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ABSTRACT As the smart city applications are moving from conceptual models to development phase,
smart transportation is one of smart cities applications and it is gaining ground nowadays. Electric Vehicles
(EVs) are considered one of the major pillars of smart transportation applications. EVs are ever growing
in popularity due to their potential contribution in reducing dependency on fossil fuels and greenhouse gas
emissions. However, large-scale deployment of EV charging stations poses multiple challenges to the power
grid and public infrastructure. To overcome the issue of prolonged charging time, the simple solution of
deploying more charging stations to increase charging capacity does not work due to the strain on power
grids and physical space limitations. Therefore, researchers have focused on developing smart scheduling
algorithms to manage the demand for public charging using modeling and optimization. More recently, there
has been a growing interest in data-driven approaches in modeling EV charging. Consequently, researchers
are looking to identify consumer charging behavior pattern that can provide insights and predictive analytics
capability. The purpose of this article is to provide a comprehensive review for the use of supervised
and unsupervised Machine Learning as well as Deep Neural Networks for charging behavior analysis and
prediction. Recommendations and future research directions are also discussed.

INDEX TERMS Electric vehicles, machine learning, smart city, smart transportation, big data.

I. INTRODUCTION
In recent years, climate change has become a growing con-
cern. As such, United Nations (UN) have placed combatting
climate change under one of the sustainable development
goals (SDGs), with plans to jointly raise 100 billion dollars
by 2020 to fight the crisis [1]. The transportation sector
is responsible for over a quarter of the world’s energy
consumption [2]. According to UN, two thirds of the world’s
population is projected to live in urban areas by 2050 [3],
which would inherently increase the demand for vehicles
to provide urban mobility and in turn increase fossil fuel
consumption and greenhouse emissions. According to a
Chinese study, Electric Vehicles (EVs) could potentially
provide 45% reduction in carbon emissions compared to
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conventional internal combustion engine (ICE) vehicles after
considering the energy cost of production, assembly, trans-
portation, and usage [4]. Therefore, EVs are considered to be
the frontrunners in providing clean source of transportation.

Within the smart cities context, the massive growth in EV
popularity [5] can be attributed to the rapid improvements
in battery technology. The latest EVs have the capacity to
travel between 300-500 kms per full charge unlike the older
versions which would often last less than 100 kms per full
charge. The improvement in battery technology has made
EVs far more usable, not only for commuting short distances
but also inter-city travel. Consequently, the number of EV
charging stations have grown, allowing greater flexibility
for drivers to plan their drives. Furthermore, the reliability
of EVs has improved considerably since the earlier days
thereby offering greater consumer trust and satisfaction.
The technological improvement can also be attributed to
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the market competitiveness with many private and public
companies taking the initiative to produce commercial
EVs.

Despite the promising signs, there remains a few chal-
lenges. Firstly, most EVs take a long time to charge,
therefore causing great inconvenience. In addition to this,
many EV owners do not have the capacity to charge their
cars at home but must rely on public charging stations.
Due to the high power needs of the EVs, integrating
them on massive scale will place huge constraints on the
power distribution grid [6]–[8]. Un-coordinated EV charging
behavior is likely to cause further degradation and instability
in power distribution networks. The implications of the power
constraints mean that it is virtually impossible to increase
the charging station capacity to meet the increasing changing
needs. Unlike gas stations for ICE vehicles, where the
vehicles can get refueled in minutes, EVs often require hours
to recharge. The easy solution of increasing the capacity by
deploying more stations is not feasible because in addition to
the power needs, there also exists a physical space limitation
and the number of charging stations can only be increased
to a limited number. Thus, the optimal solution is to better
manage the scheduling of charging stations. Several works
have focused on smart scheduling to efficiently manage the
charging load using optimization problems [9], [10] and
metaheuristic approach [11]. Studies have shown that energy
management with regards to EV charging greatly impacts
wholesale electricity market [12], adding further significance
to the need for understanding charging behavior. Researchers
have investigated the psychological dynamics that influence
charging behavior [13], [14]. Spoelstra [15] used charging
transactions data and interviews with EV drivers to provide
an analysis of EV charging behavior and the factors that
influence such behavior. Although the outcome of these
studies provides a high-level understanding of EV charging
behavior, it is important to quantify the results in order to
use it for scheduling and management. Analysis of charging
behavior using simulations, such as in [16], [17] contains
assumptions that might not hold true in real-world scenarios.
Similarly, estimation of EV behavior derived from ICE
vehicle driving data [18]–[20] and synthetically generated
data [21], [22] may not reflect the unpredictable charging
behavior in everyday scenario. Other strategies such as
multi-location charging, whereby employees are encouraged
to charge at home as well as the workplace, to control the
load have shown promising results [23]. However, these
approaches are only suitable in theory as it is not easy to
control or enforce user charging behavior.

