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ABSTRACT In an Internet of Things (IoT), the number of interconnected devices is huge and has been
increasing drastically. Their generated data requires powerful aggregated computing resources and consumes
enormous energy for processing and transmission. Having said that, most IoT devices are very limited
and heterogeneous in computing capabilities, causing a big challenge for designing a commonly used
interconnect that is both reliable and energy-efficient. Random Linear Network Coding (RLNC) schemes
have proven its capability both theoretically and in practical deployment not only to increase throughput
and reliability but also to reduce latency and energy consumption. However, it is unclear how different
variations of RLNC, in particular, Fulcrum codes aimed for heterogeneous devices perform in heterogeneous
IoT settings. In this paper, we conduct a measurement campaign, allowing for a fair comparison among the
state of the art RLNC families, with regard to energy consumption, decoding probability, and goodput. The
study provides insights and guidelines for applying RLNC schemes to data transmission in heterogeneous
IoT networks.

INDEX TERMS Network code, fulcrum code, heterogeneity, versatility, energy efficiency, the IoT devices.

I. INTRODUCTION
With the fast-dissemination of wireless smart devices,
the interconnection between a large number of devices
becomes more important. Since these devices are getting
smaller, cheaper, and diverse in purposes, we can expect
an Internet of Things (IoT) environment built with a mas-
sive amount of heterogeneous devices. This allows commu-
nicating quickly and efficiently between interoperable IoT
devices. Here, the interoperability refers to the basic ability
of heterogeneous IoT devices to interconnect and interact
with each other [1]. However, many of the IoT devices
will be difficult to recharge or even change their batter-
ies, especially those deployed in hard-to-access places such
as forests, mountains, and underwater. Therefore, reducing
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energy consumption is one of the hot research topics. Further-
more, since the wireless sensor network (WSN), as a subset
of IoT, concentrates on computational resource-constrained
IoT devices, it cannot achieve massive interoperability and
interconnection with traditional communication strategies.
Therefore, additional techniques are also required for such
operations in WSNs, which can lead to increase cost and
reduce functionality [2].

Many studies have attempted to solve the interconnec-
tion issues of WSN, and network coding (NC) has proven
to have advantages enhancing the robustness and reducing
delays ofWSN communications [3]. Since then, NC has been
in the spotlight and researched continuously in both wired
and wireless communication networks. In conventional NC,
a challenge is how to determine the local coding vector so
that exists an invertible decoding matrix at each receiving
node [4]. Ho et al. [5] proposed random linear network

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168219

https://orcid.org/0000-0003-2137-2711
https://orcid.org/0000-0002-7525-2670
https://orcid.org/0000-0001-7008-1537
https://orcid.org/0000-0003-3724-3244
https://orcid.org/0000-0001-8469-9573
https://orcid.org/0000-0002-0937-2359


V. Nguyen et al.: Versatile Network Codes: Energy Consumption in Heterogeneous IoT Devices

coding (RLNC), which has been considered as the most
practical NC scheme. RLNC enables all nodes to perform a
random linear combination of input data to generate output
data over a finite field, such as the Galois field (GF). Since
this combination is independent at each node, the coding
coefficients used to generate each coded packet that is trans-
mitted along with the payloads. This allows the decoders
to obtain the global coding vector and use it to recover the
original data at the destination node (details are described
in Section II).

The success of RLNC has derived many variations of
the coding strategies to optimize for such low latency,
higher throughput, security, and computational complex-
ity. These include sliding-window RLNC [6]–[8], sparse
RLNC (S-RLNC) [9], [10], tunable sparse network coding
(TSNC) [11]–[14], perpetual network coding [15], fulcrum
network coding (FNC) [16], dynamic sparsity and expansion
packets FNC (DSEP-FNC) [17], and so on. A drawback
of network coding when compared to traditional end-to-end
coding schemes is its complexity. In general, the larger the
field sizes used, the better the performance of the code, but
also the complexity involved. For that reason, FNC was spe-
cially designed for heterogeneous devices, in which receiving
nodes can trade-off the number of received packets with
decoding complexity. The decoders may choose the size of
the GF to decode. Depending on the computing capabilities
of the device, the decoder can decode with fewer packets
and a larger GF, or listen for more packets and decode with
a smaller GF, which is less complex. Previous studies [16],
[18]–[20] have shown that FNC outperforms conventional
RLNC in terms of not only a reduction in computational
complexity but also an increase in decoding probability and
throughput. Besides, in the case of DSEP-FNC [17], a vari-
ation of FNC, it significantly reduces the computational
complexity while maintaining high decoding probability and
throughput. However, all of the performance improvements
of FNC and DSEP-FNCwere verified by simulation only, not
by practical implementations.

