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ABSTRACT This paper investigates the impact of incident beam inhomogeneity on the quality of THz
imaging based on the compressed sensing (CS) method. Image sampling and reconstructions under point
and Gaussian beams with various geometric parameters are compared with the standard one. The simulation
results show that the geometric parameters of beams strongly affect the peak signal-to-noise ratio (PSNR)
of the reconstructed images. Especially for the Gaussian one, expanding the beam size at the position
of the mask (BZPM) dramatically increases the PSNR. To achieve high sensitivity and resolution, new
measurement matrices correlating to the incident beam distribution are proposed and the simulation results
are demonstrated. Experiments under VDI THz source reveal that by using the new matrices, the PSNR of
CS-based imaging at 100 GHz is evidently improved from 6 dB to 13 dB, informing the new measurement
matrices are highly efficient and accurate in removing the beam effect on CS-based THz imaging. Our results
may provide a new way for the high-quality CS-based THz imaging for target recognition.

INDEX TERMS Terahertz imaging, compressed sensing, beam inhomogeneity, beam noise removal.

I. INTRODUCTION
The recent developments of Terahertz (THz) imaging
technology have shown broad application prospects in
various areas such as security, material analysis, and
biomedical research [1]. However, it is difficult to obtain
high-performance focal-plane-array imaging because of the
high manufacture cost and design difficulties of the THz
receiver chip [2]. An interesting approach in the use of com-
pressed sensing (CS)-based THz imaging provides a cheaper
solution to the problem. In the CS-based THz technique,
only a low-cost single-pixel THz detector is required. The
object is first compressively sampled with a sub-Nyquist
sampling ratio by the single-pixel detector and then recov-
ered by solving an underdetermined linear problem with
optimization strategy [3]–[5]. Commonly, CS is used in
DT-CMR andMRI clinical applications combining with deep
learning techniques to reduce the scanning cost, ease the
patient burden, and even yield better image quality [6], [7].
Since the sampling and reconstruction techniques directly
determine the performance and quality of the imaging,
developing advanced spatial light modulators (SLM) and
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high-performance reconstruction algorithms such as Total
Variation Augmented Lagrangian Alternating-direction
Algorithm (TVAL3), orthogonal matching pursuit (OMP),
compressive samplingmatching pursuit algorithm (CoSaMP),
etc. have been intensively investigated [8]–[11]. It is worth-
while mentioning that, in real practice, the imaging noise
from the sampling systems, including incident beam inho-
mogeneity, the non-strictly vertical instrumentation arms, and
the lens material defect may seriously degrade the CS-based
object recognition. However, under these real conditions,
much work so far cannot completely consider the influence
of system noise, particularly incident beam inhomogeneity on
imaging quality. To reduce the system noise of the CS-based
imaging, the ghost imaging techniques are highly suggested
because the real mask correlated with the mask plane and
beam distribution is calculated, showing obvious benefits
of the improved signal-to-noise ratio (SNR) and shorter
acquisition times [12], [13]. Nevertheless, most of the time,
due to special features of the targets, the set-up of the ghost
imaging system for sampling is very complicated, especially
for the THz frequency range, which limits its applications.

In our work, by setting up the simulation models and
conducting the experiments, we have studied the impact
of THz beam distribution on the quality of the CS-based THz
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imaging. The sampling data are decoded using the algorithm
TVAL3 to recover the original object. We further propose
a practical optimization method to suppress the imaging
noise from the beam inhomogeneity. Both simulation and
experimental results reveal that the peak signal-to-noise
ratio (PSNR) of the image is significantly improved by the
optimization.

FIGURE 1. A schematic diagram of the compressive imaging system.

