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ABSTRACT Accurate 3D gaze estimation using a simple setup remains a challenging issue for
head-mounted eye tracking. Current regression-based gaze direction estimation methods implicitly assume
that all gaze directions intersect at one point called the eyeball pseudo-center. The effect of this implicit
assumption on gaze estimation is unknown. In this paper, we find that this assumption is approximate based
on a simulation of all intersections of gaze directions, and it is conditional based on a sensitivity analysis of
the assumption in gaze estimation. Hence, we propose a gaze direction estimation method with one mapping
surface that satisfies conditions of the assumption by configuring one mapping surface and achieving a
high-quality calibration of the eyeball pseudo-center. This method only adds two additional calibration points
outside the mapping surface. Furthermore, replacing the eyeball pseudo-center with an additional calibrated
surface, we propose a gaze direction estimation method with two mapping surfaces that further improves the
accuracy of gaze estimation. This method improves accuracy on the state-of-the-art method by 20 percent
(from a mean error of 1.84 degrees to 1.48 degrees) on a public dataset with a usage range of 1 meter and
by 17 percent (from a mean error of 2.22 degrees to 1.85 degrees) on a public dataset with a usage range of
2 meters.

INDEX TERMS Head-mounted eye tracking, 3D gaze estimation, gaze direction estimation, eyeball center,
mapping surface.

I. INTRODUCTION
Eye gaze is an essential clue for understanding human inten-
tions. Gaze tracking is mainly used for attention analysis
[1], [2], human-computer interaction [3], and human-robot
interaction (HRI) [4], [5]. Li et al. [5] recently reported
the first attempt to achieve intuitive HRI using only gaze
signals, which is helpful for disabled people with upper limb
motor impairment, such as amputees and paralyzed patients,
to reconstruct their upper limb motion abilities. In mobile
applications, such as gaze-based intuitive HRI, head-mounted
3D gaze trackers are preferred to table-mounted gaze
trackers [6].

The associate editor coordinating the review of this manuscript and
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In head-mounted eye tracking, 3D gaze estimation faces
three significant challenges, namely the accuracy of gaze
estimation, calibration complexity (i.e., the number of cal-
ibration points and the burden of calibration procedures),
and device complexity (such as the number of cameras and
infrared LEDs). Many gaze estimation methods [6] have
been proposed to address these limitations, which are gen-
erally divided into model-based and regression-based meth-
ods. Based on geometric eye models, model-based methods
[7]–[9] calculate visual axes to represent gaze directions.
Their main advantages are rapid one-point calibration and
robustness against the relative drift between heads and eye
trackers. However, these methods require sophisticated, fully
calibrated devices and are limited in accuracy by geometric
eye models, which differ from one individual to another.
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In contrast, regression-based 3D gaze estimation methods
employ simple devices to estimate gaze points. Most existing
paradigms [10]–[13] are based on the implicit assumption
that all gaze directions intersect at one point called the eyeball
center. It is noted that the term in these methods differs
from the traditional definition of the eyeball center, which
is the intersection of all optical axes. To avoid confusion,
we adopt the eyeball pseudo-center to represent the intersec-
tion of all gaze directions. Gaze directions are represented
as the eyeball pseudo-center and gaze vectors [13], [14] or
2D mapping points on the imaginary mapping plane [10].
The existing regression-based methods have two limitations
that affect the accuracy of 3D gaze estimation. First, the eye-
ball pseudo-center is challenging to be calibrated accurately,
because it is inside the eyeball and outside the field of vision
of the scene camera. Second, it is still unknown how the
implicit assumption of the eyeball pseudo-center affects the
accuracy of gaze direction estimation.

To overcome these two limitations, we present a gaze direc-
tion estimation model based on mapping surfaces. By simu-
lating the implicit assumption of the eyeball pseudo-center,
we find that all gaze directions intersect within a small region
rather than at one point, which implies that this assump-
tion is approximate. The sensitivity analysis of the eyeball
pseudo-center on gaze estimation reveals the conditions of
the assumption, i.e., configuring the mapping surface and
reducing the error of the eyeball pseudo-center. Accordingly,
we propose a gaze direction estimation method with one
mapping surface that exploits and satisfies the assumption.
The eyeball pseudo-center is calibrated by two additional
calibration points outside the mapping surface. Furthermore,
we propose a gaze direction estimationmethodwith twomap-
ping surfaces that adds another mapping surface to replace
the eyeball pseudo-center under the same framework. The
gaze direction is thus represented as the line connecting
the two points on the two mapping surfaces. Experimental
results reveal that the second method is more accurate than
the first method, but has more calibration points. The main
contributions of this paper are summarized as follows:

1) The simulation and sensitivity analysis reveal that
the current implicit assumption of the eyeball
pseudo-center is approximate and conditional.

2) A high-quality calibration technique for the eyeball
pseudo-center is proposed, which requires only two
additional calibration points outside the calibration
plane.

3) An accurate gaze direction estimation method with two
mapping surfaces is presented to overcome the limita-
tion of the implicit assumption.