Therefore, this paper focuses on investigating whether
those advantages of FNC and DSEP-FNC can actually be
translated into reduced computational complexity and energy
consumption in high-end, off-the-shelf IoT devices, namely
Odroid-XU4 and Odroid-C2 [21]. Although some previous
studies measured the consumed energy of RLNC and com-
pared it with its variations such as S-RLNC and TSNC
[22], [23], this paper is, to our knowledge, the first study to
explore the energy consumption and performance aspects of
the latest FNC and DSEP-FNC through IoT devices. We first
choose four notable representatives of network codes that are
energy-efficient. Then, we measure and compare the energy
consumed for the encoding and decoding processes in the
Odroid devices. In addition, we evaluate the decoding proba-
bility and goodput (i.e., processing speed) of the chosen NC
schemes. In particular, since it is well-known there is a trade-
off between decoding probability and goodput, we focus on
providing a perspective on which type of NC scheme can best

compensate for this alongwith low energy consumption in the
IoT devices.

The remainder of this paper is organized as follows:
Section II provides fundamentals of RLNC, FNC, and their
variations, S-RLNC and DSEP-FNC. Section III and IV
describe the evaluation setup and metrics, and evaluate the
performances, such as energy consumption, goodput, and
decoding probability, in the two types of Odroid devices with
different computing power, respectively. Finally, Section V
provides its conclusion and new directions for future work.

II. BACKGROUND AND FUNDAMENTALS
It is well known that end-to-end erasure correcting codes,
such as Raptor codes [24]–[26] and LT codes [27], reduce the
computational complexity of the decoding process although
it imposes non-negligible delay. These codes are even better
than RLNC in terms of computational complexity, but they
do not provide the advantages that can be gained from inter-
mediate nodes such as recoding, unlike RLNC. Therefore,
the sparsity property was applied to RLNC and led to such
S-RLNC and TSNC, which was proven to be effective in
the reduction of the computational complexity while main-
taining the unique advantages of RLNC. In particular, [22]
and [23] showed that S-RLNC consumes less energy than
TSNC in IoT devices, while maintaining similar throughput
performance. In other words, S-RLNC has been considered
as one of the most energy-efficient network code. However,
these RLNC-based network codes including S-RLNC are not
actually suitable for heterogeneous IoT devices because of
the adaptively unchangeable GF size in accordance with the
network condition and the capability of IoT devices.

For that reason, FNC [16] and its adaptive decoders
[20], [28] are proposed in which the GF size can be adaptively
changed at receivers. That is, the receivers can choose GF
size that they can afford. FNC has advantages in terms of
resilience and heterogeneity but does not show much reduc-
tion of computational complexity compared to RLNC. In fact,
reducing the computational complexity is very important
to reduce the energy consumed in IoT devices. Therefore,
DSEP-FNC [17] applied the dynamic sparsity property to
FNC and showed outstanding performance in terms of the
decoding probability and computational complexity. How-
ever, both FNC and DESP-FNC have never been practically
evaluated in practical high-end IoT devices as well as never
been measured the energy consumed in the devices to com-
pare with other codes.

Therefore, this paper focuses on comparing the
heterogeneity-proper FNC and DSEP-FNC with the energy-
efficient S-RLNC. Toward this end, this section first describes
the fundamentals of four NC schemes: i) RLNC, ii) S-RLNC,
iii) FNC, and iv) DSEP-FNC.

A. ORIGINAL RLNC
For encoding of RLNC (see 2nd quadrant of Fig. 1), original
input data is first divided into n packets P (or symbols),
known as a generation. These packets are multiplied with
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FIGURE 1. Illustration of the encoding and decoding for original RLNC and FNC schemes. Both sender and receiver attempt to
encode and decode n = 4 original packets with different finite field sizes, and FNC generates r = 2 expansion packets (n� r in the
real implementation) with high finite field.

a coding coefficient vectors 3 randomly generated from a
GF. Through this series of the linear combination, the size
of coded packets K remains equal to that of original packets.
In other words, the overall encoding process generating mul-
tiple coded packets can be considered as a system of linear
equations with randomly generated coefficients over GF.

