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ABSTRACT In a non-cooperative context, the receiver has no information about communication parameters;
therefore, it must perform communication forensics, which is the process of identifying what information it
can from the collected data. This paper proposes a novel method for parameter estimation of synchronous
scramblers in direct sequence spread spectrum systems. For the estimation, we use the bitwise relations
inherent in the scrambling sequence and the repetitive patterns by the spreading code inherent in the
scrambled sequence. Regarding computational complexity, previous studies of parameter estimation of
synchronous scramblers require exponential computational complexities. Unlike the existing methods, our
proposed method can practically estimate the feedback polynomial and initial state of the synchronous
scrambler with polynomial computational complexity.

INDEX TERMS Linear feedback shift register, spread spectrum, scrambler, estimation.

I. INTRODUCTION
Communication forensics, which identify information from
collected data by blind estimation of communication param-
eters, make essential contributions to both cooperative and
non-cooperative contexts, such as wireless mobile commu-
nications, cognitive radios, and surveillance systems [1].
Particularly, blind estimation of communication parameters
has played amore important role in non-cooperative contexts,
such as spectrum surveillance systems and cognitive radio
systems, where the receiver lacks all information about com-
munication parameters. The receiver must therefore perform
communication forensics. This is a tremendous work, and the
estimation of even a single communication parameter is very
difficult.

Research on the blind estimation of communication
parameters in non-cooperative contexts has been separately
conducted in its various aspects, including but not lim-
ited to source coding [2]–[6], channel coding [7]–[10],
interleaving [11]–[17], modulation [18]–[24], spreading
sequence [25]–[29], and scrambling [30]–[37]. In this paper,
we focus on the estimation of scrambling parameters.

The direct sequence spread spectrum (DSSS) is widely
used in commercial and military communication systems for
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its features such as anti-multipath and anti-jamming [38]–[42].
DSSS systems commonly employ scramblingwith amaximal
length sequence (m-sequence), which is generated by a linear
feedback shift register (LFSR) having a period 2n − 1,
where n is the degree of the feedback polynomial of the
LFSR. A synchronously scrambled sequence is generated by
modulo-2 addition of an input sequence and a scrambling
sequence, generated by an LFSR, to the scrambler.

To recover a scrambled DSSS signal in a non-cooperative
context, the parameters used for scrambling must first be
blindly estimated on the receiver side. When a scrambler uses
an m-sequence, the enormous number of candidates for the
feedback polynomials and the initial state make parameter
estimation a very challenging task. Scrambler parameter esti-
mation is a favorite subject of inquiry [30]–[37]. Algorithms
relevant to blind estimation of scrambler parameters include
the following.

Under the assumption of a biased input sequence, [30]–[33]
estimated scrambler parameters, the feedback polynomial
and the initial state of the scrambler, by using the statisti-
cal difference between a truly random and a biased input
sequence; [30] estimated scrambler parameters based on
searching for sparse multiples of the feedback polynomial
with the degree of the sparse multiples; [31]–[33] improved
on the algorithm of [30]; [31] proposed a blind reconstruction
method with the estimation of bias value; [32] estimated
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the scrambler by adding a boundary condition to the upper
estimation of standard deviation and considering flipped bits;
and [33] proposed an improved algorithm using a statistical
variable and the median value estimation.

Instead of relying on the bias, [34], [35] presented
algorithms for estimation of scrambler parameters by using
dual words of the channel encoder: [34] studied the problem
of reconstruction of the LFSR in a synchronous scrambler
placed after a channel encoder by using the orthogonal prop-
erty of dual words; and [35] proposed a scheme to improve
the detection capability of [34] by using a mean value and
matched filter.

Those methods of estimation in [30]–[35] that discover
sparse multiples of the feedback polynomial require a full
search of the possible sparse multiples. Their computa-
tional complexity therefore increases exponentially with the
scrambler parameters.

References [36] and [37] estimated the parameters of a
synchronous scrambler in DSSS systems by using a triple
correlation function (TCF) and eigenvalue decomposition
(EVD); [36] investigated the properties of TCF and estimated
scrambling sequence using TCF. To find the triple correla-
tion value, [36] requires a full search for all possible inte-
ger pairs of

{
(p, q) ∈ {1, · · · , 2n − 1}2

∣∣∣ p < q
}
, therefore,

its computational complexity increases exponentially with
regard to the degree of the feedback polynomial n; [37] used
EVD to estimate the parameters of a synchronous scrambler,
making a matrix whose column length is the period of the
scrambling sequence. Therefore, EVD of the matrix also
needs exponential computational complexity. In summary,
the previous studies [30]–[37] blindly estimate the scrambler
parameters; however, their computational complexities all
increase exponentially, regardless of the methods used.

In this paper, we propose a novel method for parameter
estimation of a synchronous scrambler in DSSS systems.
Unlike previous studies having exponential computational
complexity, our proposed method is based not on a
full search nor huge matrix computation, but on the
bitwise linear relations inherent in the scrambling sequence
itself, and therefore has merely polynomial computational
complexity.

