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ABSTRACTDiabetic retinopathy (DR) is an eye abnormality caused by chronic diabetes that affected patients
worldwide. Hard exudate is an important and observable sign of DR and can be used for early diagnosis.
In this paper, an automatic hard exudates segmentation method is proposed in order to aid ophthalmologists
to diagnose DR in the early stage. We utilized the SLIC superpixel algorithm to generate sample patches,
thus overcoming the difficulty of the limited and imbalanced dataset. Furthermore, a U-net based network
architecture with inceptionmodules and residual connections is proposed to conduct end-to-end hard exudate
segmentation, and focal loss is utilized as the loss function. Extensive experiments have been conducted on
the IDRiD dataset to evaluate the performance of the proposed method. The reported sensitivity, specificity,
and accuracy achieve 96.38%, 97.14%, and 97.95% respectively, which demonstrates the effectiveness and
superiority of our method. The achieved segmentation results prove the potential of the method for clinical
diagnosis.

INDEX TERMS Deep learning, diabetic retinopathy, exudates segmentation, superpixel, U-net.

I. INTRODUCTION
Diabetic Retinopathy (DR) is a serious ocular abnormality
associated with chronic diabetes. Patients suffering from it
will possibly lose their sight gradually and even go blind [1].
Although DR is treatable with timely diagnosis and inter-
vention, the symptoms of vision impairment can be easily
overlooked in the early stage of the disease. Thus, it is nec-
essary to arrange regular examinations for diabetics to delay
or relieve the risk of blindness. However, the limited number
of clinicians currently is far from enough for the diagnosis
of the large number of patients, as there have been more
than 400 million diabetics all over the world [2]. Therefore,
an automatic diagnosis technology needs to be developed to
aid medical specialists.

Hard exudate (HE) is regarded as one of the most promi-
nent features caused by DR. It is formed by macromolecular
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FIGURE 1. Hard exudates and background circled in black and white
respectively.

substances leaking from blood vessels into the eyeball after
the retinal vessels are ruptured. As shown in Figure 1, HE can
be observed as bright spots or clumps with sharp edges
in the fundus image. Nevertheless, various factors such as
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uneven illumination and equipment noise constrain the accu-
racy and effectiveness of DR diagnosis through raw fundus
images [3], [4]. Automatic detection of HE is therefore a
useful and necessary auxiliary diagnostic approach for DR.

Traditional image processing approaches of HE detec-
tion includes four main categories: threshold-based [5]–[8],
cluster-based [9]–[11], morphological-based [12]–[17], and
region-growth [18]–[22]. Machine learning methods have
also been introduced to detect HE [23]–[28], where pro-
fessional knowledge is demanded to design hand-crafted
features. These methods require exhausting work and com-
plicated parameter settings but commonly not capable of pos-
sessing satisfying generalization. Without the need for expert
knowledge, deep learning methods, especially convolutional
neural networks (CNNs) [29]–[32] and U-Net [33]–[35],
have been widely explored in recent years. Compared to
traditional methods, detection and segmentation based on
deep learning methods perform better in generalization abil-
ity and robustness. Despite this, approaches based on CNN
fail to achieve satisfactory efficiency due to huge time and
computational consumption. In addition, though faster and
more efficient than CNN, current U-Net based methods have
not achieved satisfying results as the state-of-the-art methods.

In order to solve the above-mentioned problems and
develop amore efficient and accurate method for HE segmen-
tation, we propose a novel U-Net based network architecture
to implement end-to-end segmentation. As for the difficulty
of limited and imbalanced training data, a SLIC superpixel
algorithm is applied to generate sample patches to enlarge
the dataset, with the relationship among adjacent pixels
preserved.

The proposed method consists of the following three steps.
After image preprocessing, the SLIC superpixel algorithm
is applied to segment the images, and then sample patches
are generated based on the superpixel. Then, the network
architecture is proposed to predict the segmentation results
of each patch. Finally, the neighboring prediction results of
patches are spliced together to complete images for the final
results. Extensive experiments are conducted on the publicly
available dataset IDRiD [36] to verify the performance of the
proposed method.