The remainder of this paper is organized as follows.
Section II introduces the related works. Section III formulates
the basic model of gaze direction estimation. Section IV ana-
lyzes the implicit assumption of the eyeball pseudo-center.
The gaze estimation method with two mapping surfaces is

described in Section V. Experiments are given in Section VI,
followed by the conclusion drawn in Section VII.

II. RELATED WORKS
Regression-based 2D gaze estimation methods regress from
eye features (i.e., pupil centers or pupil-glint vectors) [15],
[16] to gaze positions on a plane, without assuming a
geometric eye model [8], [17]. Regression functions are cali-
brated by simultaneously capturing eye features and calibra-
tion points on a calibration plane. Similar to these methods,
appearance-based methods use eye appearance [18], [19] as
eye features. They leverage large training data with convo-
lutional neural networks to achieve unconstrained gaze esti-
mation. They do not require calibration, but are less accurate
than the regression-based methods and are only suitable for
table-mounted eye tracking.

When target points are outside the calibration plane, 2D
gaze estimation methods result in an error of gaze points,
i.e., the parallel error [20], due to the offset between scene
cameras and eyes. To this end, some methods use additional
input features related to depth coordinates of gaze points,
such as pupil distances [5] or Purkinje images [21]. It is
highlighted that the depth error of gaze estimation is gener-
ally significant, as these additional features have an indirect
and weak correlation with depth coordinates of gaze points.
Instead of additional eye features, other methods add scene
information. Takemura et al. [22] used the correspondence
between triangles containing 2D gaze points in the scene
camera image and triangles containing 3D gaze points in the
real world to estimate 3D gaze points.

A. GAZE DIRECTION ESTIMATION USING THE
EYEBALL PSEUDO-CENTER
Unlike the above methods of direct mapping from features,
most gaze direction estimation methods [10]–[12] implicitly
assume that all gaze directions intersect at one point, the eye-
ball pseudo-center. Then gaze directions are represented as
the eyeball pseudo-center and gaze vectors. Based on a sim-
plified eye model of a perfect sphere where optical axes
coincide with visual axes, back-projection methods [14], [23]
estimate the eyeball center and gaze vectors in the coordinate
system of the eye camera by back-projecting pupil image
ellipses. Transforming the coordinate system into the scene
camera introduces six parameters of homogeneous transfor-
mation. To solve these parameters, the 3D-to-3D mapping
method in [14] forms a nonlinear optimization problem that
minimizes the angular disparity between computed gaze vec-
tors in the eye camera and targets in the scene camera. To
reduce the complexity of the search space, Elmadjian et al.
[24] proposed a two-step iterative optimization algorithm.
Each iteration first computes the translation and then the
rotation that places gaze vectors into the scene camera space.

Regression-based gaze direction estimation methods
regress from eye features to gaze vectors. To solve the
mapping parameters and the eyeball pseudo-center, the
2D-to-3D mapping method in [14] formulates a nonlinear
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optimization that minimizes the angular error between esti-
mated and ground-truth gaze vectors using at least two cal-
ibration planes. To address locally optimal solutions caused
by nonlinear optimization, Su et al. [13] set sensible initial-
ization and constraints on eye positions to improve accuracy.
Our work is inspired by the method proposed by Abbott et al.
[10], which regresses from eye features to mapping points
on a calibration plane instead of gaze vectors. In this way,
the eyeball pseudo-center and mapping parameters can be
computed separately to obtain analytical solutions, without
nonlinear optimization.

III. MODEL FORMULATION
Gaze directions are strongly correlated with rotations of the
eyeball, such that they can be inferred from image features
of the eye. Fig. 1 illustrates the regression-based gaze direc-
tion estimation. The gaze direction is represented as the line
connecting the eyeball pseudo-center O ∈ R3×1 to the corre-
sponding point P ∈ R3×1 on the imaginary mapping surface
5P that has a one-to-one mapping with the eye feature (u, v),
as follows:

G = wO+ (1− w)P, (1)

whereG ∈ R3×1 denotes an arbitrary point on the gaze direc-
tion, and w is a proportional coefficient. The gaze direction
of one eye intersects the gaze direction of the other eye or the
reconstructed object surface at the gaze point. Therefore, this
problem has transformed to calculate the eye pseudo-center
O and the imaginary mapping surface5P.

FIGURE 1. Illustration of regression-based gaze direction estimation.
Each input eye feature (u, v ) can calculate the corresponding point on the
mapping surface 5P . Note that the eyeball pseudo-center is assumed as
the intersection of all gaze directions in the eyeball coordinate system,
and it is non-coincident with the eyeball center.