For parameter estimation of a synchronous scrambler with
an m-sequence in DSSS systems we reconstruct the scram-
bling sequence with the following properties: the repetitive
patterns inherent in the scrambled sequence as a conse-
quence of the spreading code used in the DSSS system, the
well-known ‘‘shift and add property’’ of the m-sequence, and
the linear relationsmade by the feedback polynomial between
the bits in the m-sequence used for scrambling. We then show
the estimation performance in terms of computational com-
plexity, the required minimum scrambled sequence length,
execution time, and detection probability.

This paper is organized as follows: Section II summarizes
the system model. Section III first shows how to obtain
the scrambling sequence by removing the message and the

FIGURE 1. Simplified system model for the spreader and scrambler.

spreading code in the scrambled sequence. And we then
present the algorithm for estimating the feedback polynomial
and the initial state of the scrambler from the obtained scram-
bling sequence. Section IV presents estimation performance
of the algorithm and Section V presents conclusions.

II. SYSTEM SETUP
Fig. 1 shows a typical spreader and scrambler in a DSSS
system, where we assume a synchronous scrambler with an
m-sequence that is the output of the LFSR as a scrambling
sequence (pl)l≥0. In Fig. 1, a message bit mt is spread into
(yi)

kt+(k−1)
i=kt by an arbitrary k-bit spreading code

(
wj
)k−1
j=0 ,

that is
ykt+j = mt ⊕ wj, for 0 ≤ j ≤ k − 1 (1)

where ⊕ denotes the modulo-2 addition (exclusive-or).
Note that all the k bits in the spreading code

(
wj
)k−1
j=0 are

modulo-2 added with the message bitmt . Therefore, the input
sequence of the synchronous scrambler (yl)l≥0 consists of
repetitions of the spreading code

(
wj
)k−1
j=0 or

(
wj ⊕ 1

)k−1
j=0 ,

since a sequence (yi)
kt+(k−1)
i=kt of length k is a form of spreading

code or its complementary form according to the message
bit mt .
Adding a bit yl in the scrambler input sequence (yl)l≥0 to

a bit pl in the scrambling m-sequence (pl)l≥0 yields a bit sl
in the scrambled sequence (sl)l≥0, i.e.,

sl = yl ⊕ pl = mt ⊕ wj ⊕ pl for l = kt + j. (2)

If we obtain a scrambling sequence by removing the
message bit mt and the spreading code bit wj in (2),
it is noteworthy that it is possible to estimate the scram-
bler parameters for generating pl by using the well-known
Berlekamp-Massey (BM) algorithm [43].

In the following sections, we propose and analyze an
algorithm to estimate the feedback polynomial and the initial
state of LFSR, obtaining pl by eliminating mt and wj in (2).

III. PROPOSED ALGORITHM
A. CANCELLATION OF THE INPUT SEQUENCE OF THE
SCRAMBLER
We investigate how to remove the message bit mt and
spreading code

(
wj
)k−1
j=0 from the scrambled sequence (sl)l≥0

to obtain a scrambling sequence (pl)l≥0 in (2). Removal relies
on the repetitive patterns by the spreading code inherent in the
scrambled sequence.
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We first show how to remove the message bit. The
sequence (yi)

kt+(k−1)
i=kt , which is generated by adding the mes-

sage bit mt to the spreading code
(
wj
)k−1
j=0 , is an input to

the scrambler as in (2). In this case, if we take the modulo-
2 addition to the adjacent bits ykt+j and ykt+(j+1), which are
generated from the same message bit mt , we have

ykt+j ⊕ ykt+(j+1) =
(
mt ⊕ wj

)
⊕
(
mt ⊕ wj+1

)
= wj ⊕ wj+1 for 0 ≤ j ≤ k − 2. (3)

The message bit mt is removed in (3).
On the other hand, for j = k − 1, the message bits mt

and mt+1 are not removed when we perform the modulo-
2 addition on two adjacent bits ykt+j and ykt+(j+1) as follows:

ykt+j ⊕ ykt+(j+1) = ykt+(k−1) ⊕ yk(t+1)
= (mt ⊕ wk−1)⊕ (mt+1 ⊕ w0)

for j = k − 1. (4)

If the message bits mt and mt+1 are involved as in (4), then a
scrambling sequence cannot be obtained. We will show how
to remove the message bits mt and mt+1 remaining in (4) in
Section III(B).

The process for removing the spreading code is as follows.
As in (1), a bit wj is modulo-2 added to the message bit mt
with period k . In this case, if two bits ykt+j and yk(t+1)+j
are modulo-2 added, which are k bits in position apart and
generated by the same spreading code bit wj, then we have

ykt+j ⊕ yk(t+1)+j =
(
mt ⊕ wj

)
⊕
(
mt+1 ⊕ wj

)
= mt ⊕ mt+1.