In order for successful decoding of the original packets,
the coding vectors used for encoding must be transmitted to
the receiver. In practice, they are appended as headers to the
encoded packets and sent to the receiver. To recover the orig-
inal packets P from the coded packets K , the receiver needs
enough linearly independent coded packets to solve the linear
system of equations. Gaussian elimination is commonly used
to solve a linear system of equations AX = B, where A,
X , and B correspond to 3, P, and K , respectively. This
has an advantage over the conventional uncoded approach
because the receiver no longer needs to collect each individual
data packet. In theory, it is enough to receive coded pack-
ets equal to the number of original data packets. However,
due to the randomness of the generation of coding coeffi-
cients, some packets might be linearly dependent. Therefore,
the system might need some extra packets (overhead) to
overcome these linear dependencies [29]. If the finite field
used is large enough e.g. GF(28), this overhead can be made

arbitrarily small. However, the increase of finite field causes
the computational cost which is not suitable for heteroge-
neous IoT devices.

B. S-RLNC
This scheme was proposed to reduce the computational com-
plexity for both encoding and decoding [9]. The idea is to
utilize sparse coding coefficient rows, with only a relatively
small prescribed number of non-zero coding coefficients w
in the coding coefficient matrix 3. The studies [9], [11]
have shown that S-RLNC is a good for computation-limited
applications. However, since it increases the overhead due
to redundant transmissions, the probability of receiving lin-
early dependent packets increases with the sparsity of the
coefficients vectors. That is, for a fixed number of received
packets the decoding probability of S-RLNC is much lower
than that of original RLNC. Thus, the sparsity lever w needs
to be dynamically adjusted to reduce the number of linear
dependencies and to increase the decoding probability at a
decoder.

C. ORIGINAL FNC
In RLNC and its variations including S-RLNC, only one
GF size must be fixed for encoding, e.g. GF(28), and it
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cannot be changed in the middle of transmission even if the
receiver has not enough capability to recover it. Solving this
problem would be more critical to heterogeneous IoT devices
having different capabilities. For that reason, FNC exploits
a combination of two GF sizes, e.g. GF(2) and GF(28), for
the encoding and decoding. As illustrated in 3rd quadrant of
Fig. 1, the original packets P are first multiplied with the
outer coding coefficient vectorsC that randomly selected by a
higher-field size such asGF(28) to create r expansion packets
o`, which is as follows:

o` =
n∑
j=1

c`,jpj, ` = 1, 2, . . . , r . (1)

These packets are concatenated into the original ones
P to create outer-coded packets (O = {p1, p2, . . . , pn} ∪
{o1, o2, . . . , or }). This stage is also called pre-coding and
generally performed by a systematic code. More specifically,
the r expansion packets ensure a high probability of receiving
linearly independent coded packets and increase the robust-
ness against packet losses over error-prone networks. A small
r is suitable when linearly dependent coded packets and
packet losses are unlikely to occur. However, when there are
frequent linearly dependent coded packets or packet losses,
a larger r will substantially increase the probability of lin-
early independent coded packets and the resilience against
packets losses. Subsequently, each outer-coded packet oj (j =
1, 2, . . . , n, n+1, n+2, . . . , n+r), is also multiplied with the
inner coding coefficient vector λ`,j to generate inner-coded
packets (I ) as

i` =
n+r∑
j=1

λ`,joj, ` = 1, 2, . . . , (2)

where λ`,j are randomly selected by the encoder from a lower-
field size such asGF(2). The inner case is processed by either
a systematic code or a non-systematic code.
Similar to RLNC, FNC also needs to receive coded packets

equal to the number of original data packets to recover the
original data packets. For instance, if the number of original
packets P is four and encoded like 3rd quadrant of Fig. 1,
the number of transmitted packets I are six. Although of
course, this is higher than the number of original ones,
the overhead is assumed to be negligible for larger generation
sizes [8]. Assuming that the receiver with high capability only
collects four among six packets due to packet erasures, it is
possible to recover the original packets since the outer and
combined decoders employed at the receiver. On the other
hand, if the receiver has a low computational capability, it can
wait to receive six linearly independent packets to decode
the original information using the inner decoder. In essence,
Fulcrum codes are the versatile network codes allowing to
trade between the total number of packets needed to decode,
and the computational complexity that the device must
invest.