II. SIMULATION UNDER VARIOUS INCIDENT BEAMS
Fig.1 shows a schematic diagram of the compressive THz
imaging system. Provided that the distance between the
source and the Lens1 is fixed in all the simulations, the inci-
dent beam is collimated by Lens 1, passing through the object
and masks, and then focusing on the single-pixel detector
by Lens 2. The mask is an amplitude-only spatial modulator
with a random pattern. To demonstrate how the incident THz
beam distribution affects the quality of the CS-based imag-
ing, we perform a rigorous optical simulation using the
optic-design software Zemax. In the simulation set-up, two
lenses with TPXmaterial are adapted in the optic path and the
focal distances are set as 100mm. Both of the two lenses have
50.8 mm diameters and 46.13 mm radii of curvature, respec-
tively. The masks with random binary patterns are designed
by 3D-CAD software, exhibiting Gaussian distribution, and
the object is set as a cross shape. The masks consist of 5× 5
pixels and the size of each pixel is 6 mm×6 mm. The ratio
of the measurement times to the number of pixels is defined
as the sampling rate, which is set to 40%. The non-sequential
mode (NSC) is used in Zemax to trace the ray and monitor
the total power of the detector.

The collected data are then reconstructed using TVAL3 [9]
to obtain the object image in accordance with the following
equation:

y = Mx (1)

In details,

y1
...

yi
...

yk

 =


M11 · · · M1j · · · M1n
...

. . .
...

Mi1 Mij Min
...

. . .
...

Mk1 · · · Mkj · · · Mkn

×


x1
...

xj
...

xn


where yi represents the measured value corresponding to the
ith pattern and k is the number of the random pattern. For an
image of the original object with n pixels, the value of each

pixel is xj.Mij is the jth pixel of the ith mask. The ratio of k/n
is the sampling rate for CS-based imaging.

Due to k < n, (1) is actually an under-sampling equation.
To obtain the optimal solution, total variation (TV) minimiza-
tion is usually adopted as follows:

min
x

∑
i

‖Dix‖ (2)

Here,Dix is the discrete gradient of x at pixel i. In the TVAL3
algorithm, the Augmented Lagrangian method (ALM) is
selected to solve total variation (TV) minimization problem
via minimizing the Lagrangian function L(λ, µ) [14]:

min
x
L (x)=

∑
i

‖Dix‖ − λT (Mx − y)+
µ

2
‖Mx − y‖22 (3)

where λ, a k × 1 zero vector, is the Lagrange multiplier and
µ is the penalty parameter. It is very difficult to solve (3)
directly due to the non-differentiability and non-linearity
of the TV term. To solve the equation, ωi which is a
slack variable of Dix is introduced, hence the (3) can be
transformed to:

min
x
L (ωi, x)

=

∑
i

(
‖ωi‖ − υ

T
i
(Dix − ωi)+

βi

2
‖Dix − ωi‖22

)
− λT (Mx − y)+

µ

2
‖Mx − y‖22 (4)

Here νi, 2 × 1 zero vector, is a new Lagrange multiplier and
βi is a penalty parameter. The iteration by the alternating
direction method is used to obtain the minimization of the
Lagrangian function L(ωi, x) in (4). The parameters used in
this work is provided by [15], listed in Tabel 1. In which,
tol is the stopping tolerance and maxit is the maximum total
iterations.

TABLE 1. The used parameters of TVAL3 algorithm in the simulation.

A peak signal-to-noise Ratio (PSNR) [5], [13], [16] is
chosen as the main evaluation metric, focusing on the SNR
of the reconstructed images. The PSNR is defined by (5):

PSNR = 10× log10

(
(2m − 1)2

MSE

)
(5)

where m is the bit-width of the pixel value. MSE is the mean
square error between the reconstruction data and the ground
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truth data of the objects, which is expressed by (6),

MSE =
1
n

n∑
j=1

∥∥∥xj − x ′j∥∥∥2 (6)

Here, n is the number of pixels and xj is the value of the
original object pixel, and x ′j is the value of the corresponding
pixel in the reconstructed image. The PSNR is the similarity
metric and the larger value indicates higher image similarity.

