
Received August 5, 2020, accepted September 6, 2020, date of publication September 11, 2020,
date of current version September 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023616

Attack and Defense Strategies for Intrusion
Detection in Autonomous Distributed
IoT Systems
HAMID AL-HAMADI 1, ING-RAY CHEN 2, (Member, IEEE), DING-CHAU WANG 3,
AND MESHAL ALMASHAN 4
1Department of Computer Science, Kuwait University, Safat 13060, Kuwait
2Department of Computer Science, Virginia Tech, Falls Church, VA 22043, USA
3Department of Information Management, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
4Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan

Corresponding author: Hamid Al-Hamadi (hamid@cs.ku.edu.kw)

This work was supported and funded by the Kuwait University Research Grant under Grant RQ02/18. This work was also supported by the
U.S. Air Force Office of Scientific Research (AFOSR) under Grant FA2386-17-1-4076.

ABSTRACT In this paper, we develop a methodology to capture and analyze the interplay of attack-defense
strategies for intrusion detection in an autonomous distributed Internet of Things (IoT) system. In our
formulation, every node must participate in lightweight intrusion detection of a neighbor target node.
Consequently, every good node would play a set of defense strategies to faithfully defend the system while
every bad node would play a set of attack strategies for achieving their own goals. We develop an analytical
model based on Stochastic Petri Net (SPN) modeling techniques. Our methodology allows the optimal
defense strategies to be played by good nodes to maximize the system lifetime when given a set of parameter
values characterizing the distributed IoT system operational environment.We conduct a detailed performance
evaluation based on an experiment dataset deriving from a reference autonomous distributed IoT system
comprising 128 sensor-carryingmobile nodes and show how IDS defense mechanisms can counter malicious
attack mechanisms under the ADIoTS system while considering multiple failure conditions.

INDEX TERMS Intrusion detection, Internet of Things, mission-oriented IoT systems, stochastic Petri net,
attack/defense behavior models.

I. INTRODUCTION
Security of Internet of Things (IoT) is of paramount
importance given its widespread adoption. This is especially
critical for security-sensitive IoT systems tasked with dis-
aster recovery, evacuation, and military operations. In this
paper, we develop a methodology to capture and analyze
the interplay of intrusion detection attack-defense strategies
in an Autonomous Distributed Internet of Things System
(ADIoTS). An instance of ADIoTS is a mission-oriented
IoT system populated with autonomous, smart IoT devices
including smart sensors, actuators, and control nodes, for
executing a specific mission. Possible application scenarios
may involve a team of Unmanned Aerial Vehicles (UAVs),
soldiers, automobiles, or robots monitoring and patrolling a
combat area, and relaying critical information to the base
for combat advantages. Such IoT devices (called nodes in

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

this paper for short) can be compromised via capture attacks
(through physical or cyber space) and turned into insiders
performing various malicious attacks with the objective to
fail the mission. Thus, an Intrusion Detection System (IDS) is
called for to detect and remove inside attackers in theADIoTS
to ensure successful mission execution. Given the high threat
of attacker strategies on the system, defense strategies must
be put in place to counter such threats.

We design the ADIoTS such that all nodes in the ADIoTS
are expected to perform not only tasks assigned to them
but also IDS duties to defend the system. Malicious nodes,
however, can choose from a set of attack strategies with
the objective to retain malicious nodes (thus causing false
negatives) and evict good nodes (thus causing false positives)
with the ultimate goal to fail the mission. Good nodes, on the
other hand, can choose from a set of defense strategies to
prolong the system lifetime. The attack/defense behaviors
manifest into the false negative probability (i.e., missing a
malicious node as a good node) and false positive probability

168994 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2982-9416
https://orcid.org/0000-0003-1657-6728
https://orcid.org/0000-0003-4706-4856
https://orcid.org/0000-0002-0224-1436
https://orcid.org/0000-0003-4868-5726


H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

(i.e., misidentifying a good node as a malicious node) which
together affect the system lifetime. Here an attacker refers to
an inside attacker and a defender refers to a good node.

Our approach is based on distributed voting-based detec-
tion. We utilize SPNs as a mathematical tool to model smart
attack and defense behaviors of nodes in a mission-oriented
ADIoTS operating under our collusion-aware voting-based
IDS scheme, with the objective to analyze and iden-
tify the optimal parameter settings of our collusion-aware
voting-based IDS design that can optimize the system life-
time. More specifically, we develop node SPN models each
keeping track of the status of one node in an ADIoTS as
events happen in the system and identify optimal defense
strength parameters (in terms of the detection interval length
and the number of voters) in response to attacker charac-
teristics and the sensed environment to maximize the sys-
tem lifetime. While the importance of designing effective
IDS strategies for detecting malicious nodes is well rec-
ognized, the literature is thin in modeling the interplay of
attack/defense strategies and their effects on system reliabil-
ity. Our work follows model-based evaluation. The novelty
lies in setting up IDS duties that every node must participate
in, thus forcing attack/defense interplay to go in a direction
toward the designer’s desirable outcome, i.e., prolonging the
system lifetime.

Our work has the following unique contributions:
1) We develop a methodology to capture and analyze

the interplay of attack-defense strategies while attack-
ers/defenders execute their required IDS functions in the
form of voting-based intrusion detection in an ADIoTS.

2) We develop an analytical model based on Stochastic
Petri Net (SPN) modeling techniques [1] to describe the
dynamics of IDS attack/defense strategies and examine
their effect on system lifetime.

3) We develop a novel iterative computational procedure
with computational complexity of O(n) where n is the
number of nodes in an ADIoTS to make it computation-
ally feasible to analyze a large ADIoTS.

4) We provide a detailed security evaluation in Section VI
showing how defense strategies in our collusion-aware
voting-based IDS design can effectively counter mali-
cious attack strategies in an ADIoTS while considering
multiple failure conditions.

5) We compare our proposed collusion-aware voting-based
IDS (CAVBIDS) scheme with baseline IDS schemes,
and show how it outperforms these systems under smart
and collusion-based attacks.

Table 1 below lists acronyms and abbreviations used in
the paper. Table 2 lists the parameters used by the analytical
model. The rest of the paper is organized as follows:

Section II surveys related work. Section III discusses the
system model including intrusion detection attack-defense
strategies. Section IV develops an analytical model and an
iterative computational procedure for quantifying the effect
of attack/defense strategies on system lifetime. Section V
discusses how optimal defense strategies are applied to

TABLE 1. Acronyms and abbreviations.

TABLE 2. Notations.

maximize system lifetime. Section VI conducts security eval-
uation. Finally, Section VII summarizes the paper and out-
lines future work.

II. RELATED WORK
Many studies have focused on providing intrusion detection
capability to protect vulnerable IoT-based networks from
malicious attacks. Benkhelifa et al. [2] discuss advancements
in intrusion detection practices in IoT. They discuss how
preventive security measures for IoT systems are difficult
to implement and stress the importance of a second line

VOLUME 8, 2020 168995



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

of defense such as using an IDS. They further suggest that
due to the distributed nature of IoT, a distributed or hier-
archical IDS is most suitable. We adopt the same approach
in this paper. In [3], a protocol for centralized and active
malicious node detection is proposed. Malicious nodes are
detected by identifying changes by a genetic algorithm-based
data gathering scheme through a matrix comparison method
executed by a mobile sink with unlimited energy capability.
They consider the energy exhaustion of IoT nodes and life-
time duration. Furthermore, they focus on collecting digital
forensic evidence to be used against malicious nodes. Their
protocol however only focuses on detecting energy exhaus-
tion and fake information reporting attacks and does not
consider more sophisticated attacks against IoT deployments.
In [4], the authors propose and analyze an intrusion detection
architecture for resource constrained IoT networks. They use
Raspberry Pi as a commodity single board computer with the
snort open-source Intrusion Detection System and evaluate
the resulting performance of the actual deployment. They
prove that their proposed architecture can effectively run
the IDS on Raspberry Pi in a distributed IoT system with
limited resources and explain how the Raspberry Pi hard-
ware mitigated problems with deploying snort on wireless
mesh networks. Similarly, [5] proposes an intrusion detection
model based on machine learning where feature selection is
linked to specific types of expected attacks on the IoT system.
They also run their IDS on a Raspberry Pi system claiming
their lightweight protocol does not sacrifice on detection
performance. In [6], a host-based intrusion detection and
mitigation framework for smart devices deployed in home
environments is proposed. Their framework detects intruders
and blocks them from reaching their target. The system is
designed with the flexibility to dynamically include patterns
of known attacks, thus specifying related features to employ
with customized machine learning techniques. It provides a
comprehensive architecture for intrusion detection in smart
homes, with a clear implementation following the OpenFlow
protocol [7]. They, however, take a centralized approach to
intrusion detection as they rely on a centralized intrusion
detection manager, and their work concentrates on protecting
limited devices in a home IoT setting. You et al. [8] present a
monitoring solution to identify misbehaving embedded IoT
devices. Their solution is based on a lightweight behavior
rule specification system. In their study they have concluded
that the misbehavior detection techniques that are based on
rule specifications outperform the contemporary ones that are
anomaly-based, for a UAV cyber physical system. Compared
to the above cited work, our work does not focus on host-level
(i.e., one-to-one) detection methods for identifying host-level
IDS security measures such as the host-level false posi-
tive probability and the host-level false negative probability.
Rather, our work focuses on a system-level detection method
in the form of majority voting by requesting each node that
is assigned to monitor a target node to report its host-level
intrusion detection results obtained through host-level detec-
tion methods. The system-level voting outcome subsequently

determines if the target node is behaving or not. Furthermore,
we develop a methodology to capture and analyze the inter-
play of attack-defense strategies while attackers/defenders
execute their required IDS functions during majority voting.