D. DSEP-FNC
DSEP-FNC [17], which inherits all the benefits of origi-
nal FNC, is the combination of dynamic sparse coding and
dynamic tuning the expansion packets in FNC. The main
purpose is to reduce the computational complexity while
maintaining a high decoding probability at both sending and
receiving devices. This allows to deal with the challenges
of static sparsity w in S-RLNC, static sparse FNC [18], and
fixed expansion packets r by dynamically adapting these
parameters in FNC encoding process.

For the dynamic sparse inner coding coefficients, we define
w(j) [17, Eq. (13)] as the number of packets from the set O of
outer-coded packets that are to be combined for forming the
next inner-coded packet ij, which is given as

w(j) = (n+ µ) min

{
1
2
, 1− n+µ−j

√
1−

n+ r
n+ r + δ

}
, (3)

where j = 0, 1, . . . , n + r − 1, δ is a nominal prescribed
number of extra coded packets, and µ is the number of
expansion packets that are considered for the inner encoding
(0 ≤ µ ≤ r). The function automatically adjusts the sparsity
level toward each new inner-coded packet il generated by
Eq. (2). These sparsity values are set to 1 and not exceed
(n+r)/2. The low sparsity level of inner-coded packets trans-
mitted benefits the computational complexity at the begin-
ning of a generation, while the increase of the sparsity levels
at the end of a generation helps to reduce the number of
linearly dependent coded packets [11], [17]. This leads to an
increase in the decoding probability compared to the S-RLNC
and a reduction of the energy consumption compared to the
original FNC.

In addition, the dynamic expansion packets r minimize
the computational complexity toward the outer and combined
decoders by adjusting the number of expansion packets µ
from 0 to r within a given generation. First, the encoder
generates the inner-coded packets without expansion packets
at the beginning of a generation and then to increase the num-
ber of expansion packets included in the inner-coded packets
towards the end of a generation. With the combination of
variable µ, the inner-coded packets generated by Eq. (2) can
be rewritten as

i` =
n+µ∑
j=1

λ`,joj, (4)

where λ`,j are randomly generated depending on the spar-
sity level w(j) as defined in Eq. (3). When nearing the end
of a generation, the decoder has collected a large num-
ber of linearly independent coded packets, which decreases
the probability of newly received coded packets being lin-
early independent. With this adjustment, DSEP-FNC encoder
can create the inner coded packets with strong robust-
ness and a high probability of receiving linearly indepen-
dent coded packets against packet losses over error-prone
networks.
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FIGURE 2. Energy measurement setup: The power of IoT devices is
supplied by an energy measurement device and these devices are
connected with one another over the Ethernet to exchange the controlling
commands (i.e. SCPI) and measured data.

III. MEASUREMENT CAMPAIGN
The section describes the evaluation methodology of energy
consumption and goodput, and furthermore, the evaluation
setup and the parameters.

A. IOT DEVICES AND EVALUATION SETUP
To measure the energy consumption, we use a DC Power
Analyzer Agilent N6705B from Keysight, which provides
the accuracy of up to 0.025% for both the Voltmeter and
Ammeter. Odroid-XU4 and Odroid-C2, representing high-
end IoT devices [21], are used for this measurement. Their
powers are supplied by the power analyzer and connected
with one another over an Ethernet to exchange the data,
as shown in Fig. 2. Odroid-XU4 has heterogeneous cores
with 32 bits processors providing high performance and
energy saving, while Odroid-C2 has homogeneous cores only
with 64 bits processors. More specifically, Odroid C2 and
XU4 feature the Amlogic system on a chip (SoC) and Sam-
sung Exynos SoC, respectively. Both include an ARM cen-
tral processing unit (CPU) and an on-chip graphics process-
ing unit (GPU) which are widely used in IoT nodes. The
C2 model has an Amlogic S905 Cortex-A53 quad-core CPU
clocked up to 1.5 GHz, whereas the XU4 one has a Samsung
Exynos5422 Cortex-A15 and Cortex-A7 quad-core CPUs
clocked up to 2.0 GHz.

We implemented the four NC schemes on top of the Kodo
library [30] to measure energy consumption and goodput.
To automate the measurement process, i.e. the running of
multiple tests with multiple parameters, the storing of log
files with the measurement results and the synchronization
between the measurements, and the loggings, we used the
standard commands for programmable instruments (SCPI)
which is a programming language for controlling tests and
measurement instruments. This helped us to trigger the mea-
surements and data logging of the energy device when the
measured devices start carrying out the encoding or decoding
process. These triggers allowed us to determine the starting

FIGURE 3. The automatically captured samples in Odroid-XU4 with two
different states, which are transitions between idle state and coding
processing state.

and ending points of the coding process, and easily differen-
tiate the idle state from the coding processing state (for both
encoding and decoding) as shown in Fig. 3.