The main contribution of our work can be summarized as
follows: (1) superpixels are utilized to cluster the images by
considering image pixels possessing similar characteristics
regionally as natural entities. Hence, patches extracted based
on this possess more contextual information and are benefi-
cial for further segmentation; (2) proportion of sampled patch
is carefully chosen and focal loss function is applied, both of
which help to overcome the difficulty of the imbalance of the
dataset; (3) the proposed network architecture with inception
modules and residual connections is capable of extracting
multi-scale features and combing low-level and high-level
features, thus achieving better performance.

The rest of this paper is organized as follows: Section II
analyzes the advantages and disadvantages of related
researches. Section III presents the proposedmethod in detail.

Section IV validates the performance of our method with
extensive experiments. Finally, the whole process and future
work are concluded in Section V.

II. RELATED WORK
Automatic detection and segmentation of hard exudates have
been studied before, developed methods include traditional
methods and deep learning based methods.

A. TRADITIONAL METHODS
Traditional methods, consisting of image processing
methods, such as threshold-based segmentation [5]–[8],
cluster-based detection [9]–[11], morphological-based seg-
mentation [12]–[17], region-growth detection [19]–[22], and
machine learning methods that require hand-crafted features,
have been extensively studied.

In the thresholding segmentation, local or global grayscale
is regarded as the dominant characteristic. García et al. [8]
utilized global and adaptive threshold simultaneously to seg-
ment candidate regions at first, and then employed a series of
features and radial basis functions (RBF) to classify the true
regions. However, it is difficult to select an appropriate and
accurate threshold because the brightness and contrast of the
image are not consistent.

Clustering-based methods recalculate the internal distance
of various types after classifying the whole image set accord-
ing to given rules, so as to update the clustering center until
the convergence of each class center. Osareh et al. [10]
adopted a fuzzy C-means (FCM) clustering algorithm to
divide the exudates from background. These algorithms fea-
ture the disadvantages that they are usually sensitive to noise
and computationally intensive. Also, the choice of the initial
center is important but difficult as the location and character-
istics of the center of the classes are unknown.

Morphological approaches identify exudates using
extracted brightness and grayscale characteristics. Harangi
and Hajdu [16] integrated mathematical morphology and
active contours into a novel framework to segment exu-
dates from retinal images. Zhang et al. [17] selected lesion
candidates using morphological operators for subsequent
detection in which multi-feature classification was applied.
Despite the fast and effective effects of thesemethods in terms
of computation, they do not take other characteristics into
consideration, thus resulting in high noise sensitivity.

Segmentation based on region growing has been proved
feasible especially when combined with the artificial neu-
ral network [19]. In these methods, the feature of spa-
tial grayscale contiguity was applied for segmentation [20].
Additionally, edge detection can be employed at the same
time to extract hard exudates [21] for optimization. Never-
theless, it is inclined to result in over-segmentation and the
algorithm is relatively more time-consuming.

Machine learningmethods have also been extensively stud-
ied to detect hard exudates, including support vector machine
(SVM) [23], [24], linear discriminant classifiers [25], [26],
Naive Bayes classifier [27] and random forest algorithm [28].
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Giancardo et al. [24] extracted feature vectors based on color,
wavelets and exudate probability, so that diabetic macular
edema can be automatically diagnosed according to exudates.
In [25], Saìnchez et al. improved Fisher’s linear discrimi-
nant analysis using color features for classification. Besides,
Harangi et al. [27] selected the most appropriate descriptors
out of more than 50 other ones to train a boosted naive Bayes
classifier.

These methods usually share a common idea that multi-
dimensional feature vectors are constructed for each pixel or
clustering of pixels. However, these feature vectors, which
are often built on the basis of color, shape, size, and any
other relevant information, require exhausting work and com-
plicated parameter settings. In addition, poor generalization
poses another challenge.

B. DEEP LEARNING METHODS
Deep learning methods, especially convolutional neural net-
works (CNNs) [29]–[32] and U-net [33]–[35], have been
applied for exudates detection. They have been widely
adopted in recent years because they do not require
hand-crafted features.