(5)

The spreading code bit wj is removed in (5).
From (3) and (5), we see that, to obtain the scrambling

sequence (pl)l≥0 by removing the message bits and the
spreading code bits in (2), we need 4 input sequence bits.
This is one of the key ideas in this paper. By taking modulo-
2 additions with the 4 bits of yl, yl+1, yl+k , and yl+(k+1) for
l = kt + j (0 ≤ j ≤ k − 2), we obtain

yl ⊕ yl+1 ⊕ yl+k ⊕ yl+(k+1)
= ykt+j ⊕ ykt+(j+1) ⊕ yk(t+1)+j ⊕ yk(t+1)+(j+1) = 0

for l = kt + j (0 ≤ j ≤ k − 2). (6)

Note that the message bits mt and mt+1 and the spreading
code bits wj and wj+1 are simultaneously removed in (6).
Similarly, we define ul and p̃l as modulo-2 additions

with the 4 bits of sl, sl+1, sl+k , sl+(k+1) for the scrambled
sequence and pl, pl+1, pl+k , pl+(k+1) for the scrambling
sequence, respectively, as

ul = sl ⊕ sl+1 ⊕ sl+k ⊕ sl+(k+1) for l = kt + j (7)

p̃l = pl ⊕ pl+1 ⊕ pl+k ⊕ pl+(k+1) for l = kt + j. (8)

Then, substituting (2) and (6) into (7), yield

ul = sl ⊕ sl+1 ⊕ sl+k ⊕ sl+(k+1)
= pl ⊕ pl+1 ⊕ pl+k ⊕ pl+(k+1)
= p̃l for l = kt + j (0 ≤ j ≤ k − 2) . (9)

From (9), we see that ul is equal to p̃l , and this will play an
important role in estimation of scrambler parameters.

Note that, (̃pl)l≥0 obtained in (9) is another shifted version
of the scrambling m-sequence (pl)l≥0 due to the ‘‘shift and
add property’’ of them-sequence. Consequently, the feedback
polynomial of the LFSR for (̃pl)l≥0 is the same as that of
(pl)l≥0.

Eq. (9) is valid for l = kt + j (0 ≤ j ≤ k − 2); however,
it is not guaranteed for l = kt + j (j = k − 1). Therefore,
the maximum bit length of the possible consecutive sequence
of p̃l that can be obtained from (9) is k − 1. Thus, when
the degree of the feedback polynomial of the scrambler is n,
if k − 1 ≥ 2n, then the feedback polynomial of the scrambler
can be estimated by using the BM algorithm directly from (9).
On the other hand, if k − 1 < 2n, it is difficult to obtain
the feedback polynomial of the scrambler by using the BM
algorithm. In the following subsection, to solve this problem,
we propose a method to obtain the consecutive sequence
(̃pl)l≥0 for l = kt + j (0 ≤ j ≤ k − 1).

B. ESTIMATION OF THE FEEDBACK POLYNOMIAL OF THE
LFSR FOR SYNCHRONOUS SCRAMBLER
In subsection III(A), the message bits mt and mt+1 are
removed for l = kt + j (0 ≤ j ≤ k − 2) in (3); however, they
are left in place for l = kt + j (j = k − 1) in (4). Therefore,
the consecutive scrambling sequence (̃pl)l≥0 obtained in (9)
is valid for l = kt + j (0 ≤ j ≤ k − 2). In this subsec-
tion, to obtain the scrambling sequence of (̃pl)l≥0 valid for
l = kt + j (0 ≤ j ≤ k − 1), we propose an additional method
to (9) by using the linearity among the scrambling sequence
bits.

To do this, we define decimation and show the linear
relation among the scrambling sequence bits in Theorem 1.
Definition 1 [44]: Let (ul)l≥0 and (vl)l≥0 be the sequences

and d be the positive integer. We define the d-bit decimated
sequence (vl)l≥0 of (ul)l≥0 as vl = udl .
Theorem 1: Let n be the degree of the primitive

feedbackpolynomial of LFSR that generates the sequence
(pi)i≥0, and (pki)i≥0 be the k-bit decimated sequence of
(pi)i≥0. If the degree of a minimal polynomial that generates
(pki)i≥0 is n, then the bits of the sequence (pi)i≥0 are rep-
resented as the linear combination of

(
p0, pk , · · · , p(n−1)k

)
with unique linear relation coefficients en, en−1, · · · , e1 ∈
{0, 1} by

pi+1 = enpi ⊕ en−1pi+k ⊕ · · · ⊕ e1pi+(n−1)k . (10)

The proof of Theorem 1 is in Appendix A. Eq. (10) of
Theorem 1 is another key idea in the paper. To obtain the
scrambling sequence of (̃pl)l≥0 valid for l = kt + j (0 ≤
j ≤ k − 1), that is, to obtain the scrambling sequence bit p̃l in
place for l = kt + j (j = k − 1), we have to obtain the linear
relation coefficients in (10).

First, we set the system of linear equations about the linear
relation coefficients to obtain the linear relation coefficients
en, en−1, · · · , e1 ∈ {0, 1}. If all the subscripts of p̃l bits in
(10) are in the range of l = kt + j (0 ≤ j ≤ k − 2), then,
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the unknowns in (10) will be only the linear relation coef-
ficients because we can obtain the bits p̃l for l = kt + j (0 ≤
j ≤ k − 2) from (9).
In this case, by substituting p̃kt for pi in (10), we can

generate the linear equations about the linear relation
coefficients en, en−1, · · · , e1 ∈ {0, 1} as follows:

p̃kt+1 = eñpkt ⊕ en−1̃pk(t+1) ⊕ · · · ⊕ e1̃pk(n+t−1). (11)

Since all the subscripts l of p̃l in (11) are in the range of l =
kt + j (0 ≤ j ≤ k − 2), substituting (9) into (11) yields

ukt+1 = enukt ⊕ en−1uk(t+1) ⊕ · · · ⊕ e1uk(t+n−1). (12)

There are n unknowns en, en−1, · · · , e1 ∈ {0, 1} in (12)
because ul can be obtained by modulo-2 additions with the
4 bits of sl, sl+1, sl+k , sl+(k+1) as in (7). These unknowns can
be determined by solving the system of n linear equations.