B. ENERGY CONSUMPTION AND GOODPUT METRICS
The energy consumption for each configuration parameter is
calculated by multiplying the measured supply voltage by
the measured current provided by the energy measurement
device. We compute the encoding and decoding current by
subtracting the average current while in the idle state as
shown in Fig. 3. The energy per bit E is defined as the product
of the average power P (Watt) by the coding processing time
T (s) and divided by the total number of coded bits which is
specifically presented in [23] and rewritten as follows.

E = P×
T

8× n× B
[Joule/bit], (5)

where B is the data packet size (byte). Due to using r expan-
sion packets, n is replaced with n+ r in Eq. (5) for both FNC
and DSEP-FNC schemes.

The encoding goodput is defined as the amount of payload
data in a generation, divided by the encoding processing time.
The amount of data is determined by n × B for both RLNC
and S-RLNC encoders, and (n + r) × B for both FNC and
DSEP-FNC encoders including outer encoding o1, o2, . . . , or
and inner encoding i1, i2, . . . , in+r . Similarly, the decoding
goodput is also defined as the amount of payload data in a
generation (n + r) × B for the FNC inner decoder and n ×
B for the FNC outer, FNC combined, and RLNC decoders,
divided by the total decoding processing time for successfully
recovering n original packets.

C. PARAMETER SETTINGS
The data packet size was fixed to 1500 bytes which mimic the
maximum size of Ethernet packets. The Galois field GF(28)
was used for FNC and FNC-DSEP outer coding, whereas
the FNC and FNC-DSEP inner coding was carried out over
the Galois field GF(2). The number of original packets in
a generation was varied from n = 16 to 256. The number
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of expansion packets was varied from r = 2 to 6 and the
density is fixed to d = 0.05 or d = 0.1. We conducted over
ten thousand independent replications for each evaluation
scenario resulting in 95% confidence intervals that are too
tight to be visible in the plots.

IV. PERFORMANCE EVALUATION
This section examines the energy consumption, decoding
probability, goodput for RLNC, S-RLNC, FNC, and DSEP-
FNC with the evaluation methodology in Section III.

A. ENERGY CONSUMPTION
Fig. 4 shows the energy consumed for the encoding, decod-
ing, and total processes in the Odroid-XU4. We first observe
that S-RLNC (dot line) and DSEP-FNC (dash line) consume
less energy compared to the original RLNC and FNC in
both encoding and decoding processes due to their spar-
sity characteristics. Since it is already well-known that the
sparsity characteristics allow a reduction of computational
complexity, this fact is predictable enough. However, as the
generation sizes increase, S-RLNC with high GF size (dot
line with square markers) consumes more energy and has a
similar tendency to the original FNC. That is, all types of
DSEP-FNC and S-RLNC with low GF size only show the
improved performance compared to others in terms of energy
consumption.

Fig. 4(a) shows the consumed energy of encoding as an
increase in the number of generation sizes. In particular,
we observe that the encoder of DSEP-FNC consumes very
small energy compared to FNC encoder and RLNC GF(2)
encoder, and it consumes the lowest energy even for large
generation sizes (n ≥ 64). This is mainly due to the par-
ticular adjustment of sparsity level (the number of non-zero
coefficients in each coding vector is controlled by w(j) and
changed from very low to high during the encoding process)
and expansion packets (by adjusting the number of expansion
packets µ from 0 to r within a given generation) in DSEP
encoder. S-RLNCGF(2) encoder also takes advantage of low
sparsity by fixing the static sparsity during the encoding pro-
cess, but its energy consumption is higher than DSEP-FNC
encoder in large generation sizes (n > 64). This is because the
energy consumption of S-RLNC is the fixed level of sparsity,
e.g. d = 0.05, that gives nearly constant the number of
non-zero coefficients in each coding vector within a given
generation size. Therefore, for n = 256, the number of non-
zero coefficients in each coding vector is 12.8 on average,
whereas, the sparsity level w(j) in DSEP-FNC is dynamically
adjusted during the encoding process.