Structural Similarity Indexmetric (SSIM) [17] and Seman-
tic Interpretability Score (SIS) [18] are the other two metrics,
which are commonly used to evaluate the image quality. For
SSIM, there has a similarity between images and the real
objects, which is determined by (7):

SSIM =
(2µaµb + C1) (2σab + C2)(

µ2
a + µ

2
b + C1

) (
σ 2
a + σ

2
b + C2

)
C1 = (k1 × m)2 , C2 = (k2 × m)2 (7)

where µa and µb are the mean value of xj and x ′j respectively.
σa and σb are the variances for xj and x ′j respectively. σab
is the variance between xj and x ′j , and m is the bit-width of
the pixel value. For the default, k1 = 0.01, and k2 = 0.03.
The range of SSIM is from 0 to 1. The larger SSIMmeans the
more similarity of two images. For the SISmetric, it is usually
evaluated as the overlap between the reconstructed image and
the original image.

FIGURE 2. (a) PSNR with respect to the cone angle of the point source
and the distances d between the object and mask. The insert is the
amplitude distribution when the cone angle = 20◦, (b) and (c) show the
reconstructed images under point beams with 20◦ and 10◦ cone angle
respectively, (d) and (e) show the reconstructed images under mixture
beams consisting of two and three-point beam respectively.

To demonstrate how the incident THz beam distribution
affects the quality of the CS-based imaging, the point and

Gaussian beams with different geometric parameters at the
frequency of 100 GHz are used in the simulation. We first
simulate the configurations with a point beam defined by the
cone angle θ in Zemax software. Fig.2 (a) shows the PSNR
of the reconstructed image against the cone angle of point
beam and the distance d between the object and the mask.
It is found that the PSNR exhibits a cone angle dependence
and exists a turning point near 20◦. Since the size of the object
is 30 mm×30mm, the diagonal length is 42.43 mm. When
the cone angle of the point light source is 20◦, the diameter
of the beam size at the position of mask is approximately
46mm,which just can fully cover the object in the simulation.
When θ is larger than 20◦, the PSNR values exhibit a weak
dependence of θ , however, the PSNR dramatically decreases
with θ when it is below 20◦. This is due to the fact that the
narrower light area cannot completely cover the whole object
area, leading to a loss of the object information. On the other
hand, the distance d between the mask and the object has a
large influence on PSNR, as shown by the red line in Fig.2 (a).
With the increase of d , PSNR decreases significantly. A small
distance d may reduce the effect of diffraction and non-
parallel light caused by spherical aberration between the
object andmask, resulting in the high PSNRvalues. Under the
minimized d and a cone angle larger than 20◦, a high-quality
image could be reconstructed with the PSNR of about 50 dB.
Fig.2 (b) and (c) illustrate the reconstructed images under a
point source with 20◦ and 10◦ cone angles. It is seen that the
quality of images under point source with θ = 20◦ is much
higher than that under the one with θ = 10◦. Fig.2 (d) and (e)
demonstrate the reconstructed images under mixture beams
consisting of two and three-point sources respectively. It is
obvious that the more point sources included, the poorer
quality of the reconstructed images.

Fig.3 (a) shows the PSNR of the reconstructed images
under the Gaussian beam against the beam size at the position
of the mask (BZPM). The beam size is the beam radius at the
1/e2 point in intensity. Illustrated from the insert in Fig.3 (a),
the beam distribution is inhomogeneous with the beam size
where BZPM is 13 mm. It is found that the PSNR starts at a
low level of about 10 dB when BZPM = 13 mm. When the
BZPM is larger than 40 mm, it dramatically increases with
the BZPM and maintains at a high level of about 50 dB. Com-
pared with the results of the standard point beam, the PSNR
under the Gaussian beam is quite low when the BZPM is
small. Fig.3 (b)- (e) shows the reconstructed images with the
BZPM of 13 mm, 20 mm, 47 mm, and 51 mm respectively.
The quality of the reconstructed image under the Gaussian
beam with BZPM = 13 mm is the worst one while it is dra-
matically increasedwith the BZPM. The results are consistent
with the data of PSNR in Fig.3 (a), confirming that the beam
inhomogeneity significantly destroys the quality of CS-based
imaging.

