residual
vector and the atom in the iterative process, for the frequency
with large amplitude, the atom with lager mutual coherence
coefficient may increase synchronously or even exceed the
atom corresponding to the original non-zero term. In this way,
when selecting the multiple atoms, the algorithm may not
be able to select effective atoms, resulting in reconstruction
failure.

3) SIMULATION ANALYSIS
In the original signal, there are multiple frequencies
f1 = 115 Hz and f2 = 378.6 Hz, and their amplitudes are
a1 = 9.34 and a2 = 5.76.

The discrete multi-coset sampling frequency is
f = 65.9 Hz, and the coset number is p = 4. During the
sampling process, the signal-to-noise ratio of each channel
is SNR = 3 dB. We set structural parameters L = 15 and

ci = {0, 2, 5, 11}. Then each channel carries out the discrete
sampling N = 102400 points.

FIGURE 5. (a) is the reconstructed spectrum diagram and (b) is the
original signal spectrum diagram.

According to the Fig.3 and the CoSaMP algorithm flow,
the spectrum diagram is draw according to the reconstructed
spectral value Y ′ [k], as shown in Fig.5a. The reconstructed
frequencies are 115Hz, 412.2Hz, 576.3Hz, and 873.5Hz.
In theY′L, we have pos (Y [k115]) = 2, pos (Y [k412.2]) = 7,
pos (Y [k576.3]) = 9, and pos (Y [k875.3]) = 14. From
their amplitudes analysis of the reconstruction, the position
numbers of Y [k115] and Y [k875.3] in the vector satisfy the
Eq. (12), Y [k412.2] and Y [k576.3] also satisfy it. Only Judg-
ing from this result, the signal reconstruction is successful.
However, we find that the frequency f2 = 378.6 Hz of the
original signal is lost after reconstruction, so it is invalid.

To make a comparison, the Nyquist sampling frequency is
F = Lf = 988.5 Hz, and the sampling points is M = NL =
2150400. We can get the spectral value Y [k] and the spec-
trum diagram is shown in Fig.5b. The frequency values are
115Hz, 378.6Hz, 609.9Hz, and 873.5Hz. In the YL, we have
pos(Y [k115]) = 2, pos(Y [k378.6]) = 6, pos(Y [k609.9]) = 10,
and pos(Y [k875.3]) = 14. Like the analysis of the recon-
structed results of the multi-coset sampling, they also satisfy
the Eq. (12).

Compared the two results, it is found that the failure of
reconstruction mainly occurs at the frequencies 378.6Hz and
609.9Hz, which move to 412.2Hz and 576.3Hz. There is
also a large error in the amplitude of each frequency. This
is because Y [k115] and Y [k378.6] are in the same column
vector YL (kc = 76295) in the YL. When we reconstruct the
projection vector YDMCS (kc = 76295), because of themutual
coherence coefficient δ

(
A2,9

)
> δ

(
A2,14

)
> δ

(
A2,6

)
, there

will be
∣∣r00 a2∣∣ > ∣∣r00 a9∣∣ > ∣∣r00 a14∣∣ > ∣∣r00 a6∣∣. According to

the steps (2-5) in the algorithm flow, the 9th column atom
is identified as the corresponding position of the non-zero
term in the sparse vector, and the 6th column atom is ignored.
So, the frequency 378.6Hz is reconstructed into 576.3Hz.
Similarly, the frequency 609.9Hz becomes onto 412.2Hz.

It can be seen from the algorithm flow that the CoSaMP
does not abandon the selected atoms after each iteration.
It may cause the same atom to be selectedmany times because
of its large mutual coherence coefficient. The effective atom
cannot be selected to make the reconstruction failure.

For the above problems in the model, the reconstruction
effect of OMP algorithm is stronger than that of the CoSaMP
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algorithm. Because the OMP algorithm selects a single atom
at each iteration and discards it after iteration. Such as the
example, after the result

∣∣r00 a2∣∣ > ∣∣r00 a9∣∣ > ∣∣r00 a14∣∣ >∣∣r00 a6∣∣ appears in the first iteration, the algorithm will select
the 2th atom. Then it updates the residual error and discards
the 2th atom to continue next iteration. After doing this,
it will eliminate the phenomenon that the inner product of
the 9th atom is larger because of the higher mutual coherence
coefficient.