With the immergence of big data analytics and machine
learning (ML), which have revolutionized fields of natural
language processing, image, audio and video recogni-
tion, the focus has shifted towards utilizing data-driven
approaches [24]–[26] to solve the EV charging problem.
Using historical data of charging load and user behavior,
ML algorithms can be utilized to train and learn the trends
and patterns from the data. After the training phase, accurate

predictions can be obtained. Such predictions can then be
utilized, either independently or in conjunction with other
algorithms, to enhance EV charging scheduling strategies.
Studies have shown that ML algorithms are capable of
providing good forecasts for timeseries data [27], and
can therefore be used for charging behavior predictions.
Traditional approaches for the analysis of charging behavior
using qualitative studies is limited by the fact that it cannot
be easily integrated into practical applications such as
scheduling. In contrast, using ML approach, predictions of
future behavior can be obtained which can then be used by a
smart scheduler for optimal scheduling. Although alternative
methods such as modeling and simulation can be useful for
practical applications, they contain assumptions that can limit
their accuracy. On the other hand, ML-based models can
make use of both historical data as well as everyday factors
such as weather and traffic variables to accurately capture the
trends in charging behavior.

Although there exist several review works in the liter-
ature with regards to EV charging, they do not focus on
the charging behavior from a data driven approach. For
instance, [28] provides a survey of optimization and
mathematical modelling-based solutions to EV operations
and management, including EV charging. Ahmad et al. [29]
provided a review of various charging technologies and
standards with a case study from Germany. The authors
in [30] reviewed charging station location problem, which
is concerned with the location and deployment of charging
stations. Perhaps the most related work to the one proposed
in this article is presented in [31], where the authors review
scheduling, clustering, and forecasting strategies for EV
charging. It also presents a review of data-driven approaches
along with other approaches such as optimization and how
they have been used for EV charging strategies. In contrast,
the survey work in this article is solely focused on providing
a review of the existing ML approaches used in analysis and
prediction of EV charging behavior. The key contributions of
this survey are the following:

1) It provides an overview of the various ML approaches,
including supervised, unsupervised, and deep learning,
as well as the common ML evaluation metrics.

2) It provides a comparison of the recent works in
predicting EV charging behavior using ML-based
approaches and highlights their impacts.

3) It proposes a discussion about the limitations of the
existing studies and provides future research directions.

The rest of the paper is organized as follows. A background
section including key concepts in ML is provided in
Section II. This is followed by a brief description about the
commonly available datasets for EV charging. A detailed
review of ML for understanding and prediction of charging
behavior is presented next in sections III, IV and V. The
authors then highlight the challenges and propose future
research directions in Section VI. Section VII concludes the
paper.
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II. BACKGROUND
This section summarizes the background information per-
taining to EV charging, ML techniques, and evaluation of
ML algorithms. A brief description of the common datasets
that can be used for prediction of charging behavior is also
presented.

A. EV CHARGING
EV charging is primarily divided into three charging levels
as defined by the Electric Power Research Institute. Level 1
charging provides the slowest charging rate, operating at
standard 120 V/15A [32]. The charging equipment in this
case is installed on the EV and power is transferred to
the vehicle using a plug and cord set. Level 2 charging
on the other hand uses 240 VAC and has been utilized
for both private and public facilities. It provides faster
charging as compared to Level 1 but requires installation of
dedicated charging equipment. Level 3, also referred to as
‘fast charging’, utilizes 480 VAC and is typically deployed in
commercial/public settings with the goal of providing ‘grab
and go’ service similar to gas stations for ICE vehicles. Level
3 provides the quickest charging rate with vehicles being able
to recharge in less than 30 minutes. Figure 1 provides an
illustration of the 3 charging techniques.

FIGURE 1. Categories of EV charging.

EV charging can also be categorized into residential charg-
ing and non-residential (commercial) charging. Typically,
Level 1 and Level 2 chargers are deployed for residential
purposes. Residential charging behavior is more predictable,
and scheduling is therefore easier. Typically, users leave their
vehicles to charge overnight or arrange charging sessions
depending on their working hours. The number of vehicles
using residential charging is also predictable because usually
people who own EVs in a given area is likely to utilize
the stations within that residential area. In contrast, the
number of vehicles using non-residential charging station is
unpredictable and depends on a lot of factors. For instance,
traffic of a public charging facility near a shopping mall will
depend on lot of factors including weather, day of the week,
and mall offers. Therefore, it is perhaps more significant to
understand the charging behavior of non-residential charging

facilities which are dynamic in nature to provide more precise
scheduling.

B. MACHINE LEARNING AND PREDICTIVE ANALYTICS
Machine learning (ML) provides computer systems with
the ability to learn from experience without the need for
explicit programming. The experience in this context is the
dataset that the algorithms use to train themselves on. With
time the models are able to discover the underlying trends
and patterns in the dataset. Upon successful learning, these
models are able to make accurate predictions about the future
and therefore provide predictive analytics. ML algorithms
are typically categorized into supervised and unsupervised
learning. Further categorization can be done depending on the
type of the variable to be predicted, also known as response
variable. If the response variable is continuous, the problem
being solved is called a regression problem. Conversely,
if the response variable is categorical, the problem is called
a classification problem. Figure 2 illustrates the difference
between regression and classification in the context of EV
charging. The figure on the left portrays prediction of energy
consumption based on charging session duration. This is a
regression problem because the response variable, energy, is a
continuous value. In contrast, the figure on the right portrays
distinction of EV drivers who prefer to charge their cars
during nighttime against those who prefer to charge during
the day. In this case it is a classification problem because the
variable of interest is categorical.