Finally, by substituting p̃l in (9), which is equal to ul for
l = kt + j (0 ≤ j ≤ k − 2), and the obtained value of
en, en−1, · · · , e1 ∈ {0, 1} in (12) into (10), we can calculate
the p̃l for l = kt + j (j = k − 1) with
p̃kt+(k−1) = enukt+k−2 ⊕ en−1ukt+2k−2 ⊕ · · · ⊕ e1ukt+nk−2

for t ≥ 0. (13)

Note that, using (9) and (13), we can have the consecutive
scrambling sequence of (̃pl)l≥0 for l = kt+j (0 ≤ j ≤ k−1).
By using the obtained scrambling sequence of (̃pl)l≥0, we can
obtain the feedback polynomial of the scrambler with the
BM algorithm, where we need a 2n-bit length scrambling
sequence of (̃pl)l≥0.

Using the above results, we summarize the estimation of
the feedback polynomial of LFSR as the following three
steps.

1) By applying (10) into the scrambling sequence (̃pl)l≥0
for l = kt+j (0 ≤ j ≤ k−2), determine the coefficients
en, en−1, · · · , e1 ∈ {0, 1}.

2) By using the obtained linear relation coefficients in
Step 1, and ul = p̃l for l = kt + j (0 ≤ j ≤ k − 2),
find p̃l for l = kt + j (j = k − 1).

3) By applying (̃pl)l≥0 into the BM algorithm, estimate
the feedback polynomial of LFSR.

C. ESTIMATION OF INITIAL STATE OF THE LFSR FOR
SYNCHRONOUS SCRAMBLER
Now, we estimate the initial state of the LFSR, the other of the
scrambler parameters. Let cnxn+cn−1xn−1+· · ·+c1x+1 be
the feedback polynomial obtained in Section III(B). Then, the
bitwise relations in the scrambling sequence can be expressed
as
pl+n = cnpl ⊕ cn−1pl+1 ⊕ · · · ⊕ c1pl+n−1 for l ≥ −n

(14)

where c1, · · · , cn ∈ {0, 1} are the coefficients of the feedback
polynomial.

Note that there is a linear relation between the scrambling
sequence and the initial state because the initial state becomes
the part of the scrambling sequence. After constructing a

system of linear equations by using the linear relation, it is
possible to estimate the initial state by solving the system of
linear equations with Gaussian elimination.

We propose Theorem 2, and the approach to obtain the
initial state follows from the theorem.
Theorem 2: For (pl)l≥0, which is the output sequence of an

LFSR, each bit pl is represented as the linear combination of
(p−1, p−2, · · · , p−n), which is the initial state of the LFSR,
as follows:

pl = e(l)n p−n ⊕ e
(l)
n−1p1−n ⊕ e

(l)
n−2p2−n ⊕· · ·⊕ e

(l)
1 p−1. (15)

Note that,
(
e(l+1)1 , e(l+1)2 , · · · , e(l+1)n

)
∈ {0, 1}n, which are

the coefficients of representing pl+1 as the linear combination
of (p−1, p−2, · · · , p−n), are unique for a given l and uniquely
determined from

(
e(l)1 , e

(l)
2 , · · · , e

(l)
n

)
∈ {0, 1}n, which are

the coefficients of representing pl as the linear combination
of (p−1, p−2, · · · , p−n) as follows:

e(l+1)i = e(l)i+1 ⊕ e
(l)
1 ci for 1 ≤ i ≤ n, e(l)n+1 = 0. (16)

To the best of our knowledge, Theorem 2 has not been
reported in the literature. We give a proof of Theorem 2 in
Appendix B. Theorem 2 is one of the clues for estimation of
the initial state of LFSR.

We set the system of linear equations for the initial state
by using Theorem 2. Note that we have already obtained the
coefficients c1, · · · , cn ∈ {0, 1} of the feedback polynomial
in Section III(B). When l = −n, (14) becomes

p0 = cnp−n ⊕ cn−1p1−n ⊕ · · · ⊕ c1p−1. (17)

When l = 0, (15) becomes
p0 = e(0)n p−n ⊕ e

(0)
n−1p1−n ⊕ e

(0)
n−2p2−n ⊕· · ·⊕ e

(0)
1 p−1. (18)

We see that, from (17) and (18),
(
e(0)1 , e(0)2 , · · · , e(0)n

)
∈

{0, 1}n, which are the coefficients representing p0 as the linear
combination of the initial state, satisfy the condition:

e(0)i = ci for 1 ≤ i ≤ n. (19)

For any integer l, we can obtain
(
e(l)1 , e

(l)
2 , · · · , e

(l)
n

)
∈

{0, 1}n, which are the coefficients representing pl with the
initial state (p−1, p−2, · · · , p−n) in (15), by mathematical
induction from (16) and (19).