We use the OMP algorithm to verify. It can reconstruct the
frequency of the original signal, and the amplitude error is
within the allowable range.

V. THE JOINT OPTIMIZATION ALGORITHM FOR MODEL
A. INTRODUCTION OF ALGORITHM
The signal reconstruction of the discretemulti-coset sampling
model is to reconstruct the matrix YDMCS column by col-
umn relative to the spectrum division matrix YL to get the
reconstructed Y′L. Different original signals have different
frequency relations, so there are different situations in each
column vector of YL. The single use of OMP or CoSaMP
algorithm cannot be applied to the reconstruction of all the
column vectors.

From the section IV, we can see that: (1) the CoSaMP
algorithm has a good effect on the reconstruction of fre-
quency doubling under the minimum coset number. (2) for
the reconstruction effect of the frequency with a specific
relationship, the OMP algorithm is better. (3) if a certain
frequency is neither double frequency nor a frequency with
a specific relationship, the reconstruction process is like the
OMP algorithm.

According to the different frequency, the discriminant fac-
tor can be introduced when calculating the inner product
of the residual vector and the atom, and the reconstruction
algorithm is selected reasonably. The process is as follows:

(1) The same initialization.
(2) Calculate the discriminant factor∇ of the inner product:
∇ =

∣∣∣∣r00 aλ1 ∣∣− ∣∣r00 aλ2 ∣∣∣∣, where λ1 = arg max
1≤j≤L

∣∣r00 aj∣∣, λ2 =
arg max

1≤j≤L,j 6=λ1

∣∣r00 aj∣∣.
(3) If ∇ = 0, selects the CoSaMP algorithm, if ∇ > 0,

selects the OMP algorithm.
For the spectrum reconstruction of discrete multi-coset

sampling model, the OMP algorithm and CoSaMP algorithm
can be fused to combine the advantages of the two algorithms
under different frequencies to form a joint optimization algo-
rithm for discrete multi-coset sampling (DMCS-DF-JOA).
The framework of the system is shown in Fig.6.

B. SIMULATION ANALYSIS
In the original signal, there are multiple frequencies
f1 = 115 Hz, f2 = 329.5 Hz, and f2 = 378.6 Hz, and their
amplitudes are a1 = 9.34, a2 = 7.45, and a3 = 5.76.

The discrete multi-coset sampling frequency is
f = 65.9 Hz, and the coset number is p = 4. During the
sampling process, the signal-to-noise ratio of each channel

FIGURE 6. Reconstruction system framework diagram of DMCS-DF-JOA.

is SNR = 3 dB. We set structural parameters L = 15 and
ci = {0, 2, 5, 11}. Then each channel carries out the discrete
sampling N = 102400 points. The OMP algorithm, the
CoSaMP algorithm, and the DF-JOA are used to reconstruct
the spectrum of the signal, and the results are shown in Fig.7.

FIGURE 7. (a) is the reconstruction result of the OMP and (b) is the
reconstruction result of the CoSaMP and (c) is the reconstruction result of
the DF-JOA.
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From Fig.7a, the OMP algorithm cannot reconstruct the
frequency doubling of the sampling frequency because of the
weakening of the atoms with the same contribution. From
Fig.7b, the CoSaMP algorithm cannot reconstruct the fre-
quency with a specific relationship because of the influence
of the atoms with large mutual coherence coefficient. How-
ever, due to the addition of the discriminant factor, the joint
optimization algorithm can adaptively recognize the vector
features and selects the appropriate algorithm. It accurately
reconstructs each frequency and the amplitude error satisfies
the allowable range of error, as shown in Fig.7c.

VI. RESEARCH ON JOINT OPTIMIZATION ALGORITHM
A. RELATED DESCRIPTION
Different structural parameters make the characteristics of the
compressed matrix A different. For all matrices, some may
not meet the requirements of compressed matrix mentioned
in the part A of section IV.

The main object of this study is the reconstruction algo-
rithm under the minimum coset number, so the structural
parameter p = 4 is fixed. Different L leads to the different
selection of ci. For discrete sampling of multiple cosets,
we default c1 to 0. That is to say, the first sampling point
sampled by Nyquist is taken as the initial sampling point of
the first channel. In addition, for the structural characteristics
of matrix A, if c1 is not 0, the matrix may not have full rank,
which cannot meet the requirements of signal reconstruction.
In this way, there are Cp−1L−1 combinations in the possibility of
matrix A, and the signal reconstruction success ratio in the
case of different A is studied.