FIGURE 2. Illustration of Regression (left) and Classification (right)
problems.

C. SUPERVISED LEARNING
In supervised learning, ML models are trained from labeled
training dataset. As such the dataset contains both the input
variables and the corresponding response variable, often
called the target variable. The model iteratively learns the
mapping between the input and the response variables by
optimizing a given objective function. A simple example in
the context of EV charging could be a dataset containing
the arrival time of the vehicle, city name, and departure
time of the vehicle. If the goal is to predict the departure
time, the ML model will learn the relationship between the
arrival time, city name (input variables) and the departure
time (response variable). A discussion of all the supervised
learning algorithms is beyond the scope of this work, however
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the most frequently used algorithms for prediction of EV
charging behavior are discussed below:

1) LINEAR REGRESSION
Linear regression (LR) can be used tomodel themathematical
relationship between the output variable and one or multiple
input variables (multiple LR). In LR, it is assumed that there
is a linear relationship between the response variable and the
input features. LR can be represented by Equation 1:

y = bo + b1x1 + b2x2 + · · · + bnxn (1)

where y represents the target variable, bo represents the
y-intercept, [x1, x2 · · · xn] represents the input features and
[b1, b2 · · · bn] represents the regression coefficients. Often
gradient descent [33] method is used to find the coefficients
by minimizing sum of the squared error iteratively after
starting off with random values for coefficient. As the name
suggests, LR is used for regression problems. LR are partic-
ularly useful when the dataset is linearly separable and the
algorithm itself is very simple to implement. Overfitting [34]
is a major challenge in training ML algorithms, it occurs
when a given model performs exceptionally well during the
training phase, by using unnecessary input features, but fails
to make generalized predictions. The performance of LR can
be impacted by overfitting as well as the presence of outliers.

2) DECISION TREES
A decision tree (DT) can be used for both classification
and regression problems [35]. Similar to a flow chart, DTs
separate complex decisions into a combination of simpler
decisions using split points from the input features. The point
where decisions take place is called a decision node. The
points where no further split is made are called the leaf nodes.
For regression problems, the average value of all the items
in the leaf node is taken for prediction. For classification
problems, the leaf nodes are the set of classes being predicted.
DTs are simple to explain particularly using a tree diagram
which can help to understand the prediction making process.
However, a single DT often fails to provide good predictions
and is prone to overfitting.

3) RANDOM FOREST
In random forest (RF), predictions are made by aggregating
multiple decision trees. Bagging method is used in this
case where the trees are created from various bootstrap
sample, (i.e., sample with replacement). The aggregation
for regression is done by taking the average value of the
predictions by all the trees and for classification majority vote
across the trees are taken [36]. RF is an example of ensemble
ML, where individual ML models are first evaluated and
then integrated into a single model that can often produce
superior predictive performance than the individual models.
The motivation behind such approach is similar to asking
multiple experts about an opinion, and then taking their votes
to make the final decision [37]. Similarly, a gradient boosting
algorithm or XGboost [38] uses multiple DTs, with the key

difference being gradient boosting builds each tree one after
another while taking the errorsmade by the previous trees into
consideration. Both approaches greatly reduce overfitting as
compared to simple DT model.

4) SUPPORT VECTOR MACHINE
A support vector machine (SVM) [39] is mainly used for
classification problems but can also be used for regression
in which case they are often referred to as support vector
regression (SVR) [40]. SVM separates the classes with the
best hyperplane that can maximize the margin between the
respective classes. Using kernels such as linear, polynomial,
and radial basis function (RBF), the inputs can be mapped to
high dimensional feature spaces where they can be linearly
separable. One of the main disadvantages of SVM is the
lengthy training time. Therefore, for larger datasets SVMmay
not be suitable.

5) K-NEAREST NEIGHBOR
Although k-nearest neighbor (KNN) [41] can be used for
both regression and classification, it is more popular for
classification problems. For KNN, dedicated training phase
is not required, and it is also known as a form of lazy learning.
For making prediction of a new data point, a distance measure
typically Euclidean distance is used to find its k nearest
neighbors. Then it is assigned to the class that contains
majority of the neighbors. Figure 3 illustrates this process
where k is set to 3 and therefore can be also called a 3-NN
algorithm. In this example, the three nearest neighbors of the
new item in green are two items from the orange class and one
item from the blue class. Therefore, the new item in greenwill
be assigned to the orange class.

FIGURE 3. Illustration of k-NN algorithm prediction.

D. UNSUPERVISED LEARNING AND STATISTICAL MODELS
In unsupervised learning, the training dataset is comprised
of only input variables, without labeled output variables.
In many practical applications, data labeling is time
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consuming and costly. The goal of the ML model is to find
structures or patterns within the dataset. Cluster analysis is a
common example of unsupervised learning whereby the goal
of the ML model is to find clusters of items that have some
common elements. Unsupervised learning can be utilized to
find clusters of EV behavioral patterns. Figure 4 provides an
illustration of clustering in the context of EV charging. In this
simple example, only 2 input features are being considered
to group the items. Based on the arrival time and day of
the week, we can notice 3 distinguish clusters of charging
behavior.

FIGURE 4. Simple illustration of clustering.