Recall that in (9), when l = kt + j (0 ≤ j ≤ k − 2), ul =
sl⊕sl+1⊕sl+k⊕sl+(k+1) = pl⊕pl+1⊕pl+k⊕pl+(k+1) holds.
Therefore, by substituting (15) into (9) with the obtained
coefficients

(
e(l)1 , e

(l)
2 , · · · , e

(l)
n

)
∈ {0, 1}n, we can obtain the

linear equations about (p−1, p−2, · · · , p−n):
ul = pl ⊕ pl+1 ⊕ pl+k ⊕ pl+(k+1)

=

(
e(l)n p−n ⊕ e

(l)
n−1p1−n ⊕ e

(l)
n−2p2−n ⊕ · · · ⊕ e

(l)
1 p−1

)
⊕

(
e(l+1)n p−n ⊕ e

(l+1)
n−1 p1−n ⊕ e

(l+1)
n−2 p2−n

⊕ · · · ⊕ e(l+1)1 p−1
)

⊕

(
e(l+k)n p−n ⊕ e

(l+k)
n−1 p1−n ⊕ e

(l+k)
n−2 p2−n
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FIGURE 2. Block diagram of the proposed method.

⊕ · · · ⊕ e(l+k)1 p−1
)

⊕

(
e(l+(k+1))n p−n ⊕ e

(l+(k+1))
n−1 p1−n ⊕ e

(l+(k+1))
n−2 p2−n

⊕ · · · ⊕ e(l+(k+1))1 p−1
)

=

(
e(l)n ⊕ e

(l+1)
n ⊕ e(l+k)n ⊕ e(l+(k+1))n

)
p−n

⊕

(
e(l)n−1 ⊕ e

(l+1)
n−1 ⊕ e

(l+k)
n−1 ⊕ e

(l+(k+1))
n−1

)
p1−n

⊕ · · · ⊕

(
e(l)1 ⊕ e

(l+1)
1 ⊕ e(l+k)1 ⊕ e(l+(k+1))1

)
p−1

for l = kt + j (0 ≤ j ≤ k − 2) . (20)

Since the unknown in (20) is only the initial state
(p−1, p−2, · · · , p−n), by using it, we construct a system of
linear equations for finding the initial state. We set the system
of n linear equations from (20) and solve them by using
Gaussian elimination. We then obtain (p−1, p−2, · · · , p−n),
the initial state of the scrambler. Note that there is a rare case
where the solution is not unique because of the dependency
of the equations. In this case, we addmore linear equations by
(20) into the system of linear equations, so that the resulting
system has a unique solution.

D. ESTIMATION OF THE SYNCHRONOUS SCRAMBLER
We present the results of the previous subsections as the block
diagram of the proposed estimation process in Fig. 2, and
finally summarize the estimation of synchronous scrambler
parameters, the feedback polynomial and the initial state,
in Algorithm 1.

In Step 3 of Algorithm 1, to get the unique linear relation
coefficients en, en−1, · · · , e1 ∈ {0, 1}, the number of input
bits of Algorithm 1 should be at least (2n− 1) k + 2.
Tomake the scrambled sequence length of (sl)l≥0 longer than
(2n− 1) k + 2, we have to set nTh to the upper bound of n,
and set the minimum scrambled sequence length minlen to
(2nTh − 1) k+2. The reason for setting the minimum scram-
bled sequence length to (2nTh − 1) k+ 2 will be explained in
Section IV.

Here is a simple example to show how Algorithm 1 works.
Example 1) We assume the following:

Algorithm 1 Estimation of the Synchronous Scrambler in
Direct Sequence Spread Systems
Input:
(sl)l≥0 : spread sequence longer than minlen bits
k: spreading code length
nTh : upper bound of the feedback polynomial degree

Output:
P (x) : feedback polynomial
(p−n, p1−n, · · · , p−1) : initial state
1. s′l ← sl ⊕ sl+k
2. ul ← s′l ⊕ s

′

l+1
3. From (12), generate and solve the system of lin-

ear equations to compute linear relation coefficients
en, en−1, · · · , e1 ∈ {0, 1}

4. Compute p̃kt+(k−1) for t ≥ 0 according to (13)
5. Compute P (x) by using the BM algorithm for (̃pl)l≥0
6. Set the system of linear equations using (20) and get

the initial state by using Gaussian elimination

The feedback polynomial of the scrambler:
P (x) = x5 + x3 + 1

The initial state of the scrambler: (01100)
Spreading code: (110)
Message sequence: (011 100 011 11. . . )
Input of the scrambler: message spread by the
spreading code

nTh : 5

In this case, the scrambled sequence (sl)l≥0, which is made
by the modulo-2 addition of the input sequence (yl)l≥0 and
the scrambling sequence (pl)l≥0 becomes
(sl)l≥0 = (yl)l≥0 ⊕ (pl)l≥0

= (110110001001110110110001001001 . . .)

⊕ (111110001101110101000010010110 . . .)

= (001000000100000011110011011111 . . .).

These are the steps of Algorithm 1:
1.(
s′l
)
l≥0 = (sl)l≥0 ⊕ (sl+3)l≥0
= (yl ⊕ yl+3)l≥0 ⊕ (pl ⊕ pl+3)l≥0
= (000111000111000000111000000 . . .)