A. IMAGINARY MAPPING SURFACE
The choice of the mapping function depends on extrapola-
tion errors [25], which emerge when gaze points are outside
the calibration area. Most regression-based methods employ
polynomial mapping functions [3], [6], and it is found in [26],
[27] that functions higher than two orders do not significantly
reduce extrapolation errors. The typical polynomial mapping
function is the second-order binary polynomial function that
calculates the target point P(xP, yP, zP) on the mapping plane
at a constant distance of zP from the input eye feature (u, v),

as follows:{
xP = a1u2 + a2v2 + a3uv+ a4u+ a5v+ a6
yP = b1u2 + b2v2 + b3uv+ b4u+ b5v+ b6,

(2)

where a1, a2, . . . , a6 and b1, b2, . . . , b6 are the unknown
mapping parameters. However, this mapping function
requires users’ heads to remain stationary during calibration
and restricts all calibration points on a plane parallel to human
faces.

To overcome this limitation, we replace Equation (2) with
the second-order ternary polynomial function whose input is
the same but output is the target point P(xP, yP, zP) on the
mapping surface, as follows:

xP = a1u2 + a2v2 + a3uv+ a4u+ a5v+ a6
yP = b1u2 + b2v2 + b3uv+ b4u+ b5v+ b6
zP = c1u2 + c2v2 + c3uv+ c4u+ c5v+ c6.

(3)

This function is calibrated with the least-square method by
simultaneously capturing eye features and calibration points
on a calibration plane. The advantage of this function is that
users’ heads are free during calibration since zP of calibration
points can be obtained by scene cameras. Since the basic
coordinate system is located in the head-mounted eye tracker
andmoves with the head, the coordinates of calibration points
are on a surface rather than a plane. After calibration, themap-
ping relationship remains unchanged, even though users look
at different distances or move their faces. Therefore, the map-
ping surface is imaginary and changes consistently as the
human face moves.

B. THE EYEBALL PSEUDO-CENTER
The meanings of the eyeball pseudo-center are two-fold.
First, it refers to the intersection of all gaze directions in
the eye coordinate system, as opposed to the eyeball center,
which is the intersection of all optical axes. Second, it refers
to an approximate assumption instead of an actual point.
Existing papers [10]–[13] make this assumption implicitly
and indicate this point as the eyeball center. To clarify the dif-
ference, we use the eyeball pseudo-center rather than the
eyeball center. Since the eyeball pseudo-center is inside the
eye, the position is difficult to measure. More importantly,
it is still unknown how this assumption affects the accuracy
of gaze direction estimation.

IV. ERROR ANALYSIS AND CALIBRATION OF THE
EYEBALL PSEUDO-CENTER
To address the limitations of the assumption of the eyeball
pseudo-center, we theoretically analyze the assumption and
calibrate the eyeball pseudo-center.

A. INTERSECTIONS OF GAZE DIRECTIONS
According to [28], the assumption of the eyeball pseudo-
center does not hold, i.e., all gaze directions do not intersect
at one point. Thus, we simulate all intersections of gaze
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directions based on the geometric eye model [28], which
consists of two spheres, namely the cornea and the retina.
The optical axis is the line connecting the eyeball center E
to the cornea center through the cornea vertex V (see Fig. 2).
The gaze direction refers to the visual axis, which is the line
connecting the fovea to the gaze point by way of the nodal
points N,N′. Model-based gaze estimation methods [7], [17]
always assume that N,N′ are coincident with the cornea
center. In contrast, we abandon this assumption such that the
results are more reliable and meaningful. When two visual
axes are non-coplanar, the intersection refers to the midpoint
of the common perpendicular of these two visual axes. Thus,
we simulate all intersections of coplanar visual axes and all
midpoints of common perpendiculars of non-coplanar visual
axes.

First, we set the parameters and initial state of the eye
model. Due to individual differences, we set typical values
for the parameters according to accommodated schematic
eyes of [17], [28]: VN = 6.6 mm, VE = 13.1 mm. Then
EN = VE − VN = 6.5 mm. The angle between the optical
axis and the visual axis is always denoted as κ , which is
individual-dependent and constant for each individual, as it
is determined by the fovea location. Considering the mean
value of κ , we set κ = 5◦. In the coordinate system, the origin
is the eyeball center E, and the Z -axis points to the horizon-
tally forward direction. The X -axis points to the horizontally
right eye, and the Y -axis points to the vertically downward
direction (see Fig. 2). The initial state is that the optical axis
is parallel to the Z -axis direction, and the visual axis is in the
X-Z plane (see the red points in Fig. 3 (a)). Thus, the initial
position ofN isN0 = [0, 0, 6.5]T, and the initial vector of the
visual axis is v0 = Ry(κ)z = [sin(κ), 0, cos(κ)]T.

FIGURE 2. Structure of the geometric eye model (top view of the left eye)
[28]. The optical axis goes through the eyeball center E and the cornea
vertex V. The visual axis goes through the fovea and the gaze point by
way of the nodal points N,N′ . This axis is not a straight line, but two line
segments.