Similarly, the decoding process of S-RLNC and DSEP-
FNC surpasses the counterpart schemes in terms of energy
consumption, as shown in Fig. 4(b). This is because of low
sparsity level in both S-RLNC and DSEP-FNC, and there is,
thus, a significant reduction of the computational complexity
of decoding process which mainly impacts on the decrease
of energy consumption. Consequently, the total energy con-
sumption of DSEP and S-RLNC is also small, as shown

FIGURE 4. The consumed energy of (a) encoding, (b) decoding, and
(c) total in Odroid-XU4. Different generation sizes n, static density of
S-RLNC d = 0.05 and expansion packets r = 2 for both FNC and
DSEP-FNC.

in Fig. 4(c). More specifically, we observe that DSEP-FNC
inner reduces the total energy consumption by up to 73%,
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FIGURE 5. The consumed energy of encoding and decoding in Odroid-C2. Different generation sizes n, static density of S-RLNC d = 0.05 and
expansion packets r = 2 used for both FNC and DSEP-FNC.

25%, and 72% as compared with RLNC, S-RLNC, and FNC,
respectively, for the low field using GF(2). DSEP-FNC outer
and combined also reduce the total energy consumption by
up to 90%, 75%, and 70%, respectively, for the high field
using GF(28). This significant reduction is because of the
sparse inner coding which is sped up the reduced number of
non-zero coding coefficients in the DSEP-FNC approaches.
This fact is clearer in the case of S-RLNC withGF(2), which
saves the most consumed energy in the small generation sizes
between n = 16 and 64, with only one and three non-zero
coding coefficients in average.

Fig. 5 shows the consumed energy in Odroid-C2 for both
encoding and decoding processes. For simplicity, we only
choose and present only S-RLNC and DSEP-FNC that
are shown low energy consumption in Odroid-XU4 (see
Fig. 4(c)). We observe that Odroid-C2 has similar tendency
to Odroid-XU4 for both encoding and decoding. However,
Odroid-C2 equipped with 64-bit quad-core single boards
(cortex-A53 CPU) shows that it is low power hardware with
high-performance [31], compared to Odroid-XU4 equipped
with four 32-bit cores (cortex-A15 and cortex-A7 CPU). This
leads to the energy consumption of both encoding and decod-
ing for Odroid-C2 is lower than Odroid-XU4 as presented
in Fig. 5.

B. DECODING PROBABILITY
From the results of energy consumption, we can observe that
S-RLNC and DSEP-FNC consume similar energy in the IoT
devices. Of course, S-RLNC consumes slightly lower energy
for small generation sizes n. However, the fixed sparsity in S-
RLNC significantly impacts on the decoding probability as
we explained in Section II-B.

Fig. 6 shows the decoding probability of S-RLNC and
DSEP-FNC as a function of the number of the received
extra packet. In the low field size, both S-RLNC GF(2) and
DSEP-FNC inner have severe performance degradation.

FIGURE 6. Decoding probability of S-RLNC and DSEP-FNC. Generation size
of n = 64, static density of S-RLNC d = 0.1, and expansion packets r = 2.

Even if S-RLNC GF(2) has better performance than DSEP-
FNC inner, both have very poor performance, which may
impose significant delay due to the retransmission. On the
other hand, DSEP-FNC outer and combined outperform
S-RLNC GF(28) in terms of decoding probability, even if
S-RLNC GF(28) is slightly better when the number of extra
packet is greater than or equal to 1. In addition, only DSEP-
FNC outer and combined achieve almost 100% decoding
probability when receiving more than two extra packets. This
means that DSEP-FNC requires a shorter delay to complete
the transmission of a given generation because DSEP-FNC
is designed as a dynamic sparsity and expansion packets in
the coding coefficients. It also allows either to substantially
reduce the computational complexity at the beginning of
generation, or to increase the decoding probability and robust
packets against the loss of channels by adjusting high-density

VOLUME 8, 2020 168225



V. Nguyen et al.: Versatile Network Codes: Energy Consumption in Heterogeneous IoT Devices

FIGURE 7. Encoding and decoding goodput in Odroid-XU4 and Odroid-C2. Different generation sizes n, static density of S-RLNC d = 0.05 and
expansion packets r = 2 used for both FNC and DSEP-FNC.

level at the end of generation. On the contrary, S-RLNC
sets the static sparsity in the coding coefficients during the
coding process. Therefore, although the energy consumption
is low, the decoding probability is not as high as DSEP-FNC.
In summary, only DSEP-FNC combined and outer achieve
almost 100% decoding probability while maintaining low
energy consumption.