1) K-MEANS CLUSTERING
In K-Means clustering, individual data points form k
clusters with each point being assigned at the beginning
to k center points in a random manner. Next the data
points are reassigned to the closest center based on new
center calculations. The number of clusters must be known
beforehand or can be calculated best on elbow method [42].
K-Means is a simple clustering algorithm but is sensitive
to outliers and initial assignment. K-Means is among the
most popular clustering algorithms along with Density-Based
clustering (DBSCAN) [43] and hierarchical clustering [44].

2) GAUSSIAN MIXTURE MODEL
Gaussian mixture model (GMM) [45] is a probabilistic
learning model that can represent normally distributed sub-
populations by considering multiple normal distributions of
the dataset. AlthoughGMMs aremainly used as unsupervised
learning, variations of it exist for supervised learning. For
unsupervised model, prior knowledge of the subpopulations
is not required. Based on the distributions of the dataset,
such as binomial, poisson and exponential, various form
of mixture models can be derived. Other common mixture
models include beta mixture model (BMM) where the beta
probability distribution is considered.

3) KERNEL DENSITY ESTIMATOR (KDE)
The shape of probability density function (PDF) must be
assumed in parametric estimation methods. When this is not
possible, we can use nonparametric estimation to estimate the

PDF of a continuous random variable using kernel functions.
Kernel functions must be symmetrical, nonnegative and
area under the function curve must be 1. Popular kernels
for KDE include normal or gaussian KDE (GKDE) and
diffusion-based KDE (DKDE) [46].

E. DEEP LEARNING
Deep learning (DL) is a subset of ML that utilizes artificial
neural networks (ANNs). DL models, unlike ML models,
contain a large amount of composition of learned functions.
More specifically, using layered hierarchy of concepts,
complex concepts are defined in terms of simpler concepts
and more abstract representations are gathered using less
abstract ones [47]. DL is an emerging technology, but it
dates back to 1940s and was known by various names, such
as connectionism and cybernetics, during earlier days. The
recent success of DL-based models can be attributed to two
main factors: 1) Availability of larger datasets to train DL
models. 2) Availability of powerful computers to build and
train complex models to achieve groundbreaking results [47].
DL-based models currently provide cutting-edge solutions
to various areas in natural language processing (NLP) and
computer vision.

One of the most common DL methods is multilayer
perceptron (MLP), which is often simply referred to as
ANN. MLP can use non-linear approximation given a set
of input features and can be used for both regression and
classification. An MLP consist of input layer which takes
in the set of features, the hidden layers that learns the
representations and the output layer that makes the final
predictions. Figure 5 shows an MLP with 3 hidden layers for
binary classification.

FIGURE 5. ANN with 3 hidden layers for binary classification.

For sequential and time series data, recurrent neural
networks (RNN) are more suitable because they have the
ability to process short-term dependencies by considering
some of the previous predictions. For instance, in NLP tasks
such as predicting next words of a sentence, it is likely that
the previous few words greatly influence the predictions and
thus they need to be considered for the next predictions. For
tasks when long term dependencies needs to be considered,
a RNN-based model known as long short-term memory
(LSTM) [48] can be used.
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F. EVALUATION OF ML MODELS
This section defines the common metrics used in the review
paper to evaluate the ML models for predicting EV charging
behavior.

1) EVALUATION OF REGRESSION
Assuming that the original value is represented by y and
the predicted value is represented by ȳ and n represents
the groups of values in the dataset, then the following
methods (Equations 2-5) are commonly used to evaluate the
performance of regression models:

Root mean square error (RMSE):

RMSE =

√√√√√ n∑
i=1

(yi − ȳi)2

n
(2)

Mean absolute error (MAE):

MAE =
1
n

n∑
i=1

|yi − ȳi| (3)

Mean absolute percentage error (MAPE):

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ȳiyi

∣∣∣∣ ∗ 100 (4)

Symmetric mean absolute percentage error (SMAPE):

SMAPE =
1
n

n∑
i=1

|yi − ȳi|
(|yi| − |ȳi|) /2

∗ 100 (5)

If the predicted value, ȳ is very different to the actual value
y, the result of these metrics will be high. On the other hand,
the lower the values of these metrics, the more accurate the
models are. MAPE is problematic when the actual value y
is close to 0 in the denominator and therefore creating a
bias. On the contrary, SMAPE is the preferred metric for
EV charging prediction because both the actual value and the
predicted value is in the denominator [49].

2) EVALUATION OF CLASSIFICATION
For classification models, a confusion matrix is often used to
present the classification results and can also be used to derive
additional metrics. Figure 6 shows a confusion matrix for
binary classifiers where Class 1 represents the positive class
and Class 2 represents the negative class. True positive (TP)
represents the cases where the model predicted positive class
value and the actual value also belonged to the positive
class and similarly true negative (TN) represents the cases
where the model predicted negative class and the actual value
belonged to the negative class.

FIGURE 6. Confusion matrix for binary classification.