Different visual axes are generated by eye rotations.
Through rotating both a pan angle α (left-right rotation) and
a tilt angle β (up-down rotation) from the initial eyeball state,
the nodal point is N(α, β) = Ry(α)Rx(β)N0, and the vector
of the visual axis is v(α, β) = Ry(α)Rx(β)v0, where Ry(α)
and Rx(β) are rotation matrices around y-axis and x-axis
respectively. According to [29], the horizontal field of view is
100◦ for the temporal side, but 60◦ for the nasal side due to the

FIGURE 3. The simulation of the intersections of visual axes. (a) The
intersections of visual axes in the left-right rotation. Each line is a visual
axis, and the red point N0 and the red line refer to the initial state of the
visual axis. A large number of points in the middle are the intersections.
(b) All intersections of coplanar visual axes and all midpoints of common
perpendiculars of non-coplanar visual axes. Note that only a random part
of all sample points are displayed for better observation. Three projection
views of these points are shown in (c), (d), (f). The top view (c) is similar
to (a).

cut-off of noses. Hence, α ∈ −100◦ ∼ 60◦. As the vertical
visual field is 60◦ to the brow side and 75◦ to the cheek side,
β ∈ −75◦ ∼ 60◦. The sampling interval for the two angles
of α and β is 2◦. Note that since it is uncommon for the eye
to rotate around the optical axis, torsion is ignored.

The simulation of the intersections of visual axes is shown
in Fig. 3. For the left-right rotation (about the Y -axis),
the intersections of visual axes lie within an approximately
triangular area, whose range is 3.19 mm × 1.35 mm (X × Z )
(see Fig. 3 (a)). For the up-down rotation (about the X -
axis), visual axes form a part of a conical surface, such that
they intersect at the apex of the cone, i.e., [−0.57, 0, 0]T.
Besides the above two particular rotations, most eye rota-
tions combine both pan and tilt. The area range of all inter-
sections is 3.03 mm × 6.32 mm × 1.34 mm (X × Y ×
Z ) (see Fig. 3 (b)). The distribution of all intersections is
[−0.52 ± 0.22, 0.01 ± 0.25,−0.15 ± 0.31] mm (mean ±
standard deviation). Therefore, all visual axes intersect in a
small region. The assumption of the eyeball pseudo-center is
approximate. Although the above simulation is based on the
left eye model with typical parameters and the practical rota-
tion range of the visual axis, the achieved region of intersec-
tions is similar by considering individual differences and the
right eye.
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B. SENSITIVITY ANALYSIS OF THE EYEBALL
PSEUDO-CENTER IN GAZE ESTIMATION
Although all visual axes intersect in a small region, it is still
insufficient to accept the assumption of the eyeball pseudo-
center, unless this assumption has little effect on gaze esti-
mation. To this end, we analyze the impact of the eyeball
pseudo-center on gaze estimation. Note that the following
analysis ignores the extrapolation error of the mapping sur-
face, and we focus on the parallel error.

FIGURE 4. Sensitivity analysis of the eyeball pseudo-center in gaze
estimation. (a) Gg is a ground-truth gaze point, and P is the
corresponding point on the mapping surface 5P . O is the eyeball
pseudo-center. The estimated visual axis PO intersects with the vertical
plane through Gg at Ge. The ground-truth visual axis PGg intersects the
vertical plane through O at P′ . The Z -axis is the horizontal forward
direction. (b) The relationship between the angular error E and ZP ,
ZGwhen O is the ideal eyeball pseudo-center, and

∥∥OP′
∥∥ = 1 mm.

Fig. 4 shows the sensitivity analysis of the eyeball
pseudo-center in gaze estimation. When a user is looking at
a ground-truth point Gg, there are two kinds of visual axes
through the mapping point P, namely the ground-truth visual
axis PGg and the estimated visual axis PGe (see Fig. 4 (a)).
According to [15], [16], the angular error of gaze points is
calculated approximately by

E ≈ arctan

(∥∥GgGe
∥∥

ZG

)
, (4)

where
∥∥GgGe

∥∥ is the planer error of gaze estimation, and
ZG denotes the depth distance of Gg. Based on triangular
similarity,

∥∥GgGe
∥∥ can be computed by∥∥GgGe
∥∥

‖OP′‖
=
‖PGe‖

‖OP‖
=
|ZG − ZP|

ZP
. (5)

By substituting Equation (5) into Equation (4),

E ≈ arctan
(∣∣∣∣ 1ZP − 1

ZG

∣∣∣∣ ∥∥OP′
∥∥) . (6)

We should first investigate the effect of the ideal eye-
ball pseudo-center on gaze estimation. The ideal eyeball
pseudo-center O is the average position of the intersect-
ing region in Section IV-A. Then,

∥∥OP′
∥∥ is in the interval

[−3σ, 3σ ] with a high probability, about 99.7% (assuming a
Gaussian distribution), where σ is the standard deviation on
the vertical plane in the intersecting region. Hence,

∥∥OP′
∥∥ ≤

3×
√
0.222 + 0.252 ≈ 1mm. Since E is quite small, less than

0.1◦ (see Fig. 4 (b)), it is reasonable to use the ideal eyeball
pseudo-center to approximately represent the intersection of
all real visual axes. Therefore, the ideal estimated visual
axis can represent the ground-truth visual axis, as shown
in Fig. 5 (a).