As demonstrated above, it is difficult to achieve a high-
quality reconstructed image under the real beam environ-
ment where the beam inhomogeneity noise is added to the
imaging system. At present, there are several methods to
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FIGURE 3. (a) PSNR dependence with the beam size of the Gaussian
sources at the position of mask. The insert is the amplitude distribution of
the Gaussian beam when the beam size at the position of mask (BZPM) =
13 mm. (b)-(e) figures are the reconstructed images under a Gaussian
source with the BZPM of 13 mm, 20mm, 47mm and 51 mm respectively.

remove beam and optical path noise in the imaging. Ghost
imaging is one of the main methods and has a good effect
on denoising [12], [13]. Such a technique is essentially a
multi-photon coincidence sampling and their transverse cor-
relations are applied for the reconstruction process through a
multi-correlation sampling matrix. Unfortunately, in general,
the ghost imaging system for sampling in the THz frequency
range is too complex to be established.

In this work, the real mask at the position of mask plane
shown in Fig.1 can be obtained by the product of beam
distributions and the mask patterns to eliminate noise from
beam inhomogeneity. The ith measurement data yi collected
by the detector follows (8)

yi =
[
d1Mi1 · · · djMij · · · dnMin

]
×



x1
...

xj
...

xn

 (8)

where dj represents the beam distribution intensities of the
corresponding pixel at the position of mask plane. We may
obtain a normalized matrix whose size is the same as the
one of the mask and each matrix element is dj. Through
scanning the beam distribution at the position of the mask
by a single-pixel detector, the measurements corresponding
to the location in each pixel are collected to constitute matrix
elements. Normalizing the matrix above, the result represents
the beam distribution at the position of the mask plane and
each element dj of the normalized matrix can be obtained.

The product of the beam distribution and the mask is used
to calculate the matrix of the real mask. The vectors [djMij]
in (8) have been reshaped from the matrix of the real mask.
They are utilized in the new measurement for imaging recon-
struction. Since the mask pattern has a Gaussian distribution
with zero mean, the far-field distribution of real beams is near
Gaussian or superimposed by several Gaussian distributions,
therefore the probability density function (PDF) for the prod-
uct of the beam and mask also follows Gaussian distribu-
tion, which meets the requirements of the CS reconstruction
conditions [20]–[22].

FIGURE 4. (a) PSNR (b) SSIM of imaging with/without optimization
procedure for Gaussian beams.

Fig.4 compares the PSNR and SSIM between the original
and optimized images under the Gaussian beams. After opti-
mization, the value of PSNR significantly increases to about
60 dB, which is comparable to the maximum PSNR under
the point beam in Fig.2 and the SSIM reaches a high level
of about 1.0. Furthermore, both optimized PSNR and SSIM
are independent with BZPMof the Gaussian beam, informing
that the noise is completely eliminated.

The effect of our proposed method on the reconstructed
images under the extreme inhomogeneous beam is further
investigated. Fig.5 (a) makes the comparisons of PSNR
between the original and the optimized images under the
mixed two-point beams with a 10◦ cone angle, seen in the
inset of Fig.5 (a). The maximum PSNR for point source
comes from the simulation in Fig.2 (a). It is found that
the original PSNR shows independence with the distance
between two beams. The average PSNR following the process
of (1) is about 10 dB, which is much lower than that of
the single one. The red lines in the plots exhibit the results
of the optimized image by (5), where the beam distribution
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elements dj is measured at the position of mask plane. It is
found that after the optimization procedure, the PSNR values
dramatically increase from 10 dB to approximately 50 dB.
Fig.5 (b) and (c) depict the reconstructed images under mix-
ture beam without/with optimization method respectively.
It is clearly seen that the proposed method is very effective
to remove the beam noise effect on the CS-based imaging.