Machine learning techniques have been used in IDS
design [9]–[12]. In [9] the authors propose a misuse intrusion
detection framework for a wireless local area network based
on majority voting that differentiates between attacker and
legitimate node patterns by examining mac-layer frames.
Their system uses several machine learning techniques where
the best performing classifiers are chosen to get strong gen-
eralization. Then, majority voting is performed to get better
accuracy. In [10], the authors develop a novel machine learn-
ing based IDS for IoT. The authors stress the importance of
securing IoT devices which are considered as the weakest
link and vulnerable to a variety of attacks. Their proposed
protocol aims to detect malicious IoT nodes by first learn-
ing the behavior of the IoT based network, then applying a
rule-based approach configured by the administrator. Their
work however is only focused on detecting network scanning
and simple forms of denial of service attacks. Similarly,
the authors in [11] use a machine learning IDS approach by
collecting data through dedicated sniffers, followed by stages
of generating correctly classified instances, an iterative linear
regression stage, and then finally a detection threshold is
being applied to separate normal frommalicious nodes. Their
work does not consider lifetime and only considers blackhole
and flooding attacks without considering colluding and smart
attackers. In [12], a smart approach for intrusion detection
and prevention system inmobile ad hoc networks is proposed.
Their proposed system relies onmachine learning approaches
methods where intrusion detection depends on the four enti-
ties of packet analyzer, preprocessing unit, feature extraction
unit and classification unit. They perform security analysis
by considering false positive rate and detection rate. These
works cited above [9]–[12] all utilize machine learning tech-
niques for providing host-level intrusion detection. Our work
is different in that we aim to provide system-level intrusion
detection in the form of IDS voting by which each vot-
ing node selected (which can be good or bad) reports its
host-level intrusion detection outcome as input. We aim to
obtain the best system-level intrusion detection outcome by
analyzing the interplay of attack-defense strategies employed
by IoT devices (good or bad) and identifying the best defense
strategies to be employed in an ADIoTS.

In [13], the authors discuss the limitations in the state-
of-the-art counter-measures against the security threats in
health IoT. They identify internal attacks, where crypto-
graphic keying material can be compromised, as serious
threats to the IoT system especially due to the difficulty in
detecting such compromised nodes. The authors identify key
aspects to counter security threats in health IoT including
using a distributed system instead of centralized, considering
energy efficiency, and countering colluding nodes orches-
trating attacks that are difficult to be detected by traditional
methods. In our work, we also consider these aspects in our

168996 VOLUME 8, 2020



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

model and identify optimal intrusion detection parameters to
maximize the IoT system lifetime under colluding attackers.
In [14], a distributed anomaly detection system for IoT is
proposed. The authors discuss how internal attackers can
establish themselves as legitimate nodes within the network,
and how an internal anomaly detection system is required to
prevent such internal attackers. They devise a controlmessage
scheme integrated with a routing protocol for low-power and
lossy networks, to report the anomaly to an edge-router node.
The system has a configurable profile in which detection
and grading parameters are defined. They further specify
the system architecture operating at the network and link
layers. While their work exhibits distributed attributes and
considers inside attackers, the final decision regarding the
anomaly in their protocol is done at the edge router, thus cre-
ating the possibility of single point of failure vulnerabilities.
Unlike [14] our work does not have a single point of failure.
Rather, the system-level intrusion detection method designed
in the form of IDS voting is totally distributed and resilient
to failures or compromises of one third of IoT nodes in
an ADIoTS.

Another line of related work for IoT systems in the liter-
ature focuses on lifetime maximization in the presence of
inside attackers. The authors in [15] propose and analyze
a technique that is based on a behavior-rule specification
for medical devices intrusion detection. The medical devices
studied here are those embedded in Medical Cyber Physical
Systems (MCPSs) where the patient’s safety is of the highest
priority. The authors propose a methodology of transforming
behavior rules into a state machine enabling the identifica-
tion of monitored devices that are changing their behavior
from the behavior specifications. The analysis of system
lifetime is studied after defining system failure conditions.
In [16], the authors propose an adaptive network defense
management system for defending against smart attacks and
selective capture that disrupt the basic functionality of data
delivery in a wireless sensor network. The authors develop an
analysis methodology for identifying the best settings of the
defense protocol by which the lifetime of the sensor network
against smart attacks and selective captures is maximized.
Also, a simulation study has been conducted to validate this
methodology. The protocol settings include the redundancy
level for multi-path routing, the radio adjustment, the intru-
sion invocation interval and the number of voters. In [17],
the authors present an intrusion detection and prevention
mechanism suitable for low-power IoT deployments, where
an intelligent security architecture is implementing using ran-
dom neural networks by learning the normal behavior of the
system and then embedding the base station with the trained
random neural networks. Their method additionally relies on
creating tags linked to memory accesses in order to detect
out of bounds memory accesses indicating malicious activity.
Their work follows anomaly-based mechanisms for intrusion
detection in IoT where computation is offloaded to a base sta-
tion. In [18], the authors design and evaluate a trust-based dis-
tributed intrusion detection mechanism for IoT where nodes

use trust-based mechanisms to manage neighbor reputation
scores. A border router or cluster head is used to calculate
trust values based on collected direct trust and reputation trust
values of neighbors. They claim the proposed mechanism
is suited to small IoT devices and can be applied to the
health domain. Their work however only considers attacks of
selective forwarding and sink hole on RPL (Routing Protocol
for Low-Power and Lossy Networks) performed by inside
attackers, and does not consider smart attacks, collusion of
nodes, or finding optimal IDS parameters tomaximize system
lifetime. Compared to the works cited above [15]–[18], our
work also adopts model-based analysis, i.e., we develop an
analytical model based on Stochastic Petri Nets (SPNs) [19]
to analyze the interplay of attack-defense strategies employed
by voting members during IDS voting and identifying the
best defense strategies to be employed to maximize the IoT
system lifetime, given system failure conditions as input.
Unlike [15]–[18], we do not consider the use of a central-
ized entity for conducting intrusion detection. Specifically,
the proposed system-level intrusion detection is conducted in
the form of IDS voting which is totally distributed. The only
requirement is that each node when acting as a host IDS uses
lightweight host-level detection techniques in order to cast a
vote regarding the behavior of a target node in its vicinity.

An SPN model is an analytical model allowing a sys-
tem’s behaviors and states to be clearly defined since it will
be transformed (by SPNP [1]) into a Markov model, thus
providing a state-based strong modeling foundation. Unlike
simulation which is laborious and lacking accuracy unless
it is run sufficiently long to satisfy statistical significance,
SPN models facilitate answering why if types of design
questions accurately and rapidly because it merely involves
computation. We use Stochastic Petri Nets (SPNs) [19] to
model the interplay of attack-defense strategies employed by
voting members during IDS voting with the goal to identify
the best defense strategies to be employed to maximize the
IoT system lifetime. In the literature, SPN models have also
been used by many scholars [20]–[29] to analyze reliability
and performance characteristics of cyber physical systems.
In particular, the authors in [25] propose an analytical model
based on SPNs for cyber-physical systems to capture the
dynamics between defense and adversary behavior. In their
work, they consider different types of failures that can occur
in cyber-physical systems such as pervasion failure, exfiltra-
tion failure, and attrition failure. They further illustrate the
parameterization process by using a modernized electrical
grid and discuss the optimal design conditions by which the
mean time to failure of the modernized electrical grid is
maximized. In [26] Mitchell and Chen study the reliability
of a cyber-physical system utilizing an IDS. A probability
model that is based on SPNs is developed to analyze the
CPS’s behavior with the existence of malicious nodes over a
wide range of attackers’ behaviors. In addition, an Intrusion
Detection and Response System (IDRS) is also presented
in this study. In [27], the authors propose a SPN-based
approach for modeling and analysis of disaster recovery

VOLUME 8, 2020 168997



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

TABLE 3. Supporting features of the proposed system compared to the available literature.

solutions for IoT infrastructures where mission-critical IoT
systems need real-time decision-making. A disaster recovery
cloud is used in the case of a disaster affecting the primary
site’s components including medical servers and physician
and emergency workstations. IoT network components are
incorporated into the model to represent the connectivity
between IoT medical devices and the primary site. Using the
Petri net-based modeling approach, the system availability,
cost, and recovery time of the disaster are analyzed. The
authors show the applicability of their work through model-
ing a real-world healthcare IoT system. In [28], the authors
propose a SPNmodel of a defensivemaneuver cyber platform
utilizing moving target defense and deceptive defense tactics.
Their aim is to utilize defense cyber maneuver techniques
to provide survivability and operational continuity. In their
model, each system node can be in one of the operational,
idle, or deceptive states as a defense response based on the
attack, such that all states satisfy the specified constraints
ensuring the stability of the maneuver system. By changing
node states, and the rates in which nodes transition between
states, a more defendable platform can be provided. Finally,
they show trade-offs between security and operations. In [29],
a SPN model is used to model and analyze threats in smart
factories. They consider various threat scenarios including
attacks and errors the cause availability risks, and their impact
on the components of information networks in the area of
connected production environments.