False positive (FP) represents the cases where the model
predicted ‘falsely’ a positive class for an actual value
belonging to the negative class, and False negative (FN)
represents the cases where the model predicted ‘falsely’ a
negative class where in fact the value belonged to the positive
class. Based on this we can define the following metrics
(Equations 6-9):

Classification Accuracy:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

True positive rate (TPR) or recall:

TPR =
TP

FN + TP
(7)

Precision:

Precision =
TP

TP+ FP
(8)

F1 Score:

F1Score =
2 ∗ Precision ∗ TPR
Precision+ TPR

(9)

3) EVALUATION OF CLUSTERING
To determine the quality of clustering, cluster validation can
be done in two ways. In external validation, the ground
truth or the actual labels are known and can then be
compared to the cluster assignment results. Common external
validation includes purity, entropy [50] and adjusted rand
index (ARI) [51]. Internal validation can be used if the ground
truth is not available. Common internal validation methods,
such as silhouette and dunn index [50]work by ensuring items
within the same cluster are highly similar and clusters are
themselves dissimilar from one another.

G. EV CHARGING DATASETS
The success of good predictive ML model depends on the
quality of the dataset. In this section, the commonly used
datasets for studying EV charging behavior are discussed.

Two EV charging datasets were presented in [52], one of
them containing about 8500 residential charging sessions and
the other dataset containing more than 1 million sessions
from a public charging facility in the Netherlands. The
residential dataset contains charging data spanning for a
year (March 2012-March 2013) along with the trip details
of EVs using GPS logger. This provides a good platform
for studying residential EV driving and charging behavior.
The non-residential dataset spans from January 2011 until
December 2015 and was collected by ElaadNL. My Electric
Avenue [53] consists of driving and charging behavior
of UK drivers from January 2014 to November 2015.
Residential water and energy data collected by Pecan Street’s
water and electricity research is hosted by Dataport [54].
Although this dataset is available to public for research,
it is limited to residential EV charging behavior. ACN-
Data [55] is among the most recently released public dataset
on EV charging, containing more than 30,000 charging
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sessions collected from two non-residential charging sites in
California. Additional user data such as estimated departure
time and requested energy is collected through user mobile
application by scanning a QR code. When a user does not use
the mobile application, default values are generated for these
fields, without attaching user identifier for such sessions.

H. EV CHARGING BEHAVIOR
Given a charging session, we consider session charging
behavior Bsession as following:

Bsession
(
tcon, tfull, tdiscon, e

)
(10)

where tcon represents the connection time (also arrival or
start time), tfull represents the time after which no charge
was delivered, tdiscon represents the disconnection time (also
departure or end time) and e represents the energy delivered to
the car during the session. Based on the above, we can define
the session duration, Sdur , as follows:

Sdur = tcon − tdiscon (11)

Other aspects of charging behavior are implicit in nature
because they are impacted by the characteristics defined
above and can include the energy consumption of the entire
charging outlet, EV charging profile and charging load of the
station. We have also considered works that studied specific
charging behavior such as time to next plug in, whether a
vehicle will charge next day and speed of charging.

Following the discussions on the background materials,
we now review the recent works utilizingML for EV charging
behavior. We will begin with a comparison of the supervised
learning techniques in the next section before moving on to
unsupervised learning approaches. Although deep learning
can be classified into supervised and unsupervised learning,
we have decided to include an independent section because of
the recent success of deep learning models and the growing
interest of the research community. This would be convenient
for researchers who are solely interested in deep learning
works.

III. SUPERVISED LEARNING FOR ANALYSIS AND
PREDICTION OF CHARGING BEHAVIOR
Frendo et al. [56] developed regression models to predict the
departure time of EVs. The models were trained on historical
data containing over 100000 charging sessions spanning over
3 years. Features such as mean session duration by user
ID, arrival time and weekday were among the significant
predictors of departure time. The best performing model
XGBoost achieved MAE of 82 minutes for departure time
prediction. The predictions made by the ML models had
significant impact on scheduling quality. Similarly, [57] used
mean estimation to predict user behavior in terms of start
time and session duration. The authors then used LR model
to predict the energy consumption using session duration.
Although the predictions of EV behavior was integrated into
the smart charging algorithm to achieve stabilization to the
power grid, the paper did not evaluate the performance of

the predictive models. SVM was used to predict arrival and
departure time of EVs in [58]. The dataset used for training
consists of 3 years (2012-2014) charging data of commuters
using EVs in University of California, San Diego (UCSD)
campus. The input features used to train the ML model
included temporal features (week. day, hour) as well as
previous arrival and departure times. The average MAPE for
arrival time was 2.85% and for departure time was 3.7%.
The proposed model demonstrated superior performance
against simple persistence reference forecast. The paper
failed to address SVM hyperparameter tuning which can
often enhance predictions [59].