⊕ (001111100011011101010000100 . . .)

= (001000100100011101101000100 . . .)

2.

(ul)l≥0 =
(
s′l
)
l≥0 ⊕

(
s′l+1

)
l≥0

= ((yl ⊕ yl+3)⊕ (yl+1 ⊕ yl+4))l≥0 ⊕ ((pl ⊕ pl+3)

⊕ (pl+1 ⊕ pl+4))l≥0
= (00100100100100000100100000 . . .)

⊕ (01000010010110011111000110 . . .)

= (01100110110010011011100110 . . .)
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3.

M =


u0 u3 u6 u9 u12
u3 u6 u9 u12 u15
u6 u9 u12 u15 u18
u9 u12 u15 u18 u21
u12 u15 u18 u21 u24

∣∣∣∣∣∣∣∣∣∣
u1
u4
u7
u10
u13



=


0 0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 0 1

∣∣∣∣∣∣∣∣∣∣
1
0
0
0
0


% Generation of the matrix M from (12)

M ′ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣
0
1
1
0
0


% Computation of M ′ by using Gaussian elimination

(e5, e4, e3, e2, e1) = (0, 1, 1, 0, 0)

p̃t+1 = 0 · p̃t ⊕ 1 · p̃t+k ⊕ 1 · p̃t+2k ⊕ 0 · p̃t+3k ⊕ 0 · p̃t+4k
= p̃t+k ⊕ p̃t+2k (21)

% Derivation of (21) from the linear relation coefficients
(e5, e4, e3, e2, e1).
4. (̃pl)l≥0 = (010 000 100 10. . . )
% Computation of the underlined p̃kt+(k−1) by (21) from

the linear relation coefficients (e5, e4, e3, e2, e1).
5. P (x) = x5 + x3 + 1
% Computation of the feedback polynomial of the

scrambler by using the BM algorithm for (̃pl)l≥0.
6. p−5 = 0, p−4 = 1, p−3 = 1, p−2 = 0, p−1 = 0 from

u0 = 0 = (0, 0, 0, 1, 1) · (p−5, p−4, p−3, p−2, p−1)T

u1 = 1 = (1, 0, 1, 0, 1) · (p−5, p−4, p−3, p−2, p−1)T

u3 = 0 = (0, 1, 1, 1, 1) · (p−5, p−4, p−3, p−2, p−1)T

u4 = 0 = (1, 0, 0, 1, 1) · (p−5, p−4, p−3, p−2, p−1)T

u6 = 1 = (1, 1, 0, 1, 0) · (p−5, p−4, p−3, p−2, p−1)T

u7 = 0 = (0, 1, 1, 0, 1) · (p−5, p−4, p−3, p−2, p−1)T ,
0 0 0 1 1
1 0 1 0 1
0 1 1 1 1
1 0 0 1 1
1 1 0 1 0
0 1 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

0
1
0
0
1
0



G.E .
−→


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

0
1
1
0
0
0

 .

TABLE 1. Computational complexity of algorithm 1 for bitwise operation.

% Generation of the system of linear equations for the
initial state (p−5, p−4, p−3, p−2, p−1) and solution of the
initial state by using Gaussian elimination.

Note that from the results of Example 1, we obtain the
feedback polynomial P (x) = x5+ x3+1 and the initial state
of the scrambler (01100).

IV. PERFORMANCE OF THE ALGORITHM
In this section, we investigate the estimation performance of
the proposed algorithm in terms of computational complexity,
the required minimum scrambled sequence length, execution
time, and the detection probability.

Wefirst examine the computational complexity, the required
minimum scrambled sequence length, and execution time
of Algorithm 1 for the error-free case. Then we apply the
Algorithm 1 to a noisy channel with statistical technique and
show the detection probability in an additive white Gaussian
noise (AWGN) channel.

Regarding the computational complexity of Algorithm 1,
the numbers of bitwise operations in Step 1 and Step 2,
are determined by the required minimum number of bits to
generate a matrix for Gaussian elimination in Step 3. The
number of bitwise operations in Step 4 is calculated by the
required minimum input length 2nTh for the BM algorithm in
Step 5, where the BM algorithm has a complexityO

(
n2Th
)
for

input sequence length 2nTh in Step 5. For Step 3 and Step 6,
the computational complexities becomeO

(
n3Th
)
for nTh×nTh

matrix by Gaussian eliminations. We summarize the compu-
tational complexities of each step and the total computational
complexity for the bitwise operations of Algorithms 1 in
Table 1, where b·c is the floor function.

Table 1 shows that the proposed algorithm requires
O
(
2n3Th + 11n2Th

)
bitwise operations. Unlike conventional

methods having exponential computational complexity,
the proposed algorithm can estimate the feedback polynomial
and the initial state of a scrambler effectively with polynomial
computational complexity, because the algorithm is based
not on a full search for sparse multiples of the feedback
polynomial, nor on huge matrix computation for EVD, but
on the bitwise relations inherent in the scrambling sequence
itself.