B. SIMULATION ANALYSIS
Three frequency cases of the original signal: (1) the frequency
doubling of the discrete multi-coset sampling frequency (as
in part B of section IV). (2) two frequencies that have a
specific relationship with the sampling frequency (as in part
C of section IV). (3) general frequency without the above two
relationships (the two non-zero termswith conjugate relations
are in different sparse vectors of the spectrum divisionmatrix,
namely the sparsity K = 1).

In order to facilitate the subsequent analysis of differ-
ent frequencies, simulate the discrete multi-coset sampling
frequency f = 65.9 Hz. Record P1: f1 = 115 Hz and
f2 = 378.6 Hz, the specific relationship is f2 = f1 + 4f , P2:
general frequency f3 = 475.7 Hz, P3: doubling frequency
f4 = 9f = 593.1 Hz, and the combinations of different
conditions.

1) THE INFLUENCE OF FREQUENCEY AMPLITUDE
Considering whether the frequency amplitude affects the
reconstruction probability of the signal, simulate three sin-
gle cases of P1, P2, and P3, and the different combinations
between them respectively. The signal-to-noise ratio of each
channel is SNR = 3 dB. The total coset number is L = 21.

Due to the different selection of ci, there are Cp−1L−1 = 1140
combinations of compressed matrix A.
Simulation I: when three kinds of frequency exist alone,

OMP algorithm and CoSaMP algorithm are studied, (1) P1:
a1 varies from 0.5 to 10, a2 = 3. (2) P2: a3 varies from
0.5 to 10. (3): a4 varies from 0.5 to 10. In the case of differ-
ent compressed matrices, the result of signal reconstruction
success ratio is shown in Fig.8a. There is no significant dif-
ference between P2-OMP and P2-CoSaMP, and both have a
high value close to 1. It indicates that the change of amplitude
of the general frequency of K = 1 has no effect on the recon-
struction ratio. There is obvious difference between P3-OMP
and P3-CoSaMP. The reconstruction effect of CoSaMP algo-
rithm is better than that of OMP, which is consistent with the
previous conclusion. The ratio of P1-OMP and P1-CoSaMP
changes obviously. When the amplitude difference between
two frequencies is large, the OMP algorithm is better than the
CoSaMP. The amplitude is close to the same so that CoSaMP
can select effective atoms, and its effect is better than the that
of OMP algorithm.

FIGURE 8. (a) is the reconstruction success ratio of simulation I and (b) is
the reconstruction success of simulation II and (c) is the reconstruction
success of simulation III.

Simulation II: According to the conclusion of simulation I,
simulate the existence of three frequencies at the same time.
a1 varies from 0.5 to 10, a2 = 3, a3 = 4, and a4 = 10. Join
the research of DF-JOA, and the result is shown in Fig.8b.
Due to the complexity of frequency components, the same
compressed matrix may satisfy the reconstruction of P1 but
not P3, so the success ratio of OMP and CoSaMP algorithm
are lower than that of Fig.8a. Overall, the joint optimization
algorithm with discriminant factor is better than the other
two algorithms. Only when the amplitudes of the frequencies
of P1 are close or equal, the CoSaMP rebounds because it
directly selects multiple atoms through the calculation of the
inner product value. In this case, the effective atoms can
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be selected. However, the discriminant factor is very small
but not zero, so the OMP is automatically selected for signal
reconstruction. After updating the residual, the influence of
effective atom is weakened and the success ratio is reduced.
This is also a disadvantage of adding the discriminant factor
algorithm. The discriminant factor is different because of the
different characteristics of the original signal, and there is
no absolute limit for selection of the algorithms. Therefore,
at present, the discriminant factor ∇ = 0 is used to identify
the frequency doubling component for signal reconstruction.

Simulation III: The simulation analysis of a4 is carried out
in the two cases of a1 6= a2 and a1 = a2 respectively, and the
results are shown in Fig.8c.When a1 6= a2, the reconstruction
effect of DF-JOA is the best. Due to the influence of the
atomicmutual coherence coefficient, when reconstructing P1,
CoSaMP cannot accurately identify effective atoms, which
greatly reduces the success ratio. When a1 = a2, the anal-
ysis results of simulation II are confirmed, and the ratio of
CoSaMP is higher than that of DF-JOA.