The authors in [49] utilized several ML models, including
DT, K-NN and RF to predict session duration and energy con-
sumption from two charging datasets. The first dataset con-
tained charging sessions from University of California, Los
Angeles (UCLA) campus, thus representing non-residential
charging behavior. The second dataset represented residential
charging data from UK EV drivers. For session duration,
SVR performed the best (SMAPE 10.54%) followed by
LR (SMAPE 11.05%). As for energy consumption, RF per-
formed the best (SMAPE 8.65%) with DKDE a close second
(SMAPE 8.73%). Based on the preliminary results by the
various models, the authors selected SVR, RF and DKDE to
form an ensembled model. The proposed ensembled model
outperformed the individual models in both predictions. The
SMAPE for charging duration was 10.4% and for energy
consumption was 7.54%. The results of the proposed model
when applied to scheduling algorithm not only reduced
peak load by 27%, but also reduced charging cost by 4%.
Similarly, [60] used ensemble models including RF, naive
Bayes (NB) and ANNs to predict whether or not the EVs
will be charged the next day in a household. The hours of
the day the EVs will be charged in the next day is also
predicted. Among the input features used for the predictive
models included charging consumption of the last day and
charging occurrence time of the last day. The combination of
RF, NB, AdaBoost and GBoost algorithms provide the best
performance achieving TPR of 0.996 for predicting whether
the EVswill be charged the next day and accuracy of 0.724 for
predicting the hours of the next day when the EVs will be
charged. This study provides a different aspect of charging
behavior compared to other works and is particularly useful
for residential settings.

KNNwas used to predict energy consumption at a charging
outlet in [61] using the data from UCLA campus. The
best performing model was with k set to 1 (1-NN) and
the performance of the model was significantly improved
by using time-weighted dot product dissimilarity measure
that achieved SMAPE of 15.27%. The predictive model
was integrated to a cell phone application that can predict
the end time of charging and the available energy in about
1 second. Various ML algorithms were utilized in [62] with
the goal of predicting the energy needs at a charging outlet
in the next 24 hours. Among the ML algorithms used was
pattern sequence-based forecasting (PSF) [63], which works
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TABLE 1. Supervised learning for charging behavior.

by first classifying the days using clustering before making
predictions for that day. PSF and SVR methods achieved
the best performance on the UCLA dataset, with the current
hour and previous hour energy being the most significant
input variables. However, it must be noted that the SVR
took significantly longer time for hyperparameter tuning.
A similar approach was used in [64], where PSF-based
method using kNN produced the best performance (SMAPE
7.85%) in predicting energy consumption of a session.
Lee et al. [55] used GMMs to predict session duration and
energy needs from a non-residential public charging space
in California, USA. By considering the distribution of the
known arrival times, the GMMmodel was used to predict the
session duration and the energy consumption. The best model
obtained SMAPE of 15.85% for session duration and SMAPE
of 14.43% for energy consumption on the public charging
(Caltech campus) dataset. Comparison shows that the GMM
predictive model achieved significantly greater predictions
when compared to user inputs, where the users were asked
to estimate their departure times and energy needs. Binary
logistic regression was used in [65] to classify whether or
not the driver will make use of fast charging in a given
day. Features such as travel time duration, driving speed,
temperature and whether the driver’s last trajectory included
fast charging was used to develop the predictive model. The
proposed model achieved superior performance compared
to LR models with overall prediction accuracy of 0.894.
Additionally, the following conclusions were drawn: drivers

are more likely to fast charge with increased travel duration
and travel distance, and drivers who exhibit fast charging
habits are more likely to use fast charging on their next day
trajectories. Venticinque and Nacchia [66] used SVR with
RBF kernel to predict the time to next plug. Using residential
charging data, the best performing model in this work
achievedMAEof 0.124minutes and RMSE of 0.158minutes.
Frendo et al. [67] used a dataset consisting of charging
processes, i.e. timeseries data of charging power, from a
workplace to predict charge profiles. The best performance
was achieved by XGBoost model with MAE of 126 W
outperforming ANN and LR models. The result of this
approach when integrated to form scheduling have resulted
in up to 21% increase in energy charge for the EV. In [68],
LR was used to model charging speed by considering
variables such as temperature, connection time and state of
charge (SOC). Some variables such as temperature were
found to impact charging speed, for instance it was noted
that an increase in 1 degree Celsius resulted in an increase
of charging speed with 3.7 W. The model was analyzed
graphically and statistically and while the charging speed
is very relevant in terms of predicting the departure time,
the study failed to consider the predictive performance of
the model. Lu et al. [69] used RF model to predict charging
capacity and the daily charging times. The proposed model
outperformed SVR on training set and achieved MAPE
of 9.76% on prediction of the charging load for the next
15 minutes for a single station. For a group of charging
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stations, proposed RF model once again outperformed both
SVR and DT models with 12.8%MAPE. Feature importance
analysis showed that previous day’s charge was the most
important input feature. Table 1 summarizes the research
that used supervised learning for EV charging behavior
predictions.