For a practical application, the minimum length of a
scrambled sequence required to estimate the scrambler
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FIGURE 3. Execution time of Algorithm 1.

should be also considered. The required minimum length
of a scrambled sequence for Algorithm 1 is determined by
considering the BM algorithm in Step 5. To obtain 2nTh-bit
input for the BM algorithm in Step 5, we should generate a
2nTh-bit sequence of (̃pl)l≥0 in Step 4. For this, in Step 3,
we need to generate and solve the system of linear equa-
tions from (12) with at least (2nTh − 2) k + 2 bits. To get
(2nTh − 2) k + 2-bit input for Step 3, we need a scrambled
sequence of (2nTh − 1) k + 2-bit length in Step 1. Therefore,
for Algorithm 1, the required minimum scrambled sequence
length is (2nTh − 1) k + 2 bits.

To examine the effectiveness of the proposed algorithm,
we execute simulations with an Intelr CoreTMi7-6700K
CPU of 4.00GHz and 64 GB RAM, and depict execution
time in Fig. 3. The x-axis and y-axis represent the degree of
feedback polynomial n and time (second), respectively, and
execution time is measured by the average time of 10 000 runs
for m-sequence of length 25 − 1 bits as a spreading code.
In Fig. 3, we see that the proposed algorithm can estimate
the feedback polynomial and initial state of the synchronous
scrambler in 0.007 second even when the degree of feedback
polynomial n is 50.

We also implemented and examined the algorithm for the
various LFSR parameters and spreading codes: the spreading
codes such as the m-sequence, Gold code [45], Kasami code
[46], Walsh code [47], and OVSF code [48], and the LFSR
parameters such as the primitive polynomials up to a degree
of 50.

The proposed algorithm can be applied to a noisy chan-
nel with a statistical technique. If there are errors in the
input sequence to the BM algorithm in Step 5 due to noise,
it becomes highly probably that the estimated degree of
the output feedback polynomial will be close to nTh, which
is the upper bound of the feedback polynomial degree in
the algorithm. Otherwise, the degree of the output feedback
polynomial becomes n, where n < nTh. Therefore, in a
noisy channel, we can estimate the feedback polynomial by

FIGURE 4. Detection probability versus BER for n in AWGN channel when
L = 1000.

repeating the algorithm L times and by comparing degrees of
the output feedback polynomials where L is the number of
repetitions.

We summarize the estimation of the feedback polynomial
of LFSR in a noisy channel as the following steps.

1) After repeating the algorithm L times, select the
polynomials that have appeared two or more times.

2) Find the smallest degreeN in the selected polynomials.
3) Choose the candidate polynomials having the degree

[N ,N + α) from the selected polynomials in Step 1,
where α is a design parameter.

4) Select the most commonly occurring polynomial from
the candidate polynomials in Step 3.

We can also estimate the initial state of the LFSR by using
the samemethod. The computational complexity, the required
minimum scrambled sequence length, and execution time
in a noisy channel increase L times compared to noise-free
case. Nonetheless, they still have polynomial computational
complexity, not exponential computational complexity.

To verify this, we simulate the proposed method in a
noisy channel. For simulations, we set nTh to n + 5, α to 4,
and spreading code length to 25 − 1, where we assume
binary phase shift keying modulation and an AWGN channel.
Fig. 4 depicts detection probabilities for the various values
of degrees n when the number of repetitions L is 1000, and
Fig. 5 shows detection probabilities for the various values of
repetitions L when the degree of feedback polynomial n is 10,
according to bit error rate (BER).

In Fig. 4, we find that detection probabilities of the
proposed method can reach 0.9 at BERs of 0.08, 0.05, 0.03,
and 0.02 for degrees n = 10, 20, 30, and 40, respectively.
In Fig. 5, we see that detection probabilities of the proposed
method increase as the number of repetitions L increases.

To validate the proposed algorithm, we compare the results
of Algorithm 1 with the results of [32] and [34] in Fig. 6 for
the various BERs in an AWGN channel, when the degree of
feedback polynomial n is 8 and spreading code length k is
23−1, showing the number of bits available for reconstruction
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FIGURE 5. Detection probability versus BER for L in AWGN channel when
n = 10.

FIGURE 6. Comparison of detection probabilities versus BER in AWGN
channel when n = 8.

in parentheses. Fig. 6 (a) shows the comparison of detec-
tion probabilities from the proposed algorithm and [32].
In Fig. 6 (a), the number of bits available for reconstruction
for [32] is set to 1 470 000 from [Eq. (26), 32] and those for
the proposed method are set to 10 000 and 50 000 since our
method requires far fewer bits. In Fig. 6 (b), we compare the
results of the proposed Algorithm 1 with the results of [34]

for the various numbers of bits available for reconstruction
and BERs. From Figs. 6 (a) and (b) we see that our algorithm
has a better detection performance than the methods of [32]
and [34].