Prentašicì and Lončaricì [29] built an 11-layer neural
network model and used the output to generate an exu-
date probability map. Then, outputs of anatomical landmark
detected were incorporated to optimize the exudate prob-
ability map. Gondal et al. [30] realized both image-level
and lesion-level detection by improvingwell-performing o_O
CNN architecture [31], by removing the dense layers and
added a global average pooling (GAP) layer to the traditional
CNN architecture. With o_O architecture employed as well,
Quellec et al. [32] introduced a CNN visualization based
solution where optimized heatmaps were produced for more
accurate CNN predictions.

Although CNN based methods have achieved high accu-
racy, most of the CNN methods used the sliding-window
algorithm to overcome the difficulty of limited and imbal-
anced training data, thus causing unsatisfying efficiency.

U-Net [33] is a commonly used backbone network in
the field of medical image, consisting of contraction and
expanding units, which can capture not only local but global
context information of the images. Zabihollahy et al. [34]
used modified U-net to conduct segmentation and detection
of the hard exudates and removed optic disc for better results.
To make full use of detailed information and context per-
ceptions simultaneously, Yan et al. [35] combined the local
and global U-Net decoders so that the two streams could
be enhanced mutually. Although methods based on U-Net
are fast and efficient, the segmentation results remain much
to be improved compared to the traditional state-of-the-art
methods.

In this paper, U-Net backbone is adopted to implement end-
to-end segmentation, thus largely reducing the time consump-
tion and designing for better performance. And superpixel is
applied to extract data samples, which overcomes the diffi-
culty of the small dataset and imbalanced data.

III. METHODOLOGY
A. PREPROCESSING
Since we are only interested in the retinal fundus, the redun-
dant black background around fundus images needs to be
cropped. Given that the imagewidth is w, we select the largest
pixel value from the w/64 leftmost and the w/16 rightmost
parts of the image, add 10 to this value as a threshold.
Regions with larger pixel values than the threshold are
regarded as the foreground, and then the minimum bounding
rectangle (MBR) of foreground area can be obtained. The
area inside the MBR is cropped from the original image for
further processing. After cropping, the size of the images
is approximately 2848 × 3400. While the red channel is
more saturated and the blue channel is darker, only the green
channel [37] is adopted because it shows the highest contrast
between the blood vessels and the background, which helps
to reduce the interference of blood vessels in the process of
classification [38]. To enhance the contrast between exudates
and non-exudates, an image enhancement algorithm named
Contrast Limited AHE (CLAHE) [39], which is a variant of
adaptive histogram equalization (AHE), is adopted to reallo-
cate lightness values with the clip limit of 8.0 and the grid
size of 8 × 8. Subsequently, we apply gamma correction to
compensate for the loss of brightness caused by uneven illu-
mination and enhance the contrast. For a given input image I ,
the formulation is given by

f (I ) = Iγ (1)

where the gray-level coefficient γ is set to 1/2.2 and f (I )
is the output image. Figure 2 shows four different stages
during the image preprocessing. It can be seen that after the
preprocessing, the image contrast between background and
hard exudates is more obvious, which is beneficial for further
segmentation.

FIGURE 2. Four stages of preprocessing: (a) original RGB color retinal
image, (b) cropped green-channel image, (c) enhanced green-channel
image, (d) final image after gamma correction.
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B. SAMPLING
In order to overcome the difficulty of the small dataset,
sampling is performed on the original images to obtain
more patches as samples. At the same time, we utilized the
SLIC [40] superpixel algorithm to guide the patch generation
process, instead of directly cropping rectangle patches on the
original images.

The term superpixel is proposed by Ren and Malik [41]
to aggregate individual pixels possessing similar features in
interested low-level space, such as color, brightness, and
texture [40]. It regards pixels as natural entities regionally
so that the connection relationships within images can be
preserved for further patch extraction.

We adopt the Simple Linear Iterative Clustering (SLIC)
algorithm proposed by Achanta et al. [44], which has better
performance than previous approaches [41]–[43] in adhering
to image boundaries, speed, and memory efficiency. Given
a customized region size and regularity, the SLIC algorithm
can generate uniform and compact superpixels with similar
features and clear boundaries. Specifically, a larger region
size can result in lager superpixel segmentation, and the com-
pactness coefficient relates to the regularity of superpixels.
In our experiment, the number of segments and the compact-
ness coefficient is set to 150 and 0.5 separately, which suits
the patch size. As shown in Figure 3, the yellow polygons are
superpixel subregions obtained after segmentation through
the SLIC algorithm.