2) THE INFLUENCE OF STRUCTUAL PARAMETER L
When the sampling coset number p is determined, the total
coset number L has a certain influence on the structure of
the compressed matrix A, the position of non-zero terms
in the sparse vector, and the sampling sequence. Therefore,
we should consider the influence on the signal reconstruction
ratio in the case of different L and how to select the optimal
structure parameter to reconstruct the original signal.

In the case of simulating the original with three kinds of
frequency situation at the same time, the original signal is
sampled by discrete multi-coset sampling by changing the
structure parameter L. The original spectrum is reconstructed
under different ci by OMP, CoSaMP, and the DF-JOA.

FIGURE 9. Reconstruction success ratio varying with parameter L.

According to the reconstruction results in Fig.9, the ratio
of the DF-JOA is higher than that of the other two algorithms.
It further proves that the reconstruction effect of the DF-JOA
is better than that of the two algorithms with single effect.
When the parameter L increases, the reconstruction ratio
decreases, but the ratio under odd number is higher than that
under even number.

Therefore, after obtaining the range estimation of the max-
imum frequency of the original signal, we can determine
the minimum of the total coset number satisfying the signal
reconstruction. The total coset number is preferred to be odd

to improve the reconstruction success ratio under different
compressed matrices as much as possible.

VII. CONCLUSION
In this article, based on the discrete multi-coset sampling
model, we suggest a joint optimization algorithm for identify-
ing multi-band sparse signals, which adapts to the minimum
coset number. A signal reconstruction system with discrimi-
nant factor is developed to adaptively identify the frequency
characteristics and reconstruct the original signal. We do not
need to know the support position of the frequency band, but
the relevant information about the maximum frequency of the
signal.

We discuss the basic knowledge of discrete multi-coset
sampling: sampling model, structural parameters, frequency
band characteristics, reconstruction requirements and mini-
mum coset number. The compressed matrix of the proposed
sampling model has a parameterized structure pattern, which
does not have the randomness and independence of the mea-
surement matrix in the traditional compressive sensing.

Our main contribution is to analyze the different
characteristics of different frequency components and their
relationship with the compressed matrix. In the analysis of
frequency doubling of sampling frequency, the OMP algo-
rithm fails to reconstruct because it selects a single atom
and ignores the non-zero term with the same contribution.
For the frequencies with a specific relationship, the CoSaMP
algorithm is affected by the large mutual coherence coeffi-
cient of atoms, so when multiple atoms are selected in the
iteration, the effective atoms cannot be selected and the sparse
vector cannot be reconstructed accurately. According to the
advantages and disadvantages of the two algorithms, a joint
optimization algorithm with discriminant factor is proposed,
which can identify frequency features, automatically select
the appropriate reconstruction algorithm, and complete the
sparse reconstruction of multi-band signals.

In addition, we also analyze the shortcomings of the param-
eterized features of the discrete multi-coset sampling com-
pressed matrix and its limitations in sparse reconstruction.
Numerical simulation experiments show that the compressed
matrix cannot achieve full reconstruction due to the limitation
of characteristic, but the joint optimization algorithm can
significantly improve the success ratio.

We also get the effect of the frequency amplitude on
the success ratio of reconstruction. When the amplitudes
of specific relational frequencies are similar, the disadvan-
tages of the joint optimization algorithm are exposed. The
discriminant factor introduced in this article can only dis-
tinguish between frequency doubling and other frequency
components, and cannot accurately identify the differences
between different frequencies. The research on this aspect
will be carried out in the follow-up, hoping to get a more
effective discriminant factor to identify multiple frequencies
and achieve a higher success ratio of signal reconstruction.

For the study of the total coset number, the increase
reduces the success ratio, but we get that the effect of odd
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number is better than that of even number, which can guide
us how to better select the structural parameters in the discrete
multi-coset sampling.

The research of this article is helpful to collect data when
the hardware of discrete multi-coset sampling is limited.
We only need the sampling channel with the minimum coset
number to complete signal sampling. Then the spectrum
characteristics of original signal are obtained under of the
condition of sub-Nyquist sampling by the joint optimization
algorithm. The research on the better reconstruction algo-
rithm and noise interference in this area will continue to make
the sub-Nyquist sampling technology more perfect.
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