Our work is different from the above cited works [20]–[29]
in four aspects. First, to the best of our knowledge we are
the first to explore SPNs for modeling a mission-oriented
ADIoTS, whereas the above cited works [20]–[29] utilize

SPN techniques mainly for reliability and performance anal-
ysis of wireless networks or cyber physical systems. In our
work, we adopt SPN modeling techniques to specifically
model and analyze the security property of amission-oriented
ADIoTS operating under our proposed collusion-aware
voting-based IDS (CAVBIDS) scheme. Second, we develop
an SPN model that allows us to analyze defense strategies
to counteract attack strategies performed by inside attackers
that would cause system (i.e., mission) failures. Our SPN
model considers smart attacks such that attackers may attack
strategically in order to maximize system failure probability.
Our SPN model also considers colluding malicious nodes
with the ability to work together to evade intrusion detection
and evict good nodes. Third, our SPN model considers both
energy and lifetime of the system as well as the interplay of
attack/defense strategies for finding optimal IDS parameters
to adaptively counter these smart attacks such that the sys-
tem lifetime is maximized while achieving specified mission
objectives. Finally, we demonstrate howCAVBIDS can apply
the optimal IDS parameters identified from our SPN model
to dynamically defend against smart collusion attacks.

Table 3 above summarizes our proposed system compared
to the available surveyed literature.

III. ADIoTS SYSTEM MODEL
We consider an ADIoTS comprising mission-oriented mem-
bers or IoT devices (i.e. nodes) where all nodes in theADIoTS
are expected to performmission tasks and IDS duties in order
to achieve mission goals. In this work we do not differentiate
between a member and an IoT device but instead treat them
synonymously. IDS activities are performed by the ADIoTS

168998 VOLUME 8, 2020



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

where each node is responsible for participating in intrusion
detection periodically at every intrusion detection interval
(namely TIDS ). IoT devices can be compromised via capture
attacks (through physical or cyber space) and turned into
insiders performing various malicious attacks. An insider
is a legitimate member of the mission group and thus has
access to the group security key for group communication,
and it will remain undetected unless it exhibits malicious
behavior and is detected by the IDS. An inside attacker
can perform packet-dropping attacks by randomly dropping
packets passing through it, integrity attacks by packet modifi-
cation, and denial of service attacks by overwhelming the net-
work/server with service requests. In this paper, we propose
a voting-based distributed IDS design to detect and remove
inside attackers in the ADIoTS to ensure successful mission
execution.

FIGURE 1. Distributed voting-based intrusion detection.

At the host-level, a node that is assigned to monitor a
neighbor target node will use its host IDS capability based
on lightweight anomaly detection mechanisms to judge if
the neighbor target node is behaving or misbehaving (see
Fig. 1). At the system level, we assume that the mission
commander in a well-protected area will send a mobile sink
node (e.g., a drone) at every intrusion detection interval
(namely TIDS ) to collect votes from IoT nodes who have
been assigned to monitor a target node and then based on
the voting outcome make a decision about whether the target
node is behaving or misbehaving. Note that the mobile sink
node sent by the mission commander is not a single point of
failure because its only function is to collect votes from par-
ticipating nodes that perform host-level intrusion detection
on a target node. Should the mobile sink node fail to return
votes to the mission commander, the mission commander
can send another one immediately. When asked to express
its opinion about whether a target node in the neighborhood
is behaving, a node must vote ‘‘yes’’ (meaning behaving) or
‘‘no’’ (meaning misbehaving) toward the target node. Amali-
cious node can perform ‘‘ballot-stuffing’’ attacks by voting
‘‘yes’’ toward another malicious node to keep the malicious
target node in the system. A malicious node can also per-
form advanced collusion attacks, including ‘‘ballot-stuffing’’
attacks by voting ‘‘yes’’ toward another malicious node to

keep the malicious target node in the system, and ‘‘bad-
mouthing’’ attacks by voting ‘‘no’’ toward a good node to
evict the good target node from the system. When the major-
ity of votes is ‘‘no’’ the target node is evicted. For the case
in which a malicious node is voted ‘‘yes’’ by a majority,
the system results in a false negative. For the case in which a
good node is voted ‘‘no’’ by a majority, the system results in a
false positive. Malicious nodes would apply the ‘‘best’’ attack
strategies with the goal of shortening the system lifetime.
Good nodes (i.e., defenders) on the other hand would select
the ‘‘best’’ defense strategies to prolong the system lifetime.
The attack/defense behavior therefore is set up within the
context of IDS voting whose effectiveness is measured by
the false negative probability and false positive probability
which together affect the system lifetime. We note that a
good node’s host IDS is not perfect, so it may miss detecting
a bad node. That is, a good node can miss detecting a bad
node with a host-level false negative probability Hpfn and it
can misidentify a good node as a bad node with a host-level
false positive probability Hpfp. Such values are frequently
small (e.g., less than 5%) and are assumed to be known before
each node is released to operation by software engineering
testing.

Furthermore, the mission’s success is dependent on the
nodes collectively completing the required mission tasks.
We consider that the ADIoTS nodes are heterogeneous with
respect to memory and processing capability. While a low
capability node may complete a small number of tasks, high
capability nodes may have the capability to complete a larger
number of tasks within the same time interval. We consider
that nodes with similar capability will execute the same
number of tasks within the same time duration. We map the
amount of task work to a unit of task completion denoted
by task execution unit (TEU), to effectively measure the
mission group’s tasks completion, as opposed to counting
the number of tasks. Fig. 2 depicts the intrusion detection
and mission task execution of the ADIoTS. Each IoT device
is responsible for completing TEUs based on its capability.

FIGURE 2. ADIoTS nodes perform distributed voting-based intrusion
detection and execute mission tasks. ADIoTS nodes are heterogenous
with low capability (blue) and high capability (green). Each node is
equipped with modules for executing intrusion detection and executing
tasks (i.e., TEUs).

VOLUME 8, 2020 168999



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

IoT devices communicate with each other based on IoT
machine-to-machine (M2M) wireless communication proto-
cols such as MQTT [30] and LWM2M [31] without the need
to connect to the broader Internet.

A. SYSTEM FAILURE TYPES
We consider the following system failure types:
• Byzantine failure [32]: A Byzantine failure occurs if one
third or more IoT devices in the ADIoTS have been
compromised as there is no way to reach a consensus
for decision making.

• Attrition failure: An attrition failure occurs if the
ADIoTS does not have enough IoT devices left to carry
out its mission.

• Resource depletion failure: A resource depletion failure
occurs if the energy of IoT devices is too depleted to be
able to accomplish the mission.

• Application failure: If the number of tasks completed
does not meet the minimum threshold required to
meet the mission’s objectives. Such objectives could
include gathering location-based measurements, per-
forming certain calculations while deployed, or per-
forming physical tasks (actuating) while deployed.
These tasks can only be performed by nodes that have
not been evicted. The number of tasks (or equiva-
lently, completion percentage) is application dependent,
where critical and security sensitive applications may
have a higher threshold (i.e. lower tolerance) for task
completion.

B. ATTACK STRATEGIES
Attack strategies used by a malicious node during IDSmajor-
ity voting include:
• Persistent: A malicious node attacks recklessly. When
serving as a voter during IDS majority voting, it will
always vote ‘‘no’’ to evict a good node (to cause a false
positive), and ‘‘yes’’ to retain a bad node (to cause a false
negative).

• Random: The attack behavior is the same as a persistent
attacker except that a malicious node only attacks ran-
domly with probability pa (0 to 1) to avoid detection.

• Opportunistic: The attack behavior is the same as a
persistent attacker except that a malicious node only
attacks opportunistically. That is, when serving as a
voter, a malicious node will vote to evict a good node,
or to retain a bad node, only if there is a majority of
bad nodes among m nodes being selected to perform
majority voting.