FIGURE 3. SLIC superpixel segmentation result with region number of
150 and compactness of 0.5. The red rectangle is an exudate included
patch generated on the basis of the superpixel.

Next, we divide the superpixels into two categories accord-
ing to the corresponding ground truth. For a fundus image I ,
there are N segmented superpixel subregions X = (X1,X2,
. . . ,Xi, . . . ,XN ), iε(1,N ). The i-th superpixel consists of M
pixels Xi = {pi (1) , . . . , pi (k) , . . . , pi (M)} with pi(k)εI .
If there exists at least one pixel pi(k) belonging to the hard
exudate according to the ground truth inside the superpixel
Xi, iε(1,N ), we regard the superpixel Xi as a hard exudate
included one. Otherwise, Xi will be treated as non-exudate
background.

In this way, original images are represented in the super-
pixel level, which takes the information of adjacent regions
into consideration. Therefore, the region of each extracted
patch possesses similar features, which provides a conducive
foundation for further hard exudates segmentation due to the
clustering effect [45].

Although the superpixel can effectively interpret and rep-
resent image information, its irregular shape makes it unable
to be directly fed to the network. To overcome this problem,
we generate sample patches with the superpixel centroids as
the center of the generated patches. Thus, a set of N patches
Y = (Y1,Y2, . . . ,Yi, . . . ,YN ) , iε(1,N ) is obtained based
on the superpixels X = (X1,X2, . . . ,Xi, . . . ,XN ) , iε(1,N ),
where each image patch YiεRh×w is a rectangle R with a size
of height h and width w. Both of the h and w are to 256, and
therefore the size of each patch is 256× 256.

As illustrated in Figure 3, the red rectangle is one of the
patches obtained based on superpixels in the yellow line.
Similarly, the patches are classified into ones with and with-
out hard exudates, which is shown in Figure 4. If a superpixel
Xi contains hard exudate pixels, the relevant patch Yi will be
considered as a hard exudate patch, and vice versa.

FIGURE 4. Two kinds of patches: (a) background patches, (b) hard
exudate patches.

Finally, a total of 900 patches are generated for training,
and in order to avoid the imbalance between positive and
negative samples, the proportion of hard exudate patches and
background ones is set to 2 : 1.

C. NETWORK ARCHITECTURE
In this subsection, we proposed a network architecture with
U-Net [33] as the backbone for the segmentation of the hard
exudates, which is shown in Figure 5. It takes the generated
patches as input and outputs binary images as segmenta-
tion results. The size of both input and output images are
of 256× 256.
The proposed 9-unit network architecture is composed of

a contracting path and an expansive path. The former path
extracts features of the input patches, and then the latter
path carries out the process of up-convolution. Between the
contracting path and an expansive path, skip connections are
serving as bridges for information propagation. These skip
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FIGURE 5. The architecture of the network based on U-Net backbone.

connections are capable of combining low-level details with
high-level semantic information. The contracting path con-
sists of five basic units, where a max-pooling layer is inserted

between every two units along the path to down-sample the
feature map. Correspondingly, there are four basic units in the
expansive pathwith an up-sampling layer and a concatenation
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layer before each unit, thus making use of feature maps
from both the lower level and the relevant contracting path.
In the end, we use a 1× 1 convolution layer with a sigmoid
activation to generate the output prediction results.

Each of the abovementioned units in both of the two paths
is constructed by the residual unit with inception [46]module,
which is shown in Figure 6(b). It consists of an inception
module instead of a common convolution module, followed
by batch normalization (BN) [47] and LeakyReLU activa-
tion [48]. By using the LeakyReLU as an activation function,
the network converges at an earlier stage. Besides, borrowed
from ResNet [49], we add an identity mapping to the unit.

FIGURE 6. (a) Residual unit of U-Net with plain convolution, (b) Residual
unit with inception module.