IV. UNSUPERVISED AND STATISTICAL LEARNING FOR
ANALYSIS AND PREDICTION OF CHARGING BEHAVIOR
Other works have utilized unsupervised learning, mainly
clustering techniques to identify EV charging behavior.
GMMwas used in [70] to find 13 distinct clusters of charging
behavior for non-residential charging. Charging sessions
containing information about start time, connection duration,
distance between two sessions and hours between sessions
were considered as features. Distinction between daytime and
overnight charging was found to be the largest distinction
between the types of charging sessions. For instance, some
of the clusters contained users who charge during daytime,
within the same charging station with medium charging
duration, and narrow medium hours between sessions. The
clustering result was evaluated using ARI for clusters 7-13,
with all except one (ARI of 0.54) ARI value being below 0.6,
and therefore indicating good general agreement. GMM was
also used in [71] to create EV profiles that captured charging
behavior by considering number of charging events, start time
and SOC. The EV charging profiles generated were then val-
idated with average charging demand. Flammini et al. [72]
used charging transaction data and developed a BMM
to represent the multi-modal probability distributions of
variables such as connection time and idle time. The proposed
model showed good fit when compared to the empirical
data graphically and the following conclusions were made
after analysis: 25% of the total energy is supplied in the
weekend, significant differences were noticed for plug-in and
plug-out profiles among weekdays and weekends, 50% of
the recharges last for less than 4 hours and the idle time
on average lasts for 4 hours. While the results provide good
insight into charging behavior, the proposed model was not
validated for predictive performance. DBSCAN clustering
was used in [73] to find 3 clusters of EV charging behavior
based on arrival and departure times. The first cluster, named
charge near home, contained sessions with most arrival
times during afternoon and evening and most departures
the next morning. The second cluster, named charge near
work, contained sessions with arrivals in the morning and
departures in the evening. The final cluster, named park
to charge, contained sessions scattered throughout the day
with short idle time (i.e. they charge quick and leave).
The authors also provided qualitative and graphical analysis
using violin plots to explain charging behavior but failed to
provide performance evaluation of the clustering. The work
in [74] used K means clustering with Euclidian distance cost
function to categorize user charging behavior into 4 groups,
using mean and standard deviation of arrival and departure
times as well as the Pearson correlation coefficient between

stay duration and energy consumption. The authors did not
provide evaluation for clustering, but the labels generated by
clustering were then used by ANN to classify user behavior.
A similar approach was noted in [75] where K-means
clustering was used to find 3 clusters of charging behavior
using Euclidean distance measure. The cluster evaluation
was not performed but the results were used by K-NN
algorithm for classification and the accuracy of classification
was 97.9 with area under ROC curve (AUC) value of 0.994.
The authors in [66] used k-means clustering with squared
Euclidean distance cost function to predict energy/time
requirements of next charge using features such as hour
of day, day of week and charging time. Using the elbow
method, 6 clusters were found, and the reported silhouette
score was 0.7. Based on the clustering result, KNN was used
to classify future instance of data into these clusters, obtaining
precision of 0.5 and recall of 0.47. Gerossier et al. [76]
used hierarchical clustering with Ward linkage method to
understand EV charging behavior of 46 residential EVs. The
clustering result indicates 4 group of behaviors which were
night and morning chargers (which makes up more than 50%
of the sample), evening chargers when people usually return
from work, charging sessions scattered throughout the day
and late evening chargers. The performance of clustering
was not evaluated, but the results were used to forecast the
charging load using RF model that achieved comparable
results (MAE of 4.9 kW) to the benchmark gradient boosting
method. Expectation maximization (EM) algorithm was used
in [77] to find 4 clusters of charging behavior. Then, amixture
model was used to predict EV behavior and simulation
results showed that as prediction error increases, the cost
reduction and savings decreases. In [78], K means clustering
was used to find patterns in EV charging profiles of 3 UK
counties. To find the optimum number of clusters, Davies–
Bouldin evaluation criterion was used. Although plots were
used to display cluster centroids and provide a graphical
analysis of daily charging demand, the paper did not provide
a performance evaluation of the clustering.

Non-parametric statistical estimation such as KDE and
DKDE can also be used to model user charging behavior.
Khaki et al. [79] used DKDE to predict session duration
and energy consumption. Using graphical plot of mean
estimation deviation (MED) for comparison, the proposed
DKDE method was superior compared to GKDE. In [80],
GKDE was used to divide charging behavior into charging
that ends withing the same day (intra-day) and charging
that carries on to the next day (inter-day). Comparing
correlation between charging start time, session duration and
energy using Pearson correlation coefficient and Kendall
rank correlation showed that correlation can only be noticed
if the classifications into the 2 groups, i.e., intra-day and
inter-day, were made. A Hybrid estimator that uses both
GKDE and DKDE was proposed in [81] to predict charging
session duration and energy consumption. Comparison of
MED shows that accuracy of prediction is better using the
hybrid model than the individual models. A time series-based
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TABLE 2. Unsupervised and statistical learning for charging behavior.

forecasting method, ARIMA, has been used in [82] to
predict the parking lot charging demand using expected
arrival and departure times. The proposed model which
decouples the daily charging demand of EV parking area from
the seasonally changing load profile outperformed regular
ARIMA achieving MAPE of 1.44%. The author claimed a
potential saving of $770k annually for the 6-bus system and
$240M for the IEEE-24 bus system if the proposed method is
used to forecast charging load profiles. Table 2 summarizes
the research that used unsupervised and statistical learning
for charging behavior predictions and analysis.