• Selective: The attacker uses the strategies of Ran-
dom and Opportunistic attacks, but selectively performs
actions based on the target node under IDS evaluation.
When there is a majority of bad voters, a bad voter will
vote against a good target confidently (without concern
of being detected by the IDS). When the bad voters are
less than a majority, they perform voting attacks in a ran-
dom fashion, where they vote against lower capability

IoT nodeswith a lower probability than higher capability
nodes. Thus attack with Pa (where Pa = Palc+Pahc) if
bad nodes are less than a majority, where the malicious
voter attacks low capability and high capability with Palc
and Pahc respectively, where Palc � Pahc. The strategy
of malicious voters here is to prioritize evicting high
capability IoT nodes over lower capability ones while
keeping IDS suspicion low. Thus, malicious nodes may
vote for a good low capability target, not in the hopes
of the target remaining in the system, but in order to
maintain a random attack behavior that evades the IDS,
thus maximizing the probability of the malicious voter
remaining in the system. The malicious voter does this
with the aim of remaining in the system for subsequent
IDS rounds to vote against a high capability target and
maximize the damage inflicted on the system. It also
does this since low nodes are of a lower benefit to the
system and are a lower threat to malicious nodes (as
they typically have a higher host-level false positive
probability and a higher false negative probability) in
comparison to high capability nodes.

FIGURE 3. Selective attack during IDS voting by colluding nodes j and k:
(a) Intentionally disregarding an opportunity to attack a low capability
target node at time t and evading detection by IDS, (b) Colluding to attack
another high capability target node at a later time > t.

Fig. 3 (a) illustrates a scenario of how malicious
nodes have decided to disregard an opportunity to attack,
at time t , to maximize evading detection. On the other hand,
in Fig. 3 (b), the same malicious nodes, at time > t , have

169000 VOLUME 8, 2020



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

decided to attack the high capability target. In this scenario
in Fig. 3 (b), both malicious nodes have voted to evict the
good high capability target by voting ‘‘no’’, and a good
node has misidentified the target as malicious based on its
host IDS and voted ‘‘no’’, thus resulting in a majority calling
for evicting the high capability target node.

The attacker’s benefit of evicting high capability nodes is
twofold; first high capability nodes have the capability to
accomplish more tasks and fulfill the application require-
ments such that evicting them increases the probability of
application failure to the system. Second, high capability
nodes have better capability to cast accurate votes when
participating in the IDS (they typically have a lower host-level
false positive probability and a lower false negative probabil-
ity) thus detecting malicious voters with a higher probability
than lower capability nodes. This strategy of mischievously
voting for weaker opponents in order to be able to cause
failure to stronger opponents later on, exhibits similari-
ties to tactical voting (or strategic voting) strategies used
in political elections where the voter may, at the time of
voting, vote for its less preferable choice with the aim of
getting an overall better gain later on by influencing the
overall outcome [33], [34]. From the attacker’s perspective,
this means more damage or higher failure probability to the
system.

C. DEFENSE STRATEGIES
We list the defense strategies used by all good nodes (as
dictated by the defense system) during IDS majority voting
below. The defense strength can be controlled by adjusting
the following two parameters:
• The number of voters (m) selected from a target node’s
location for executing IDS majority voting. Higher m
means higher detection strength.

• The intrusion detection interval (TIDS ) to control the
detection frequency at which IDS voting is performed.
Smaller TIDS means higher detection frequency.

IV. MODELING AND ANALYSIS
In this section, we develop an analytical model to describe
the IDS attack-defense dynamics and analyze the effect of
attack/defense strategies executed by attackers/defenders on
the security property and consequently the system lifetime.
We also develop an iterative computational procedure to
make it computationally feasible for a large ADIoTS consist-
ing of a large number of IoT devices (See Table 2 for the list
of parameters used by the analytical model).

Our analytical model provides the following two pieces
of information to facilitate modeling of attack/defense
dynamics:

1. Location: we like to know the probability that node i is
located in area l at time t, denoted byPLi,l (t). By inspect-
ing PLi,l (t) and P

L
j,l (t), we will know if node i and node j

are in the same location at time t.
2. Good/Bad/Evicted status: we like to know the prob-

ability that node i is good, bad, or evicted at time t,

denoted by Pgi (t) ,P
b
i (t) and P

e
i (t) , respectively, with

Pgi (t)+P
b
i (t)+P

e
i (t) = 1. By inspectingPgi (t) ,P

b
i (t)

and Pei (t) for node i, Pgj (t) ,P
b
j (t) and Pej (t) for

node j, Pgk (t) ,P
b
k (t) and Pek (t) for node k, and so

forth, we know the attack/defense strength at time t.
If a good target node is surrounded by many bad
nodes, then there is a high probability that the good
target node will be misidentified as a bad node (thus
causing a false positive) and a bad target node will
be misidentified as a good node (thus causing a false
negative).

We use Stochastic Petri Net (SPN) modeling techniques
to provide us the above two pieces of information. We uti-
lize a tool called SPNP [1] to define and evaluate SPN
node models describing node attack-defense behaviors and
status, to measure the system security metrics for security
analysis.

An SPN model [19] comprises 4 entities: (a) transitions
to represent occurrences of events, (b) places to represent
conditions or states; (c) arcs to connect transitions to places
and specify the directions of transitions; and (d) tokens to
represent jobs or nodes that can flow from input places into
output places based on transitions, indicating changes of
status.

FIGURE 4. Node SPN model.

Fig. 4 shows the SPN node model for node i for modeling
the location and status of node i over time. It consists of
a location subnet (top left) providing the location informa-
tion of node i at time t, a timer/energy subnet (top right)
providing the energy status of node i, and a compromise
undetected/detected status subnet (bottom) keeping track of if
node i has been compromised at time t and if the compromise
has been detected. These subnets are described in more detail
in the following subsections. Each node in the system is
separately modeled by an SPN node model. Therefore, there
will be many SPN node models in the system (i.e., one for
each node), but each can be run and evaluated separately with
our hierarchical modeling technique.

VOLUME 8, 2020 169001



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

A. MODELING NODE STATUS
The location subnet (at the top left of Fig. 4) for node i
provides us information about PLi,l (t). The id of the current
location of node i is indicated by the number of tokens in
place LOC. The autonomous distributed IoT environment can
be modeled as an M × M location grid, with the unit length
equal to the wireless radio range (R) and each location is
labeled with a unique location id. We allow each node to
have its own mobility pattern specified by a sequence of
time-ordered (location id, residence time) tuples, meaning
that the IoT device stays at a location with the location id so
indicated for this much time with the residence time so indi-
cated. The mobility pattern can be generated by simulating
the movement of a node following a mobility model such as
the random movement model or the social SWIM mobility
model [35]. The transition T_LOCATION is triggered when
node i moves from its current location to the next location
with the transition rate calculated as 1/RT where RT is the
residence time in the current location. Depending on the next
location, the number of tokens in place LOC is adjusted
to reflect the id of the location it resides under (after the
movement is made), so by looking at the number of tokens in
place LOC at time t we know the location of node i at time t.
The compromise undetected/detected status subnet (at the

middle of Fig. 4) for node i gives us information about
Pgi (t) ,P

b
i (t) and P

e
i (t). The status of node i is indicated by

a token which flows from one place to another. Place UCN
indicates that node i is compromised. A node is compromised
when transition T_COMPRO with rate λcom fires where λcom
is the per-node capture rate. The transition T_COMPRO is
enabled if the node is not yet compromised or evicted. When
node i is compromised, a token goes to UCN, meaning that
node i is now a malicious node not yet detected by IDS, so it
may perform persistent, random, or opportunistic attacks.
PlaceDCNmeans that node i is evicted. An eviction can occur
in two ways. The first way is that node i was compromised
(i.e., the token was in place UCN) and is correctly identified
by the system IDS, causing the token to flow from into
DCN and node i to be evicted immediately. The transition
rate of T_IDS is

(
1− PIDSfn

)
/TIDS where PIDSfn (derived in

Equation 1, as shown at the bottom of the page) is the false
negative probability of the system IDS and TIDS is the IDS

detection interval. The second way is that node i was a good
node but is misidentified as a bad node by the system IDS,
causing the token to be deposited in place DCN and node i
to be evicted immediately. The transition rate of T_IDSFA is
PIDSfp /TIDS where PIDSfp (derived in Equation 1 below) is the

false positive probability of the system IDS.
The timer subnet (at the top right of Figure 4) keeps

track of elapsed time in the node SPN model. After TIDS
is elapsed, T_TIMER fires and a token is added to place
TIME. T_TIMER is disabled when the node is evicted
(i.e., when a token is in place DCN). By looking at the
number of tokens in place TIME, one can tell the current
time. This information allows PIDSfp and PIDSfn to be updated
in increments of TIDS dynamically to reflect the effect of
IDS attacker/defense dynamics on PIDSfp and PIDSfn . We also
use the timer subnet as the energy subnet with each token
deposited in place TIME indicating the amount of energy
spent by node i in an intrusion detection cycle. By knowing
the number of IDS cycles elapsed (from place TIME) and the
percentage of energy spent by node i per cycle for executing
monitoring, reporting, task execution, and performing IDS
functions, denoted by Pe, we can estimate the remaining
energy of node i at time t.