Figure 6(a) shows a residual unit with plain convolu-
tion, while it is effective in most cases, however, due to
the severely uneven and imbalanced distribution of hard
exudates in the patches, it is necessary to extract features
from different scales. Therefore, the convolution operation in
U-Net is substituted by an inception module, which is shown
in Figure 6(b) and its internal structure is shown in Figure 7.
A 1× 3, a 3× 1, and two 3× 3 filter kernels are designed to
extract multi-scale features. These features are then combined
together and a 1×1 convolution kernel is used for dimension
reduction. The inceptionmodule is not only able to efficiently
reduce the number of parameters [50], but also capable of
increasing the expression ability of the network by introduc-
ing more linear mappings. Moreover, the direct connection

FIGURE 7. Internal structure of the inception module.

of the original U-Net is replaced by the residual connection
in the proposed architecture. As illustrated in Figure 6,
we denote the input of the residual as Xi, the residual function
as f (·). Therefore, the output of the residual is f (Xi)+Xi after
the addition.

In addition, dropout [51] is utilized between the two 3× 3
filter kernels to avoid overfitting, and the dropout rate is set
to 0.5.

The imbalance of the data consists of two aspects. First,
most of the sampled patches only contain background, and
patches containing hard exudates are of a small majority.
As described before, this can be solved by choosing the
appropriate proportions of samples. The other comes from
the imbalanced distribution of hard exudates in each patch
containing hard exudates. For most of these patches, hard
exudates only consist of a small proportion, most of which
are less than 10%, thus making the accurate segmentation
even more difficult. In order to solve this problem, Focal Loss
(FL) [52] is introduced in our proposed network as the loss
function, which is shown below:

FL (ps) = −ws (1− ps)α log (ps) (2)

where

ps =

{
p, s = 1
1− p, s = 0,

and p is defined as the estimated probability for the class with
label s = 1. ws is derived by

ws =

{
w, s = 1
1− w, s = 0,

with w dealing with the weight of positive and negative
samples. The variable s in the above two formulas denotes
the type of ground-truth class, for which s = 1 means that the
class is an easily classified sample, and otherwise it is difficult
to divide. The index number α (α ≥ 0) works as a tunable
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FIGURE 8. The training and testing process.

focusing parameter to relieve the loss dominated by a large
number of simple samples. Compared with the cross-entropy
(CE), the focal loss tackles the imbalance between not only
positive and negative samples but also hard and simple exam-
ples, thus more suitable for our scenario.

Finally, we apply the Adam (adaptive moment estimation)
Optimizer [53] to train the network, with a learning rate
of 1e−4. The network takes 800 epochs to converge.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET
IDRiD (Indian Diabetic Retinopathy Image Dataset) [36]
is a public dataset available online. This dataset provides
pixel-level typical diabetic retinopathy lesions and normal
retinal structures. A total of 81 images are given labeled
with pixel-level ground truths, among which 54 images are
training set and 27 images are testing set. Images in this
dataset feature a resolution of 4288 × 2848 pixels and a 50◦

field of view.

B. EVALUATION METRICS
Metrics including sensitivity, specificity, and accuracy are
adopted to evaluate the performance of the proposed method.
The related formulas are defined as follows:

sensitivity =
TP

TP+ FN
(3)

specificity =
TN

TN + FP
(4)

accuracy =
TP+ TN

TP+ FN + TN + FP
(5)

where TP (True Positive), TN (True Negative) represent the
correctly detected hard exudates and non-exudate back-
ground respectively, while FP (False Positive), FN (False
Negative) denote the number of wrongly detected ones as
exudates and background.

C. RESULTS AND ANALYSIS
The training and testing process of our experiment is
described in Figure 8. After preprocessing and sampling,
we have generated 900 sample patches of size 256× 256
for training through the SLIC superpixel algorithm. Then
we classify them into patches including hard exudates and
non-exudate backgrounds, which is used to train the net-
work. For testing, in order to obtain the final segmenta-
tion results, we splice the neighboring prediction results of
patches together to complete images, during which we take
the average value of overlapped areas and set the threshold
value to 0.5.

The first experiment compares the results of whether the
patches are randomly cropped out or generated using the
SLIC superpixel algorithm. Figure 9(b) is the enlarged image
of the blue rectangle in Figure 9(a), the red rectangle is
the patch cropped randomly and the pink patch is generated
through the above-mentioned method. Random crops fail
to consider the contextual information of pixels, and may
introduce irrelevant parts in the same patch, thus undermin-
ing the segmentation performance. On the contrary, patches
extracted based on superpixels possess necessary information

FIGURE 9. Two kinds of patch generation methods: random cropping and
generating based on superpixels.
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TABLE 1. Comparision of whether to use superpixel.