C. GOODPUT
From the previous results, we confirm that only DSEP-FNC
outer and combined not only significantly improve the decod-
ing probability but also keep the low energy consumption in
the IoT devices. In addition, they also show the improved
performance in terms of goodput, especially for encoding,
as shown in Fig. 7(a) and (c). More specifically, as compared
to S-RLNC GF(28), the processing speed of DSEP-FNC
encoding is three times faster despite saving energy up to 42%
in the high generation size.

This trend is also maintained in the decoding process.
We observe that DSEP-FNC combined decoder saves about
32% of the consumed energy in the decoding process,
and furthermore, its processing speed is up to four times
faster, as compared with S-RLNC GF(28) (see Fig. 7(b)
and (d)). Of course, S-RLNC GF(2) shows less energy
consumption and faster processing than DSEP-FNC com-
bined, but these performances become similar to DSEP-FNC
combined when the generation size is high. In particular,
since S-RLNC GF(2) aggravates the decoding probability,
it would impose significant delay rather than DSEP-FNC
combined.

And one more interesting thing is that Odroid-XU4 con-
sumes more energy than Odroid-C2 but it shows a faster
processing, as illustrated in Fig. 7. This is because Odroid-
XU4 is equipped with multiple cores, while Odroid-C2 is
equipped with a single core. Therefore, Odroid-XU4 can
achieve a fast encoding or decoding process.
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D. EVALUATION SUMMARY
Our evaluations can be summarized in following points:

1) Because of the sparsity characteristics, S-RLNC and
DSEP-FNC consume significantly less energy in the
two types of Odroid devices than their original ver-
sions, RLNC and FNC, respectively.

2) For encoding, DSEP-FNC overall consumes less
energy than S-RLNC regardless of GF sizes, but more
energy than S-RLNC GF(2) in small generation sizes.

3) For decoding using low field size, i.e. S-RLNC GF(2)
and DSEP-FNC inner, they consume similar energy on
average in the IoT devices. However, they aggravate the
decoding probability because of the bad influence of
the fixed sparsity and would impose significant delay
due to additional transmissions.

4) For decoding using higher field size, DSEP-FNC outer
and combined outperform S-RLNC GF(28) in terms of
energy consumption, except for the small generation
sizes.

5) All, S-RLNC GF(28), and DSEP-FNC outer and com-
bined, have outstanding performance in terms of
decoding probability. However, DSEP-FNC combined
shows faster processing time and is up to four times
faster than S-RLNC GF(28).

6) Consequently, in terms of versatility including energy
efficiency, decoding probability, and goodput in IoT
devices, using DSEP-FNC combined is more proper
than using other network codes.

V. CONCLUSION
It is well known among the network coding community that
S-RLNC is more energy-efficient than the original RLNC at
the trade-off of a reduced decoding probability. Furthermore,
recently proposed codes in the literature, such as Fulcrum
Network Codes (FNC) also demonstrate advanced charac-
teristics. To find out how different variations RLNC codes
perform, in terms of reliable and energy-efficient in the
IoT domain, we conduct a measurement campaign. Particu-
larly, we measure energy consumption, decoding probabil-
ity, and goodput of four representatives, RLNC, S-RLNC,
FNC, and DSEP-FNC. We observe that DSEP-FNC outper-
forms S-RLNC and achieves both high energy efficiency and
high decoding probability. Specifically, DSEP-FNC encoder
reduces energy consumption by about 42% in most of
the cases without compromising the decoding probability,
as compared to S-RLNC encoder. Additionally, the combined
decoder of DSEP-FNC increases the goodput by up to four
times while reducing energy consumption by at least 30%.
Demonstrating an outstanding performance across a wide
range of parameters, such as generation size and the number
of extra packets, DESP-FNC and its combined decoder can be
an appropriate candidate for interconnecting heterogeneous
IoT devices.

Possible directions for future work include analyzing the
impact of using these versatile network codes in practical
MAC protocols such as ZigBee. This direction is important

because ZigBee-based WSN may consist of thousands of
nodes that perform the processing and communicate with
each other. In particular, NC recoding mechanism should be
investigated more in this MAC protocol. It would improve the
performances of intermediate IoT devices that do not support
for higher layers.
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