The task subnet for node i (at the bottom of Fig. 4) is
to keep track of the tasks completed by node i. The tran-
sition T_TASKS is triggered periodically with rate 1/ET
where ET is the execution time. Thus, in every ET interval,
a unit of tasks (a TEU) is completed, and tokens represent-
ing this unit will be deposited into place TASKS. While a
low capability node may deposit a small number of tokens,
high capability nodes may have the capability to complete
a larger amount of work within the ET interval, resulting
in a larger number of tokens being deposited in the same
execution time duration. We denote the task tokens deposited
for low capability nodes and high capability nodes over
the ET interval by ttETlc and ttEThc respectively. As a result,
we expect that ttETlc > ttEThc . A node may execute tasks of
different types including monitoring, actuating, or computa-
tion, each represented by a different number of tokens and
executed as requested by the system. In this work, for sim-
plicity, we do not differentiate between different task types
and consider that nodes with similar capability will execute

PIDSfp (t, l) or PIDSfn (t, l)

=

m−mmaj∑
i=0

C
(

nabad
mmaj + i

)
× C

(
ngood + nibad
m− (mmaj + i)

)
C
(
nabad + n

i
bad + ngood
m

)


+

m−mmaj∑
i=0

C
(
nabad
i

)
×
∑m−i

j=mmaj−i

[
C
(
ngood + nibad

j

)
× ωj × C

(
ngood + nibad − j

m− i-j

)
× (1− ω)m−i−j

]
C
(
nabad + n

i
bad + ngood
m

)
 (1)

169002 VOLUME 8, 2020



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

the same number of tasks within the same time duration
(i.e., ET ).

B. MODELING ATTACKER/DEFENDER STRATEGIES
An attacker can perform persistent, random, or opportunis-
tic attacks while participating in the majority voting IDS
function. The attack strategy chosen affects the system IDS
securitymeasured by the false negative probability (PIDSfn ) and

the false positive probability
(
PIDSfp

)
.

We derive the false positive probability (PIDSfp (t, l)) and
false negative probability (PIDSfn (t, l)) for diagnosing a target
node at location l and time t surrounded by ngood (t, l) good
nodes and nbad (t, l) bad nodes. Henceforth, the notation (t, l)
at the end of a symbol is omitted for brevity.

Equation 1 gives a closed-form solution for PIDSfp and

PIDSfn under random attack behavior where C
(
a
b

)
is the #

of combinations to select a from b, nabad and nibad are the
numbers of ‘‘active’’ and ‘‘inactive’’ bad nodes, given by
nbad × pa and nbad × (1− pa), respectively; mmaj is the
minimum majority of m, e.g., 3 is the minimum majority
of 5; and ω is Hpfp for calculating PIDSfp and Hpfn for cal-
culating PIDSfn . Here Hpfp and Hpfn are the host-level false
positive probability and false negative probability, respec-
tively, as a result of each node executing host-level IDS duties
monitoring behaving or misbehaving of a neighbor node as
described earlier. They are given as input at the system
start-up time.

Here we note that persistent attack is a special case of
random attack with pa = 1. Equation 1 can also be used to
model opportunistic attack behavior such that pa = 1 when
during IDS voting, more than one half of the nodes selected
for IDS voting are bad nodes, thus resulting in PIDSfp = 1 and
PIDSfn = 1. If more than one half of the nodes selected for

IDS voting are good nodes, an opportunistic attacker would
simply fall back to random attack behavior because there is
still a chance good nodes can still vote to evict a good target
node (with probabilityHpfp), or retain a bad target node (with
probability Hpfn).

Under selective attack, attackers selectively prioritize high
capability nodes during an attack. When bad nodes are a
majority, the attackers always vote against good target nodes
and vote for bad target nodes as in opportunistic attack, irrel-
evant of its capability. If bad nodes are less than a majority,
the attackers only attack with probability pa randomly. How-
ever, they give priority to selectively attack high capability
nodes over lower capability nodes in order to achieve an
application failure. In effect, attackers collude to evict the
same expected number of target nodes under random attack
with probability pa.

C. COMPUTATIONAL PROCEDURE
The underlying model of a node SPN model as shown
in Fig. 4 is a continuous-time semi-Markov process with

5 state components, LOC, TIME, UCN, DCN, and TASKS
describing the behavior of a node as time progresses.

One could put all node SPN models into one big SPN
model and run it in SPNP [1] to yield the systemmean time to
failure (MTTF) as the security metric. However, the computa-
tional complexity is O(cn) where c = 5 is the number of state
components (LOC, TIME, UCN, DCN, TASKS) and n is the
number of nodes in the ADIoTS. It is computationally infea-
sible for a large n because of the state explosion problem as
the underlying Markov model needs to consider the number
of nodes in the system, the components for each node, and
the states per component.

FIGURE 5. Flow of SPN model execution.

We develop an iterative computational procedure with lin-
ear complexity ofO(n) tomake it computationally feasible for
a large ADIoTS. As illustrated in Fig. 5, the driver program
will invoke SPNP [1] to run and evaluate the node SPNmodel
n times, one for each distinct node, and then integrate their
outputs together to yield the system lifetime as output. Since
SPNP is invoked only n times, the complexity is O(n) where
n is the number of nodes in the ADIoTS.

The basic idea of our iterative computational procedure
is to update the false positive probability PIDSfp (t) and false
negative probability PIDSfn (t) iteratively until convergence,
as follows:

The driver runs each node SPN model for node i to com-
pletion using SPNP [1] until node i is in an absorbing state,
i.e., until node i is evicted (i.e., a token is in place DCN) or
until energy is exhausted (i.e., maximum tokens are in place
TIME). Initially we set PIDSfp (t) and PIDSfn (t) to 5% in the first
iteration. We then reset them to the new values computed in
step 3 in subsequent iterations.

For each node SPN model for node i, generate the output
PLi,l (t) ,P

g
i (t) ,P

b
i (t) , and P

e
i (t) in increment of TIDS .

Based on node status probabilities reported by all nodes
(in previous step 2), compute the false positive probability
PIDSfp (t) and false negative probability PIDSfn (t) for node i (in
increment of TIDS ). The time t at which the computation is
performed can be looked up by inspecting the number of
tokens in place TIME. Specifically,

PIDSfp (t) =
∑

l
PLi,l (t)P

IDS
fp (t, l) (2)

VOLUME 8, 2020 169003



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

where PIDSfp (t, l) is computed based on Equation 1 with

nbad (t, l) =
∑k 6=i

k PLk,l (t)P
b
k (t) and ngood (t, l) =∑k 6=i

k PLk,l (t)P
g
k (t).

Check if the Mean Percentage Difference (MPD) of an
important parameter Xi(t) of node i (such as PIDSfn (t)) in
iteration j and iteration j + 1 is less than the minimum
threshold (set at 1%), i.e.,

∣∣∣X j+1i (t)− X ji (t)
∣∣∣ /X ji (t) < 1%.

If no, go to step 1 to continue the iterative computational
process. If yes, compute the MTTF of the system based on
the failure conditions and exit. For attrition failure, MTTF
can be identified by first sorting the mean time to bad/evicted
status for all nodes and then the first time at which the number
of good nodes falls below the system allowable minimum
threshold (nTHgood ) is the MTTF. For Byzantine failure, the first
time at which the number of bad nodes is equal to or greater
than 1/3 of the total number of good and bad nodes is the
MTTF. For energy depletion failure, the first time at which the
number of nodes with adequate energy falls below a threshold
(ETH ) is the MTTF. A nodes energy resource is indicated by
the number of tokens in place TIME in the timer subnet and
when it reaches a maximum allowable it indicates that the
IoT device is too depleted. For application failure, the first
time when the task completion rate of nodes (computed by
dividing the number of tasks completed as indicated by the
number of tokens in place TASKS in the task subnet, by the
current time as indicated by the number of tokens in place
TIME in the timer subnet) collectively falls below the system
allowable minimum threshold (tcTH ).
We list the computational procedure below:
1: Driver Execution:
2: while not all nodes converged
3: increment iteration counter
4: run SPN model for each node in the iteration

(line 10)
5: if all nodes converge then
6: find MTTF (line 19) and exit
7: else
8: continue next iteration; pass saved values

of this iteration to the next iteration;
go to line 3

9:
10: Running node SPN model (current iteration):
11: while not reach maximum IDS executions
12: Find time t for the current IDS execution
13: Retrieve previous iteration’s expected values

at time t
(unless first iteration where it equals 1)

14: Use retrieved nodes values to find PIDSfp /PIDSfn
for the current iteration (use 5% if it equals 1)

15: Calculate new expected values
and store for the next iteration

16: If convergence condition met then
17: mark this node as converged
18:
19: Find MTTF:

20: while no failure condition AND
not reach maximum IDS executions

21: Find time t for the current ids execution
22: find system PIDSfp /PIDSfn for all nodes
23: execute IDS for all nodes
24: if attrition or Byzantine or

resource or application failure then
25: no failure = false
26: MTTF = t

V. APPLYING OPTIMAL DEFENSE SETTINGS
FOR LIFETIME MAXIMIZATION
Our analytical results identify optimal defense settings in
terms of the best (TIDS , m) combination under which the
ADIoTS lifetime is maximized. This includes best defense
settings for sophisticated collusion-based attacks by inside
attackers such as Random, Opportunistic, and Selective
attacks. To apply the findings in this paper, the mission
commander can apply the best defense settings in terms
of (TIDS , m) dynamically based on the current ADIoTS
operational and environmental conditions sensed at run-
time to maximize the ADIoTS lifetime. This is depicted
in Fig. 6 where optimal defense settings are generated offline
and stored in the form of a lookup table based on the analyt-
ical results obtained in the paper (top half of Fig. 6). When
new ADIoTS operational and environmental conditions are
sensed, a search is performed based on closest match or
extrapolation techniques to find the best defense settings of
(TIDS , m) to apply so as to maximize the system lifetime
(lower half of Fig. 6).