In this paper, we have considered the scrambling sequence
as an m-sequence, but the proposed algorithm can straight-
forwardly be applied to non-maximal length scrambling
sequences, such as Gold code and Kasami code, because
these codes are generated by m-sequences. For example,
Gold code with the length of 2n − 1 bits is generated by
two preferred m-sequences with the primitive polynomials of
degree n, and then we can consider that Gold code is gener-
ated by the LFSR with the multiplied polynomial of the two
primitive polynomials of degree n. Therefore, we can find the
feedback polynomial of degree 2n used forGold codewith the
proposed algorithm by setting nTh > 2n. Similarly, Kasami
code with the length of 2n−1 bits is generated by decimation
and modulo-2 addition of an m-sequence with the primitive
polynomial of degree n, and we can consider Kasami code
to be generated by the LFSR with a feedback polynomial of
degree 1.5n. Therefore, we can find the feedback polynomial
of Kasami code with the proposed algorithm by setting nTh >
1.5n. Also, in this paper, we assumed that the duration of an
information bit is equal to the period of the spreading code.
However, the proposed algorithm can also be applied when
that assumption does not hold. This is because the proposed
method can also cancel message bits and spreading code bits
even when the duration of an information bit is not equal to
the period of the spreading code.

V. CONCLUSION
In this paper, we proposed a novel algorithm for estimating
the parameters, the feedback polynomial, and the initial
state of a synchronous scrambler in DSSS systems. We ana-
lyzed the estimation performance in terms of the computa-
tional complexity, the requiredminimum scrambled sequence
length, execution time, and detection probability.

Unlike conventional algorithms having exponential
computational complexity, the proposed algorithm could
estimate practically the synchronous scrambler parameters,
the feedback polynomial, and the initial state of the scram-
bler, based on the bitwise linear relations inherent in the
scrambling sequence itself, with polynomial computational
complexity.

In the proposed algorithm, most of the input sequence of
the scrambler in the scrambled sequence could be removed
by using the repeated patterns of the input sequence inherent
in the scrambled sequence and the ‘‘shift and add property’’
of the m-sequence. To remove the remained input sequence in
the scrambled sequence and get the scrambling m-sequence,
we used the linear relations made by feedback polynomial
among the m-sequence bits used for scrambling. From the
algorithm, we were able to estimate the scrambler parameters
and reconstruct the scrambling sequence.

The proposed algorithm could be applied to noisy channels
with a statistical technique and could straightforwardly be
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applied to non-maximal length scrambling sequences, such
as Gold code and Kasami code.

APPENDIX
A. PROOF OF THEOREM 1
Since there are linear relationships among every n +1 bits
of (pt)t≥0, if the degree of the minimal polynomial that
generates the sequence (pkt)t≥0 is n, then there is an n ×
n non-singular matrix M ∈ {0, 1}n×n, which satisfies the
following equation.

M ·


p0
p1
...

pn−1

 =

p0
pk
...

p(n−1)k

 . (22)

(If M is singular, then each entry of
(
p0, pk , · · · , p(n−1)k

)T
is represented by the number of bits less than n, where T
denotes the transposition. Therefore, the degree of the min-
imal polynomial for LFSR, which generates the sequence
(pkt)t≥0, will be smaller than n, which is a contradiction.
Therefore, M is non-singular.)

Since M is non-singular, there is an inverse matrixM−1 of
M, and (22) is equivalent to the following (23).

p0
p1
...

pn−1

 = M−1 ·


p0
pk
...

p(n−1)k

 . (23)

From (23), p1 is uniquely represented as the linear combi-
nation of

(
p0, pk , · · · , p(n−1)k

)
. Similarly, for some t, pt+1

is also uniquely represented as a linear combination of(
pt , pt+k , · · · , pt+(n−1)k

)
�

B. PROOF OF THEOREM 2
We prove by mathematical induction. In (14), for l = −n,
p0 is represented as the linear combination of the initial state
(p−n, p1−n, · · · , p−1) as follows:

p0 = cnp−n ⊕ cn−1p1−n ⊕ · · · ⊕ c1p−1 (24)

And for an arbitrary non-negative integer l, suppose pl is
represented as the linear combination of e(l)1 , e

(l)
2 , · · · , e

(l)
n ∈

{0, 1} and the initial state (p−n, p1−n, · · · , p−1) as follows:

pl = e(l)n p−n ⊕ e
(l)
n−1p1−n ⊕ · · · ⊕ e

(l)
2 p−2 ⊕ e

(l)
1 p−1 (25)

Then pl+1 is represented for (p1−n, p2−n, · · · , p0) as follows:

pl+1 = e(l)n p1−n ⊕ e
(l)
n−1p2−n ⊕ · · · ⊕ e

(l)
2 p−1 ⊕ e

(l)
1 p0 (26)

Substituting (24) into (26), we obtain

pl+1 = e(l)n p1−n ⊕ e
(l)
n−1p2−n ⊕ · · · ⊕ e

(l)
2 p−1 ⊕ e

(l)
1 p0

= e(l)1 cnp−n ⊕
(
e(l)n ⊕ e

(l)
1 cn−1

)
p1−n

⊕

(
e(l)n−1 ⊕ e

(l)
1 cn−2

)
p2−n

⊕ · · · ⊕

(
e(l)2 ⊕ e

(l)
1 c1

)
p−1 (27)

From (27), pl+1 is represented as the linear combination of
the initial state (p−n, p1−n, · · · , p−1) with e

(l+1)
i = e(l)i+1 ⊕

e(l)1 ci for 1 ≤ i ≤ n and e(l)n+1 = 0 in (16) . �
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