FIGURE 5. Sensitivity analysis of the estimated eyeball pseudo-center in
gaze estimation. (a) The ideal estimated visual axis can represent the
ground-truth visual axis. The ideal eyeball pseudo-center Og is the origin,
and the Y -axis points to the vertically downward direction. The spherical
coordinates of P is (lP , ϕP , γP ). (b) The distribution of f with different ϕP
and γP when ϕO = 45◦, γO = 30◦. γP refers to the length. (c) Mean values
and standard deviations of f with different γO.

We should then study the influence of the estimated eyeball
pseudo-center on gaze estimation. In the spherical coordinate
system, P = (lP, ϕP, γP), and O = (lO, ϕO, γO). As P′ =
ZO
ZP
P,
∥∥OP′

∥∥ = lOf (γP, ϕP; γO, ϕO), where

f (γP, ϕP; γO, ϕO)

= | cos γO|

×

√
tan2 γP + tan2 γO − 2 tan γP tan γO cos(ϕP − ϕO).

(7)

ϕP and ϕO determine the phase of f , and γP and γO determine
the amplitude of f . The minimum f is equal to 0 when O,
P, and Og are collinear, i.e., ϕP = ϕO, and γP = γO. The
maximum is f = | cos γO|(tan γP+tan γO) when ϕP = 180◦+
ϕO, and γP is set to its maximum. Note that f = 1 when γO =
90◦. Fig. 5 (b) shows the distribution of f with different γP and
ϕP. Besides, Fig. 5 (c) shows that mean values of f change
slightly when γO increases. Therefore, f (γP, ϕP; γO, ϕO) can
be regarded as the phase item ofE . According to Equation (5),∥∥GgGe

∥∥ = |ZG−ZP|
ZP−ZO

∥∥OP′
∥∥ ≈ |ZG−ZP|

ZP

∥∥OP′
∥∥, since ZO �

ZP. By substituting Equation (7) into Equation (4),

E ≈ arctan (m(ZP,ZG, γO)f (γP, ϕP, γO, ϕO)) , (8)

where

m(ZP,ZG, γO) =

∣∣∣∣ 1ZP − 1
ZG

∣∣∣∣ lO. (9)
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m(ZP,ZG, γO) and f (γP, ϕP; γO, ϕO) approximately repre-
sent the amplitude term and phase term of E respectively.
m(ZP,ZG, γO) is similar to Equation (6), except that the
amplitude is magnified by a factor of lO. If lO is larger than
10 mm, E may exceed 1◦. Therefore, the estimated error
of the eyeball pseudo-center has a significant effect on gaze
estimation.

In summary, the assumption of the eyeball pseudo-center
is conditional. To be specific, it is acceptable only if

• the distance between ZP and ZG decreases, and ZPZG
increases.

• the error of the estimated eyeball pseudo-center, lO,
is small.

C. CALIBRATION OF THE EYEBALL PSEUDO-CENTER
To reduce the error of the estimated eyeball pseudo-center,
we should build the calibration model of the eyeball pseudo-
center. After calibrating the mapping surface, at least two
additional calibration points outside the mapping surface are
required to calibrate the eyeball pseudo-center O. With n
additional calibration points {Ci}

n
i=1 , n ≥ 2,Ci /∈ 5P,

we can use the corresponding eye features to calculate the cor-
responding mapping points {Pi}ni=1, which have extrapolation
errors [25], as mapping points outside the calibration area are
extrapolated. According to [15], extrapolation errors are not
uniform along the mapping surface but increase towards the
edges of the surface. Themain reason is that detecting the lim-
bus is more difficult at the edges than in the middle. Hence,
it is assumed that the maximum radius of the extrapolation
error is 1P ≈ ε ‖OP‖, where ε is a small constant, such as
ε = tan 0.5◦ ≈ 0.0087. Thus, each line CiPi forms an error
cone. Increasing the accuracy of the eyeball pseudo-center is
equivalent to decreasing the intersection volume of all error
cones.

Assuming that there are only two additional calibration
points that have the same depths and lengths, ‖OC1‖ =

‖OC2‖, error analysis of eyeball pseudo-center calibration
with two additional calibration points is illustrated in Fig. 6.
There are two auxiliary axes (see Fig. 6 (a)): the Z -axis refers
to the horizontal forward direction; the d-axis refers to the
line connectingO to themidpoint ofP1P2. The angle between
the d-axis and the Z -axis is γd . The angle between d-axis
and OP1 is γP. Then ‖OP1‖ = ZP/(cos γP cos γd ). The two
error cones formed by C1P1 and C2P2 intersect to form a
diamond-like region (see Fig. 6 (b)). Based on triangular
similarity, the region width hO satisfies

hO
1P
=
‖C1O‖
‖C1P1‖

=
dC

dC − dP
=

ZC
ZC − ZP

, (10)

then

hO =
ZCZP

(ZC − ZP) cos γP

ε

cos γd

=
1(

1
ZP
−

1
ZC

)
cos γP

ε

cos γd
. (11)

FIGURE 6. Error analysis of eyeball pseudo-center calibration with two
additional calibration points. (a) Two additional calibration points are C1
and C2. The Z -axis refers to the horizontal forward direction; the d -axis
refers to the line connecting O to the midpoint of P1P2. The angle
between the d -axis and the Z -axis is γd . (b) The yellow diamond-like
region is the intersection of the two error cones formed by C1P1 and
C2P2. The angle between d -axis and OP1 is γP . (c) Error analysis of |hO|
with different ZP ,ZC when γd = 0, and γP = 45◦. Note that the white
region in heat maps means the error is larger than 100 mm, and we do
not show the detail for better observation.