FIGURE 6. Flow of determining optimal defense settings for lifetime
maximization.

VI. EVALUATION
In this section, we use the stochastic Petri net package
(SPNP) [1] to define and analytically solve the SPN model
developed to yield the system lifetime as output, when given
a set of parameter values characterizing the operational and
environmental conditions as listed in Table 4 as input. All
parameters except the number of voters (m) and the IDS
detection interval (TIDS ) have their values derived from an
ADIoTS described in [36] comprising 128 sensor-carrying

169004 VOLUME 8, 2020



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

TABLE 4. Parameters for an ADIoTS.

mobile nodes. The number of voters (m) and the IDS
detection interval (TIDS ) are design parameters whose values
are to be identified and applied at runtime to maximize the
system lifetime.

The 128 sensor-carrying mobile IoT devices are randomly
deployed in a 64 × 64 m2 operational area, each follow-
ing the SWIM mobility model [35] after deployment. The
radio range is 100 m for peer-to-peer communication for
the 128 nodes. When there are fewer than 32 devices in
the system, the system is not able to perform its intended
function, leading to an attrition failure. At the host level,
each device monitors its immediate neighbors with a false
negative probability Hpfn ranging in 2.5%-7.5% and a false
positive probability Hpfp ranging in 2.5%-7.5%. Such values
are assumed to be known before each device is released to
operation by software engineering testing. IoT devices are
compromised due to capture attacks by which a good device
that is being captured is converted into a bad device. The
per-node capture rate λcom ranges from 1/5400 to 1/1800,
meaning that on average after 1800-5400 (seconds, minutes,
hours, or days depending on the system under consideration)
is elapsed, a node would likely be captured and turned into
malicious. Assume that the amount of energy consumed for
each IoT device in an IDS period is 0.01%. The security
metric is the system MTTF which is measured when the
system fails due to Byzantine, attrition, application, or energy
depletion failure.

Fig. 7 shows the system MTTF (s) vs TIDS (s) for the
ADIoTS in the case in which the attack strategy is persistent
attack (Pa = 1) to quickly fail the system. The defense
strategies considered are the number of voters (m) in majority
voting IDS and the IDS detection interval (TIDS ). With the
persistent attack strategy in place, an attacker always per-
forms ballot-stuffing (saying a bad node is a good node) and
bad-mouthing attacks (saying a good node is a bad node)

whenever it has a chance, to cause Byzantine and attrition
failures at the fastest pace. Under this attacker strategy, there
exists an optimal TIDS under which the system lifetime is
maximized. This is due to the following reasons: When TIDS
is too low, the frequency of performing intrusion detection is
high, thus causing energy depletion failures to happen early
on. When TIDS is too high, it does not perform intrusion
detection often enough to detect and remove bad nodes from
the system. As a result, many bad nodes remain undetected
in the system. This also results in a short lifetime, due to both
Byzantine failure (when at least one third of the nodes are bad
nodes) and attrition failure (when the number of good nodes
falls below nTHgood ).

FIGURE 7. Optimal defense settings of (TIDS , m) for maximizing MTTF of
an ADIoTS as defined by Table 4, with λcom = 1/3600 and
Hpfn = Hpfp = 5%.

The effect of the number of voters (m) is clearly demon-
strated in Fig. 7. We observe that the optimal TIDS depends
on m and m = 5 is the best choice of this defense strategy
for maximizing the system lifetime for the example ADIoTS.
The reason is that when m is high, it tends to deplete energy
early on thus causing resource depletion failure. When m
is low, it tends to leave too many bad nodes undetected
in the system, thus causing Byzantine or attrition failure.
Consequently, m = 5 can best balance resource depletion
failure versus Byzantine or attrition failure to maximize the
system lifetime. The most striking observation is that an
optimal defense strategy exists in terms of the best (TIDS , m)
combination that will maximize the system MTTF, when the
attack strategy is persistent attack (Pa = 1).

The effect of per-host defense capability in terms of intru-
sion detection accuracy, represented by the host IDS false
negative probability Hpfn and the host false positive proba-
bility Hpfp, on the system lifetime is demonstrated in Fig. 8.
We first observe that the system lifetime is higher when the
system has better defense capability, i.e., when Hpfn and Hpfp
are lower.

We also observe that the optimal TIDS at which the sys-
tem MTTF is maximized strongly depends on the defense
capability. That is, the optimal TIDS that maximizes MTTF

VOLUME 8, 2020 169005



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

FIGURE 8. Effect of defense capability in terms of (Hpfn,Hpfp) on MTTF of
an ADIoTS as defined by Table 4, with m = 5 and λcom = 1/3600.

increases as Hpfn and Hpfp increase. The reason is that when
the defense capability becomes weaker (meaning Hpfn and
Hpfp have higher values at 7.5% in Fig. 8), many malicious
nodes may be undetected and remained the system while
many good nodes may be misidentified as malicious and
evited from the system, thus resulting in Byzantine or attrition
failures. This happens more often when the detection inter-
val is smaller. Consequently, when Hpfn and Hpfp are high,
the system is better off using a large optimal TIDS value.
Fig. 8 demonstrates this trend, i.e., when Hpfn and Hpfp are
higher at 7.5% the optimal TIDS is 120 while when Hpfn and
Hpfp are lower at 2.5% the optimal TIDS is 60. The results
reveal that the per-node defense capability affects not only
the system lifetime but also the optimal detection interval
TIDS (a defense strategy) under which the system lifetime is
maximized.

FIGURE 9. Effect of attack capability in terms of λcom on MTTF of an
ADIoTS as defined by Table 4, with m = 5 and Hpfn = Hpfp = 5%.

The effect of attacker capability in terms of per-node
compromise rate λcom on the system lifetime is demon-
strated in Fig. 9. We first observe that the system lifetime is
lower when the attacker capability is high, i.e., when λcom

is higher. We also observe that the optimal TIDS at which
the system MTTF is maximized strongly depends on the
attacker capability. That is, the optimal TIDS that maximizes
MTTF decreases as λcom increases. The reason is that when
the attacker capability is higher (meaning λcom is higher at
1/1800 in Fig. 9), many good nodes may be compromised
and turned into malicious in which case the system is better
off by running intrusion detection more often by making TIDS
smaller to catch and evict malicious nodes from the system to
prevent Byzantine failure from occurring. Fig. 9 demonstrates
this trend, i.e., when λcom is higher at 1/1800 the optimal
TIDS is 40 while when λcom is lower at 1/5400 the optimal
TIDS is 160. The results reveal that the attacker capability also
affects the optimal detection interval TIDS (a defense strategy)
under which the system lifetime is maximized.

Unlike defense capability, attacker capability is not a
choice of the defense system. However, when learning
the attacker capability is strong (e.g., from experiences),
the results suggest that the system should shorten the detec-
tion interval to maximize the system lifetime. The optimal
detection interval TIDS of course depends on the opera-
tional setting represented by the set of parameters defined
in Table 4. Given the operational setting, the methodology
proposed in the paper helps identify the optimal (TIDS , m) for
maximizing the system lifetime.

FIGURE 10. Effect of attack strategy on system lifetime under
varying TIDS .

The security analysis thus far considers a homogenous
system where all nodes are of similar capability. To illus-
trate the effects of selective attacks and application failures,
we consider below a heterogeneous ADIoT system consist-
ing of both high and low capability nodes, as discussed in
Section III. Fig. 10 shows the effect of attack strategy on
system failure conditions, under varying TIDS values. For
clarity, we list the system failure condition triggered for
Fig. 10 results separately in Table 5. We show the effect of
random, opportunistic, and selective attacks on system fail-
ures. As a persistent attack is a special case of a random attack
with Pa = 1, we omit persistent attack for brevity. We con-
sider the system failure types as discussed in Section III.A,

169006 VOLUME 8, 2020



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

namely, Byzantine, resource depletion, attrition, and appli-
cation failures. We consider that of the deployed nodes 30%
are of high capability (i.e., nhc = 30%), where they execute
4 TEUs (Task Execution Units) as opposed to 1 TEU by
lower capability nodes, hence contributing more towards task
completion.

First, from Fig. 10 we again observe that there exists an
optimal TIDS that maximizes the system lifetime in response
to various attack strategies. We observed this for persistent
attacks earlier in Figures 7-9. Now we also observe it for
random, opportunistic, and selective attacks.