V. DEEP LEARNING FOR ANALYSIS AND PREDICTION OF
CHARGING BEHAVIOR
DL models have been extensively and successfully used in
past studies for electric load forecasting [83]–[85]. Load
forecasting is crucial for energy management and operation
of electric utilities. In the context of EV charging, short
term charging load forecasting is particularly important for
smart scheduling. Analysis and prediction of short-term

charging load can be considered as an implicit analysis of
charging behavior because it depends to a large extent on
the arrival and departure time of EV drivers. Zhu et al. [86]
used multiple RNN-based models to predict the hourly
charging load of a public charging station in China.
Several DL-based models including RNN, LSTM and gated
recurrent units (GRU) were used for prediction. GRU model
using 1 hidden layer provided the best performance with
normalized RMSE (NRMSE) of 2.89%. Other studies [87]
have looked at even higher resolution of time series data, and
provided EV charging load forecasting for super short term
(minutely data). A comparative study of various DL models
showed that LSTM performs better than conventional ANNs
by reducing the forecasting error by more than 30%. LSTM
model obtained the best performance with MAE of 0.29 kW
and RMSE of 0.44 kW. Using graphical and qualitative
analysis of the same dataset, certain conclusions were made
about charging behavior. Firstly, for working days during
rainy season, the charging load peaks at 11 pm, starts to
decrease at 3 pm and then increases again at 8 am. Holidays
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also have low charging load during the day as more drivers
do not travel on holidays.

A LSTM-based model was also used in [88] to forecast
charging load for 30 and 15 minutes intervals. The proposed
model outperformed ANN model with RMSE of 12.3 kWh
and MAE of 5.5 kWh for 15-minute interval, and RMSE
of 28.3 kWh and MAE of 16.9 kWh for 30-minute interval.
It was also noted that as the time interval decreases, the pre-
diction error decreases because there are more data points
available for training. Zhang et al. [89] used convolutional
neural network (CNN) to estimate traffic flow and mixture
model to estimate arrival rates. The results were then used
by a queuing model to forecast EV charging load obtaining
MAPE of 3.21%.

Deep generative method is used in [90] to classify
charging profiles of EV. A charging profile can simply
be considered as the distribution of charging arrival and
departure times of EVs. The proposed method achieved
better performance than benchmark hidden markov model
(HMM) by obtaining overall accuracy of 0.98 and F1 score
of 0.8. In [74], the authors first used clustering technique
and hand-labelling from data visualization to obtain labels
of charging behavior. ANN consisting of 3 hidden layers
(optimal after hyperparameter tuning) was then trained using
backpropagation to make predictions on a class of EV
charging behavior. The model achieved average accuracy
of 78% on test set. Table 3 summarizes the research that used
deep learning for charging behavior predictions.

TABLE 3. Deep learning for charging behavior.

VI. RECOMMENDATIONS AND FUTURE WORK
There are several challenges in using ML for EV charging
behavior predictions. Firstly, as described in section II G,

there is a lack of datasets required to train ML models. More
specifically, there are only two well-known EV charging
dataset that are available publicly for researchers. Many
other datasets are owned by commercial companies. Also,
the available datasets only represent the charging behavior
of the geographical area they were recorded in. Therefore,
ML models developed using these datasets will not apply
well to every part of the world. EVs are getting popular
across the globe and therefore more data needs to be collected
for major cities that can help to characterize charging
behavior of specific cities. Initiatives must be taken by
researchers to provide the datasets used by their studies
and make them online for further research and validation.
Furthermore, only few of the reviewed works integrated the
predictive models for smart scheduling. Scheduling remains
a key area in the management of EV charging and both
long-term (day ahead, weak ahead) and short-term (minute
ahead, hour ahead) ML predictions and their implications
on scheduling need to be considered. Most of the previous
works considered the use of historical data with few variables
such as arrival time, departure time and energy consumption
for training ML models. To better categorize and predict
charging behavior, higher dimensional data that consider
variables like traffic, weather and local area events need to
be utilized. For instance, the usage of weather data could
indicate the charging behavior in the incident of heavy
rainfall or snow which would otherwise not be considered by
the models. Furthermore, a comprehensive cluster analysis
that provides a comparative study and evaluation of all
clustering techniques is needed. Cluster analysis provided
excellent characterization of consumer behavior in domains
like coffee shops [91] and therefore has the potential to better
characterize charging behavior. In section 4, it was noted that
a lot of studies that used clustering failed to evaluate the
performance of the cluster algorithms quantitatively and this
needs to be addressed in future works. Besides supervised
and unsupervised learning, reinforcement learning (RL) [92]
is the third category of ML, that allows the model to
learn a behavior through trial-and-error interactions with
the environment through notions of reward and punishment.
There are a few recent works utilizing RL-based concepts for
scheduling of EV charging [93]–[96] and therefore has great
potential for further research. In summary, the following areas
can be explored for future research:
• Utilization of short-term and long-term ML predictions
into scheduling.

• The use of high dimensional dataset with input features
such as traffic andweather conditions formodel training.

• A comprehensive cluster analysis of EV charging
dataset.

• Reinforcement learning for EV scheduling.

VII. CONCLUSION
This article provided a comprehensive survey on the use
of machine learning for EV charging behavior analysis and
prediction. The common supervised and unsupervised ML
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algorithms used for prediction of EV charging behavior
were defined. The survey provided a comparative analysis
of various works using supervised, unsupervised, and deep
learning methods for EV charging prediction. The key
challenges were also discussed which include the lack of
public charging datasets and the lack of high dimensional
data. Recommendations for future work based on the existing
work were also provided. The research directions that this
article provide include the need for a comprehensive cluster
analysis and the use of reinforcement learning for EV
scheduling.
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