The region width on the opposite side is h′O = −hO. Based
on a similar deduction, the region depths dO, d ′O satisfy

dO =
1

ε
ZC
−

(
1
ZP
−

1
ZC

)
sin γP

ε

cos γd

d ′O =
1

ε
ZC
+

(
1
ZP
−

1
ZC

)
sin γP

ε

cos γd
. (12)

Reducing |dO| and |d ′O| is equivalent to increasing the denom-

inator. As ε is small, ε
ZC
�

∣∣∣ 1
ZP
−

1
ZC

∣∣∣ sin γP. Hence, |dO| ≈
|d ′O|, and |hO|/|dO| = tan γP. The error region of O can be
decreased by

• increasing the distance between ZP and ZC and decreas-
ing ZPZC (see Fig. 6 (c)).

• decreasing the angle between d-axis and z-axis, i.e., γd ,
whose optimal value is 0, which implies that two cali-
bration points are central symmetry about the Z -axis;
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• setting the angle between two additional calibration
points, γP = 45◦, considering the contradictory relation
between |hO|, |dO| with γP.

When the two additional calibration points are not in the
above situation, i.e., when their depths or lengths are differ-
ent, the intersection region of the two error cones increases.
In addition, Section VI-A demonstrates that gaze estimation
is not significantly different using different numbers of cali-
bration points.

Based on these conclusions and the conclusions in
Section IV-B, the optimal configuration of gaze estimation
with one mapping surface can be derived, as shown in Fig. 7.

FIGURE 7. The optimal configuration of the method of gaze direction
estimation with one mapping surface. The two additional calibration
points should be central symmetrical about the Z -axis, and the angle
between them and the eyeball should be 40◦ − 50◦.

V. GAZE ESTIMATION WITH TWO MAPPING SURFACES
Since the implicit assumption of the eyeball pseudo-center is
conditional, an alternative method that replaces the assump-
tion of the eyeball pseudo-center with another mapping sur-
face is proposed to further improve accuracy under the same
framework (same devices and similar calibration procedures).
Thus, two points on the two mapping surfaces are calculated
from an input eye feature, and both the two points are on the
same visual axis. The gaze direction equation is changed from
Equation (1) as follows:

G = wP1 + (1− w)P2, (13)

where P1 and P2 are corresponding points on the two map-
ping surfaces, respectively.

To employ this method, we analyze the errors outside
mapping surfaces and consider configuring two calibration
surfaces, as shown in Fig. 8 (a). According to the extrapo-
lation error in Section IV-C, the maximum error radius on
the mapping surface is r = εZ/ cos γ , where γ is the angle
between the gaze direction and the Z -axis. Then, the error
range in two mapping surfaces forms an error cone whose
vertex is O. When the target is outside the two mapping
surfaces, E has a maximum value when the error directions
of P1,P2 are opposite (see red lines in Fig. 8 (a)). According
to Equation (4), E is calculated by

E ≈


arctan

(
ε

cos γ

)
, Z1 ≤ ZG ≤ Z2

arctan
ε

∣∣∣∣Z2 + Z1 − 2 Z1 Z2
ZG

∣∣∣∣
cos γ (Z2 − Z1)

, otherwise.

(14)

FIGURE 8. Error analysis for gaze estimation with two mapping surfaces.
(a) Illustration of the errors outside two mapping surfaces whose depths
are Z1,Z2. G is the gaze point. P1,P2 are ideal mapping points. γ is the
angle between the gaze direction and the Z -axis. r1 and r2 are the
maximum error radius on mapping surfaces. The red lines correspond to
the maximum of E . (b) The relationship between E and ZG with different
Z1 and Z2 when γ = 0.

FIGURE 9. Calibration errors and extrapolation errors of 2D gaze
estimation on calibration planes. (a) The Mansouryar dataset [14]. (b) The
Elmadjian dataset [24].

Since the parallel error outside the two surfaces is larger than
that between the two surfaces, it is concluded that the fixation
target should be located between the two mapping surfaces.
Besides, when the target object is outside the two surfaces,
the angular error on the near side is larger than that on the far
side (see Fig. 8 (b)).