Second, we find that in all attack strategies, using a very
high intrusion detection frequency (small TIDS ) results in
rapid node energy consumption causing a resource depletion
failure before other failure conditions can occur (e.g., when
TIDS = 10, all failures under all attack strategies are due to
resource depletion). Conversely, using a very low intrusion
detection frequency (high TIDS ) results in a Byzantine failure
occurring first, as IDS bad node eviction cannot cope with
the compromise rate thus resulting in bad nodes > 1/3 good
nodes (e.g., when TIDS = 640). This is further illustrated
in Fig. 11 (for the opportunistic attack case of Fig. 10),
where the system good and bad node populations are shown
as a function of time, as a result of node compromise and
IDS execution (we do not show the evicted node population
in Fig. 11 for brevity). Thus we observe that TIDS greatly
effects the system failure conditions (i.e., which system fail-
ure occurs first).

FIGURE 11. An illustration showing the occurrence of Byzantine and
attrition failures under opportunistic attack for the two cases of TIDS
being 640 and 80, respectively.

Third, we observe that the opportunistic attack results in
lower system lifetime than random attack, since the oppor-
tunistic attack, in addition to attacking randomly, takes advan-
tage of IDS voting occurrences where bad nodes form a
majority in which case it always votes against good nodes
and votes for bad nodes. Similarly, we observe that selective
attack, in addition to attacking opportunistically, especially
targets high capability nodes that are critical in meeting task

TABLE 5. First failure occurrence type for varying attacks and under
varying TIDS .

execution rate. Thus, under the selective attack strategy, high
capability nodes are chosen by colluding attackers as main
targets. This has the effect of resulting in application failures
(last column of Table 5). Also, the colluding attackers still use
the strategies of random and opportunistic attacks to result
in Byzantine failures. As a result, the selective attack is the
most effective attack strategy among all to minimize MTTF.
However, as we observe from Fig. 10, the system designer can
optimally adjust the TIDS value to obtain the best achievable
MTTF (along with the best selection of m value although it
is not shown in Fig. 10) against the selective attack strategy.

FIGURE 12. Comparing MTTF in a baseline IDS scheme where the
detection interval is fixed (TIDS = 320) with our CAVBIDS scheme where
TIDS is adjusted based on expected compromise interval (1/λcom).

Fig. 12 and Fig. 13 respectively compare two baseline IDS
schemes against our proposed CAVBIDS scheme.

For the first baseline comparison, Fig. 12 shows the perfor-
mance comparison of our proposed CAVBIDS scheme with
a baseline IDS scheme that uses a fixed or static detection
interval without changing the defense strength in terms of
the detection interval length in response to attacker strength
(i.e., compromise rate λcom). We observe that CAVBIDS
outperforms the first baseline scheme using a large detection
interval (i.e. TIDS = 320) as the attacker strength varies
from high (e.g., compromise interval 1/λcom = 40) to low
(e.g., compromise interval 1/λcom = 100). The first baseline
scheme performs comparably with CAVBIDS only when the
attacker compromise rate is low (e.g., compromise interval
1/λcom = 100) at which point CAVBIDS also selects TIDS =

320 as the optimal defense strength.

VOLUME 8, 2020 169007



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

FIGURE 13. Comparing MTTF in a baseline IDS scheme where the number
of Host IDS voters is fixed (m = 3) with our CAVBIDS scheme where m is
adjusted based on expected compromise interval (1/λcom).

For the second baseline comparison, in Fig. 13 shows
the performance comparison of our CAVBIDS scheme with
a baseline IDS scheme that uses a fixed number of host
IDS voters for the ADIoT target voting, without changing
the defense strength in terms of the number of voters in
response to attacker strength (i.e., compromise rate λcom).
We again observe that CAVBIDS outperforms the second
baseline scheme using a small number of voters (i.e. m = 3)
as the attacker strength varies from high (e.g., compromise
interval 1/λcom = 40) to low (e.g., compromise interval
1/λcom = 100). The second baseline scheme performs com-
parably with CAVBIDS only when the attacker compromise
rate is low (e.g., compromise interval 1/λcom = 90 − 100)
at which point CAVBIDS also selects m = 3 as the optimal
defense strength.

All above results obtained in this section are based on
analytical evaluation. That is, given a set of parameter values
characterizing the operational and environmental conditions
of the 128-node ADIoTS as described in [36], we apply SPNP
to run the 128 node SPN models, integrate the results from
128 outputs, and through assigning rewards with states of
the system, identify the best defense settings of m and TIDS
under which the system lifetime is maximized. The obtained
results can be further validated by building a testbed for the
128-node ADIoTS to generate empirical results to match
against the analytical results obtained in this paper. The prac-
tical implications of the obtained results are as follows: Our
analytical results identify optimal defense settings in terms
of the best (TIDS , m) combination under which the ADIoTS
lifetime is maximized. This includes best defense settings for
sophisticated collusion-based attacks by inside attackers such
as Random, Opportunistic, and Selective attacks. To apply the
findings in this paper, the mission commander can apply the
best defense settings in terms of (TIDS , m) dynamically based
on the current ADIoTS operational and environmental con-
ditions sensed at runtime to maximize the ADIoTS lifetime.
This is depicted in Fig. 6 where optimal defense settings are
generated offline and stored in the form of a lookup table
based on the analytical results obtained in the paper (top half

of Fig. 6). When newADIoTS operational and environmental
conditions are sensed, a search is performed based on closest
match or extrapolation techniques to find the best defense
settings of (TIDS , m) to apply so as to maximize the system
lifetime (lower half of Fig. 6).

VII. CONCLUSION
In this work, we developed IDS duties that must be exe-
cuted by every node of an autonomous distributed IoT sys-
tem (ADIoTS) with the objective of maximizing the system
MTTF. We developed SPN-based behavior models as well as
a scalable iterative computational procedure with linear com-
plexity in the number of nodes, allowing IDS attack/defense
strategies for executing voting-based IDS functions to be
specified and analyzed. We demonstrated the applicability
with a selected set of attack-defense strategies and identi-
fied optimal defense settings in terms of the best (TIDS , m)
combination under which the ADIoTS lifetime is maximized.
We also demonstrated that the per-node defense capability
and the per-node attacker capability will affect not only
the system lifetime but also the optimal detection interval
TIDS (a defense strategy) under which the system lifetime is
maximized. We also analyzed the effect of attack strategies
on system failure conditions and system lifetime, identified
the most damaging attack strategy among all, and suggested
defense strategies in terms of (TIDS , m) for maximizing the
system MTTF. In the future, we plan to extend this work
to consider additional sophisticated collusion and strategic
attacks, new IDS defense strategies, and more SPN-based
modeling and complexity analysis for IoT system compo-
nents. We plan to implement a testbed for the ADIoTS com-
prising 128 sensor-carrying mobile nodes using Raspberry
Pi deployed nodes, each having a host IDS with lightweight
detection techniques. By matching the analytical results
obtained in the paper against the empirical results obtained
from the testbed, we can validate the effectiveness of our
collusion-aware voting-based IDS design proposed in this
paper.

REFERENCES

[1] G. Ciardo, J. Muppala, and K. Trivedi, ‘‘SPNP: Stochastic Petri net
package,’’ in Proc. 3rd Int. Workshop Petri Nets Perform. Models, 1989,
pp. 142–151.

[2] E. Benkhelifa, T. Welsh, and W. Hamouda, ‘‘A critical review of practices
and challenges in intrusion detection systems for IoT: Toward universal
and resilient systems,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3496–3509, 2018.

[3] C. Wu, Y. Liu, F. Wu, F. Liu, H. Lu, W. Fan, and B. Tang, ‘‘A hybrid intru-
sion detection system for IoT applications with constrained resources,’’ Int.
J. Digit. Crime Forensics, vol. 12, no. 1, pp. 109–130, Jan. 2020.

[4] A. Sforzin, F. G. Marmol, M. Conti, and J.-M. Bohli, ‘‘RPiDS: Raspberry
pi IDS—A fruitful intrusion detection system for IoT,’’ in Proc. Int. Conf.
Ubiquitous Intell. Comput., Adv. Trusted Comput., Jul. 2016, pp. 440–448.

[5] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai, ‘‘Towards a
lightweight detection system for cyber attacks in the IoT environment using
corresponding features,’’ Electronics, vol. 9, no. 1, p. 144, Jan. 2020.

[6] M. Nobakht, V. Sivaraman, and R. Boreli, ‘‘A host-based intrusion detec-
tion and mitigation framework for smart home IoT using OpenFlow,’’
in Proc. 11th Int. Conf. Availability, Rel. Secur. (ARES), Aug. 2016,
pp. 147–156.

169008 VOLUME 8, 2020



H. Al-Hamadi et al.: Attack and Defense Strategies for Intrusion Detection in ADIoTSs

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[8] I. You, K. Yim, V. Sharma, G. Choudhary, R. Chen, and J.-H. Cho, ‘‘On
IoT Misbehavior Detection in Cyber Physical Systems,’’ in Proc. IEEE
23rd Pacific Rim Int. Symp. Dependable Comput. (PRDC), Oct. 2018,
pp. 189–190.

[9] B. Alotaibi and K. Elleithy, ‘‘A majority voting technique for wireless
intrusion detection systems,’’ in Proc. IEEE Long Island Syst., Appl.
Technol. Conf. (LISAT), Apr. 2016, pp. 1–6.