FIGURE 5. (a) PSNR of imaging with/without optimization procedure
under a two-point beam with various distances. The inset shows the
applied beam amplitude distribution. (b) and (c) show the raw and the
optimized reconstructed images when the distance between the point
sources is 2 mm.

III. EXPERIMENT AND RESULTS
On the basis of the above simulation results, the experi-
ments for CS-based THz imaging are performed to certify
the effects of our proposed method on imaging denoising.
Fig.6 (a) demonstrates the set-up of the measurement system,
which is consisted of a terahertz continuous wave source, two
flat-convexmirrors, a single-pixel THz detector, and a lock-in
amplifier. The beam is provided by VDI Company [23] with
1.4 mW at 100 GHz. The beam is collimated by Lens1,
passes through the mask and object, and then focuses on the
single-pixel detector by Lens 2. The random patterned mask
is made of aluminum tape on a transparent quartz plate, where
the opaque area accounts for half of the mask. Each mask
contains 5× 5 pixels and every pixel is 6 mm×6 mm. Placed
at a distance of 50 mm from Lens 1, the mask is close to the
object and the distance between them is 0 mm. Mask and
Lens2 were placed on a mobile platform. For optimization,
the mask, the object, and Lens2 were first moved out from
the optical path briefly in order to scan the collimated THz
beam distribution at the position of the mask by the detec-
tor. After that, the three removed components were moved
back in the optical path to finish the object detection. The
selected TVAL3 parameters are the same as those listed
in table.1.

Fig.6 (b) shows the measured 2D beam distribution at
the position of the mask plane. It is noted that the beam

FIGURE 6. (a) The experimental CS-based THz imaging system.
(b) The beam distribution at the position of mask plane.
(c) The normalized distribution along the red dot line in (b).
(d)-(e) The experimental reconstructed images without/with
optimization procedure respectively.

distribution is quite inhomogeneous. Fig.6 (c) illustrates the
beam distribution along the red dot line in Fig.5 (b), here
the origin of the x-axis is set at the left endpoint of the
red dashed in Fig.6 (b). It is seen that the beam at the
mask plate is expanded and can be described by the Gaus-
sian with BZPM = 20 mm approximately, as shown in
the blue line in the figure. Based on the analysis of Fig.3,
the beam will bring large system noise in the imaging.
Fig.6 (d) and (e) present the reconstructed image by using
the original and optimized measurement matrices respec-
tively. The PSNR and SSIM increase from 6.05 and 0.43 to
13.27 and 0.87 respectively, confirming that the distortion
of the reconstruction performance is much improved. In this
case of Fig.6 (e), the quality of the reconstructed images
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TABLE 2. The comparisons of the PSNR between our results and the
previously reported works.

is not very satisfactory. We think the limited experimental
results are due to the low pixel number of masks used in the
experiments.

Table 2 compares the PSNR between our results and the
previously reported works in [13] and [24]. It can be seen
that the PSNR in [13] is similar to our results. However,
the used optical path in [13] is much more complicated than
ours. Further study is now going on in order to improve our
experimental results.

IV. CONCLUSION
Despite Compressed sensing (CS) has been applied for THz
wavelength, the current research of the high-quality
CS-based THz imaging remains to be explored. In this paper,
by modeling and simulation in the optical software Zemax,
the influence of beam distribution on CS-based THz imaging
has been investigated. The results show that under inhomo-
geneous illumination, the PSNR of the reconstructed image
is significantly reduced. An improved quantitative recovery
technique which combines the real beam distribution in
the measurement matrices is then proposed. Simulation and
experimental results confirm that the distortion of the recon-
struction performance is much improved. Compared with the
results and methods in [13] and [24], our experimental results
are more valid and our method may provide a new way for
high-quality CS-based THz imaging to target recognition in
real-engineering applications.
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