VI. EXPERIMENTAL RESULTS
Since the proposed model with mapping surfaces requires
calibration points on at least two planes, the datasets for
table-mounted gaze estimation, such as MPIIGaze [30], are
unsuitable. In this work, experiments are conducted on two
publicly available datasets for head-mounted gaze estima-
tion, namely the Mansouryar dataset [14] and the Elmadjian
dataset [24]. The two datasets have small and large usage
ranges, respectively. We first validate and evaluate the pro-
posedmethods on theMansouryar dataset [14].We then com-
pared the proposed methods with state-of-the-art methods
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TABLE 1. Average errors and standard deviations for the method using
one mapping surface on the Mansouryar dataset [14] using different
calibration combinations.

using multiple calibration planes on the two datasets. Note
that methods are evaluated by the angular error calculated by
Equation (4), which is a better indicator for gaze direction
estimation than the depth error.

The Mansouryar dataset [14] contains monocular pupil
features and corresponding ground-truth 3D gaze coordinates
recorded from 14 subjects and five planes of small depth
range, including 1.0 m, 1.25 m, 1.5 m, 1.75 m, and 2.0 m.
Each plane has 25 calibration points and 16 test points. After
calibrating each mapping surface with Equation (3), the cor-
responding point on the mapping surface can be calculated
for each pupil feature. The calibration error of the calibration
plane is calculated as the average of angular errors between
the ground-truth calibration points and the mapping points.
The extrapolation error on the calibration plane is calculated
as the average of angular errors between the ground-truth
test points and the mapping points. Fig. 9 (a) shows that this
dataset has small calibration and extrapolation errors.

The Elmadjian dataset [24] contains binocular pupil fea-
tures and 3D gaze coordinates recorded from 11 subjects and
five planes of large depth range, including 0.75 m, 1.25 m,
1.75 m, 2.25 m, and 2.75 m. Each plane has 20 calibration
points and 12 test points. The size of the plane increases
with the depth to ensure that different planes have the same
field of view in the scene camera. As each calibration or
test point contains 30 continuous frames, we filtered pupil
features to reduce noise. Fig. 9 (b) shows that five subjects
(number 4,5,6,8,9) have large calibration and extrapolation
errors (> 2◦). Thus, we discarded these data in the following
experiments.

A. EVALUATION OF THE METHOD WITH
ONE MAPPING SURFACE
After calibrating the mapping surface using a calibration
plane, the eyeball pseudo-center is calibrated by two extra cal-
ibration points that have the largest distance on another plane.
Fig. 10 shows gaze estimation errors for the method using one
mapping surface with different calibration combinations, and
Table 1 shows average errors and standard deviations. With
the same third plane (ZP = 1.5 m) as the calibration plane,
Fig. 10 (a) shows that increasing the distance of calibration
|ZP−ZC | can reduce angular errors, and ZC seems to be better
on the near side (ZC < ZP) than on the far side (ZC > ZP).
Besides, decreasing |ZG − ZP| yields smaller angular errors,
and ZG is better on the far side (ZG > ZP) than on the
near side (ZG < ZP). These results are consistent with the

FIGURE 10. Gaze estimation errors for the method using one mapping
surface on the Mansouryar dataset [14] with different calibration
combinations. Note that it is not displayed when the angular error is
larger than 5◦. (a) Combinations using different additional calibration
points and the same third plane (ZP = 1.5 m) as the calibration plane.
(b) Combinations when |ZP − ZC | is large.

FIGURE 11. The impact of the number of additional calibration points on
gaze estimation when ZP = 1 m, and ZC = 2 m. Bars show mean errors
across all test planes; error bars indicate standard deviations.

theoretical analysis in Section IV-B. When |ZP−ZC | is large,
Fig. 10 (b) shows that the average errors of four combinations
are approximate, but the standard deviation when (ZP > ZC )
is larger than that when (ZP < ZC ), because the angular
error before the mapping surface is larger than that after the
mapping surface. Overall, the optimal combination is ZP = 1
m and ZC = 2 m, whose error is 1.64◦ ± 0.75◦.

To investigate the effect of the number of additional cal-
ibration points on gaze estimation, we used all 25 cali-
bration points on a calibration plane instead of only two
points. Fig. 11 shows that there is no significant difference
between these two situations (paired-t test: tstat = −2.075,
p = 0.058).

B. EVALUATION OF THE METHOD WITH TWO MAPPING
SURFACES
Fig. 12 shows that the angular error is smallest between the
two mapping surfaces (Z1 < ZG < Z2), followed by after
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FIGURE 12. Gaze estimation errors for the method using two mapping
surfaces on the Mansouryar dataset [14] with different combinations of
two calibration planes. Note that it is not displayed when the angular
error is larger than 5◦.

TABLE 2. Average errors and standard deviations for the method using
two mapping surfaces on the Mansouryar dataset [14] using different
combinations of two calibration planes.

the second mapping surface (ZG > Z2), and then before the
first mapping surface (ZG < Z1). These results are consistent
with the theoretical analysis in SectionV.Overall, the optimal
combination is Z1 = 1 m and Z2 = 2 m, whose error is
1.48◦±0.83◦ (see Table 2). Compared to the method with one
mapping surface, this method has better accuracy and similar
precision. We can conclude that the assumption of the eyeball
pseudo-center is conditional and affects gaze estimation.