[10] E. Anthi, L. Williams, and P. Burnap, ‘‘Pulse: An adaptive intrusion
detection for the Internet of Things,’’ IET Conf. Proc., vol. 4, pp. 35–39,
Oct. 2018.

[11] A. Amouri, V. T. Alaparthy, and S. D.Morgera, ‘‘Amachine learning based
intrusion detection system for mobile Internet of Things,’’ Sensors, vol. 20,
no. 2, p. 461, Jan. 2020.

[12] M. Islabudeen and M. K. Devi, ‘‘A smart approach for intrusion detection
and prevention system in mobile ad hoc networks against security attacks,’’
Wireless Pers. Commun., vol. 2020, pp. 1–32, Oct. 2020.

[13] Y. A. Qadri, R. Ali, A. Musaddiq, F. Al-Turjman, D. W. Kim, and
S. W. Kim, ‘‘The limitations in the state-of-the-art counter-measures
against the security threats in H-IoT,’’ Cluster Comput., vol. 15, pp. 1–19,
Jan. 2020.

[14] N. K. Thanigaivelan, E. Nigussie, R. K. Kanth, S. Virtanen, and J. Isoaho,
‘‘Distributed internal anomaly detection system for Internet-of-Things,’’ in
Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), Jan. 2016,
pp. 319–320.

[15] R. Mitchell and I.-R. Chen, ‘‘Behavior rule specification-based intrusion
detection for safety critical medical cyber physical systems,’’ IEEE Trans.
Dependable Secure Comput., vol. 12, no. 1, pp. 16–30, Jan. 2015.

[16] H. Al-Hamadi and I.-R. Chen, ‘‘Adaptive network defense management for
countering smart attack and selective capture in wireless sensor networks,’’
IEEE Trans. Netw. ServiceManage., vol. 12, no. 3, pp. 451–466, Sep. 2015.

[17] A. Saeed, A. Ahmadinia, A. Javed, and H. Larijani, ‘‘Intelligent intrusion
detection in low-power IoTs,’’ ACMTrans. Internet Technol., vol. 16, no. 4,
pp. 1–25, Dec. 2016.

[18] Z. A. Khan and P. Herrmann, ‘‘A trust based distributed intrusion detection
mechanism for Internet of Things,’’ in Proc. IEEE 31st Int. Conf. Adv. Inf.
Netw. Appl. (AINA), Mar. 2017, pp. 1169–1176.

[19] M. Ajmone Marsan, G. Conte, and G. Balbo, ‘‘A class of generalized
stochastic Petri nets for the performance evaluation of multiprocessor
systems,’’ ACM Trans. Comput. Syst., vol. 2, no. 2, pp. 93–122, May 1984.

[20] G. Cavone, M. Dotoli, and C. Seatzu, ‘‘A survey on Petri net models for
freight logistics and transportation systems,’’ IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 6, pp. 1795–1813, Jun. 2018.

[21] K.M. Ng,M. B. I. Reaz, andM.A.M. Ali, ‘‘A review on the applications of
Petri nets in modeling, analysis, and control of urban traffic,’’ IEEE Trans.
Intell. Transp. Syst., vol. 14, no. 2, pp. 858–870, Jun. 2013.

[22] L. Zabala, R. Solozabal, A. Ferro, and B. Blanco, ‘‘Model of a virtual
firewall based on stochastic Petri nets,’’ inProc. IEEE 17th Int. Symp. Netw.
Comput. Appl. (NCA), Nov. 2018, pp. 1–4.

[23] M. Ghazel, ‘‘Using stochastic Petri nets for level-crossing collision risk
assessment,’’ IEEE Trans. Intell. Transp. Syst., vol. 10, no. 4, pp. 668–677,
Dec. 2009.

[24] R. Zeng, Y. Jiang, C. Lin, and X. Shen, ‘‘Dependability analysis of control
center networks in smart grid using stochastic Petri nets,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 9, pp. 1721–1730, Sep. 2012.

[25] R. Mitchell and I.-R. Chen, ‘‘Modeling and analysis of attacks and
counter defense mechanisms for cyber physical systems,’’ IEEE Trans.
Rel., vol. 65, no. 1, pp. 350–358, Mar. 2016.

[26] R. Mitchell and I.-R. Chen, ‘‘Effect of intrusion detection and response
on reliability of cyber physical systems,’’ IEEE Trans. Rel., vol. 62, no. 1,
pp. 199–210, Mar. 2013.

[27] E. Andrade and B. Nogueira, ‘‘Dependability evaluation of a disas-
ter recovery solution for IoT infrastructures,’’ J. Supercomput., vol. 76,
pp. 1828–1849, Mar. 2018.

[28] W. Moody, H. Hu, and A. Apon, ‘‘Defensive maneuver cyber platform
modeling with stochastic Petri nets,’’ in Proc. 10th IEEE Int. Conf. Col-
laborative Comput., Netw., Appl. Worksharing, 2014, pp. 531–538.

[29] D.Miehle, B. Häckel, S. Pfosser, and J. Übelhör, ‘‘Modeling IT availability
risks in smart factories: A stochastic Petri nets approach,’’ Bus. Inf. Syst.
Eng., vol. 62, no. 4, pp. 323–345, Aug. 2020.

[30] MQTT 3.1.1 Specification. OASIS, Gurugram, Haryana, Dec. 2015.
[31] Lightweight Machine to Machine Requirements: Version 1.1 - 10, Open

Mobile Alliance, San Diego, CA, USA, Jul. 2018.
[32] L. Lamport, R. Shostak, andM. Pease, ‘‘The byzantine generals problem,’’

ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[33] R. M. Alvarez, F. J. Boehmke, and J. Nagler, ‘‘Strategic voting in british
elections,’’ Electoral Stud., vol. 25, no. 1, pp. 1–19, Mar. 2006.

[34] J. H. Aldrich, A. Blais, and L. B. Stephenson, The Many Faces of Strate-
gic Voting: Tactical Behavior in Electoral Systems Around the World.
Ann Arbor, MD, USA: University of Michigan Press, 2018.

[35] S. Kosta, A. Mei, and J. Stefa, ‘‘Large-scale synthetic social mobile
networks with SWIM,’’ IEEE Trans. Mobile Comput., vol. 13, no. 1,
pp. 116–129, Jan. 2014.

[36] Geospatial Location Accountability and Navigation System for Emer-
gency Responders (GLANSER), U.S. Department of Homeland Security,
Washington, DC, USA, 2009.

HAMID AL-HAMADI received the B.S. degree in
information technology from Griffith University,
Brisbane, Australia, in 2003, and the M.S. degree
in information technology from the Queensland
University of Technology, Brisbane, in 2005,
and the Ph.D. degree in computer science from
Virginia Polytechnic Institute and State Univer-
sity, VA, USA, in 2014. He has worked for Uni-
verse Computers as an on-site Network Engineer
with Kuwait National PetroleumCompany. He has

worked as a Core Network Engineer with Tawasul Telecom, Kuwait. He is
currently an Assistant Professor with the Department of Computer Science,
Kuwait University, Kuwait. His current research interests include the Internet
of Things, security, mobile cloud, trust management, and reliability and
performance analysis.

ING-RAY CHEN (Member, IEEE) received the
B.S. degree from National Taiwan University,
Taiwan, and the M.S. and Ph.D. degrees in com-
puter science from the University of Houston,
USA. He is currently a Professor with the Depart-
ment of Computer Science, Virginia Tech. His
research interests include mobile computing, wire-
less systems, security, trust management, and
reliability and performance analysis. He was a
recipient of the IEEE Communications Society

William R. Bennett Prize in the field of communications networking. He cur-
rently serves as an Editor for the IEEE TRANSACTIONS ON SERVICES COMPUTING,
the IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, and The
Computer Journal.

DING-CHAU WANG received the B.S. degree
from Tunghai University, Taichung, Taiwan, and
the M.S. and Ph.D. degrees in computer science
and information engineering from National Cheng
Kung University, Tainan, Taiwan. He is currently
an Associate Professor with the Department of
Information Management, Southern Taiwan Uni-
versity of Science and Technology, Tainan. His
research interests include game-based learning,
the Internet of Things, mobile computing, security,

database systems, and performance analysis.

MESHAL ALMASHAN received the B.S. degree
in computer engineering from Kuwait University,
Kuwait City, Kuwait, in 2003, and the M.S. degree
in computer science and engineering from The
Ohio State University, Columbus, OH, in 2011.
He is currently pursuing the Ph.D. degree in elec-
trical engineering with The University of Tokyo,
Tokyo, Japan. He worked with Kuwait Gulf Oil
Company, Wafra, Kuwait, as a Server Analyst.
He worked as a Network Engineer with Kuwait

Fund for Arab Economic Development, Kuwait. He is currently a Teach-
ing Assistant with the Department of Electronics Engineering Technology,
the College of Technological Studies, and the Public Authority for Applied
Education and Training, Kuwait. His current research interests include
machine learning, big data, data science, data engineering, data management,
and AI in oil and gas.

VOLUME 8, 2020 169009