C. COMPARISON WITH OTHER METHODS
We implemented and evaluated the following baseline meth-
ods of 3D gaze estimation using multiple calibration planes:

• 2D-to-2D Mapping: As a basic baseline method,
the method of 2D-to-2Dmapping [14] employs multiple
calibration planes to calibrate the regression relation-
ship between pupil features and 2D mapping points. To
achieve a comparison of the same conditions, we cali-
brated Equation (3) using the first and fifth calibration
planes.

• Fixed Eyeball Center (FEC): Abbott et al. [10] used a
fixed eyeball pseudo-center and a mapping surface to
estimate the gaze direction. We used the fifth plane for
surface calibration, and the fixed eyeball center was set
to (0, 0,−0.05m) empirically.

• Nonlinear Optimization: The method recently proposed
by Su et al. [13] used the constrained nonlinear opti-
mization to calculate multiple parameters, including
the eyeball pseudo-center and the mapping parameters
between pupil features and gaze vectors. We used the
first and the fifth planes for calibration. The initial
3D eyeball center was computed by the 2D eyeball
center and the intrinsic matrix of the scene camera.

The constrained search range of the eyeball center was
±[0.05m, 0.05m, 0.02m]. Due to the limitation of cali-
bration points, cross-validated input-space partition was
not used.

Gaze estimation results and comparison on two datasets
are shown in Table 3 and Table 4. The proposed method with
twomapping surfaces achieves the best accuracy, followed by
the proposed method with one mapping surface. The method
of 2D-to-2Dmapping [14] has the largest error since it cannot
deal with the parallel error. The method with nonlinear opti-
mization [13] has the smallest standard deviation of the error.
Compared to the FECmethod [10], the proposedmethodwith
one mapping surface adds two additional calibration points,
and the effect on reducing errors is significant. Compared to
the method with nonlinear optimization [13], the proposed
method with two mapping surfaces has the same calibra-
tion procedure but better accuracy. Besides, as targets may
lie within different depth ranges, we evaluated all methods
in different usage ranges, including 0.5 m, 1 m, and 2 m.
Fig. 13 shows that all methods have better accuracy in a
small range than in a large range, and the method with two
mapping surfaces has better accuracy cross usage ranges than
other methods. We can conclude that the proposed model has
improved accuracy in both small and large usage range.

FIGURE 13. Gaze estimation error in different usage ranges. The
horizontal coordinate represents the depth interval of the target object.
Bars show the mean angular error; error bars indicate standard
deviations; numbers on the bottom are the mean angular error in
degrees. Top: The usage ranges of the Elmadjian dataset [24] and the
Mansouryar dataset [14] are 2 m and 1m, respectively. Bottom: The usage
range of 0.5 m on the Mansouryar dataset [14], which means that only
three planes are used for calibration and testing.

Fig. 14 shows correlation coefficients between extrapola-
tion errors and gaze estimation methods on the two datasets.
Gaze direction estimation methods with multiple calibration
planes are relevant, implying their performances are limited
by the same underlying factors. For a small usage range,
the extrapolation error is the primary error source due to
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TABLE 3. Comparison with other methods on the Mansouryar dataset [14].

TABLE 4. Comparison with other methods on the Elmadjian dataset [24]. For the valid six subjects, two eyes are evaluated respectively. ‘‘L’’ and ‘‘R’’
represent the left and right eye.

FIGURE 14. Correlation coefficients between extrapolation errors and
gaze estimation methods on the two datasets.

the strong correlation between extrapolation errors and the
proposed methods (see Fig. 14 (a)). In contrast, for a large
usage range, the parallel error seems to be the primary error
source due to the weak correlation between extrapolation
errors and the proposed methods (see Fig. 14 (b)).

VII. CONCLUSION
In this paper, we propose a regression-based 3D gaze esti-
mation model with high accuracy using a simple, easily

calibrated setup in the head-mounted eye tracker. The key
idea is to analyze and leverage the implicit assumption of the
eyeball pseudo-center. The simulation of visual axes shows
that visual axes intersect in a small region rather than at a
point, implying the assumption is approximate. The sensi-
tivity analysis of the eyeball pseudo-center reveals that the
assumption is acceptable only if the error of the estimated
eyeball pseudo-center is small, and the distance between
the fixation target and the mapping surface is small. Hence,
we propose a gaze direction estimationmethodwith onemap-
ping surface that satisfies the assumption by a high-quality
calibration of the eyeball pseudo-center, which only requires
two additional calibration points outside themapping surface.
Furthermore, we propose a gaze direction estimation method
with two mapping surfaces that replaces the assumption with
another mapping surface. Experimental results indicate that
although the assumption of the eyeball pseudo-center is met,
the accuracy of gaze estimation is still affected, compared
to the gaze estimation method that replaces the assump-
tion. Besides, the proposed method with two mapping sur-
faces has higher accuracy than state-of-the-art methods. Since
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extrapolation errors are the basis of error analysis of the
proposed model, we should reduce extrapolation errors in
further studies. Besides, the robustness of the proposedmodel
should be discussed and improved.
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