TABLE 2. Comparison of varying patch sizes.

TABLE 3. Comparision of different sampling proportions.

FIGURE 10. Different sample results with varying patch size: (a)
128 × 128, (b) 256 × 256, (c) 360 × 360, (d) 480 × 480.

for better segmentation, because the SLIC algorithm has
clustered the regions with similar features into superpixels.
Table 1 demonstrates the experimental results based on dif-
ferent patch generation methods.

In terms of the size of the patches, we choose the possible
range of the patch size firstly, then carry out experiments to
determine the best patch size. As depicted in the four sub-
figures of Figure 10, we mark an exudate included patch and
a background one with red and blue rectangles respectively.
The corresponding performance is revealed in Table 2, where
we can see that the segmentation results become better when
the size increase from 128 × 128 to 256 × 256, but begin
to fall gradually when the size decrease to 360 × 360 and
480× 480. The patch size of 256× 256 performs best due to

FIGURE 11. Time consumption of SLIC segmentation for different patch
sizes per image.

its appropriate size that is capable of including the essential
information for segmentation and is not too large to introduce
unnecessary interference.

In addition, the time consumption of the SLIC segmenta-
tion algorithm for different patch sizes per image is shown
in Figure 11, with Python3.6 and skimage module on a desk-
top of 2.60Ghz CPU with 16 G RAM. It can be seen that
the time consumption varies slightly, which means different
patch sizes do not influence the efficiency of the sampling
process.

Experiments regarding the proportions of hard exudate
patches (HE) to background patches (BG) have been carried
out to overcome the imbalance of data between positive and
negative samples. It can be seen from Table 3, when the
proportion of HE to BG is 2:1, the sensitivity and accuracy
reach the highest, thus achieving the best segmentation result.
When the proportion is 1:2, the patches that only contain
background are relatively excessive, and therefore lead to
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TABLE 4. Comparison of different network architectures’ evaluation.

TABLE 5. Comparision of different methods’ performance on the IDRiD dataset.

FIGURE 12. Prediction result: (a) Image IDRiD_70 from the IDRiD dataset,
(b) corresponding pixel-based segmentation result, (c) ground truth label,
(d) relevant segmentation result.

lower accuracy and sensitivity. In addition, when the pro-
portion is 1:1, the same number of hard exudates and back-
ground patches are sampled. However, this makes training
less targeted, and therefore weaken the network’s ability to

distinguish the hard exudates from the interference, such as
optic disc and vessels. Hence, the ratio of 2 : 1 is chosen due
to the highest sensitivity and accuracy.

Meanwhile, we have conducted experiments to com-
pare the performance of different network architectures
and demonstrate the effectiveness of the proposed network.
As can be seen in Table 4, whether U-Net is combined with
a residual connection or an inception module, the result will
score higher in all the three dimensions sensitivity, specificity,
and accuracy, especially when inception module is applied.
The improvement of the performance by inception module
can be attributed to its better ability to extract features from
multi scales, and the increase in the width of the network.
The building unit in the architecture of U-Net + residual
network is shown in Figure 6(a), which is a plain 3 × 3
convolution unit of U-Net with an identity mapping. This
structure, though optimized with batch normalization, fails
to achieve a satisfying result mainly due to its same size filter
kernels, which cannot extract features effectively in this sce-
nario. In our proposed network, the U-Net backbone is opti-
mized with both residual connections and inception modules,
achieving the best performance with a 96.38% sensitivity,
97.14% specificity, and accuracy in 97.95%.

In the end, we compare the pixel-level segmentation results
with other researches to prove the effectiveness of the pro-
posed method. The latest researches conducted on the same
dataset IDRiD with different methods, such as U-net based,
CNN based and HED [56] based, are selected and compared.
As can be seen in Table 5, the result of our method outper-
forms others’ in terms of sensitivity, specificity, and accuracy.
Furthermore, we have achieved a significant improvement
compared with the previous U-net based method [34].
Figure 12 shows an original RGB color retinal image and its
corresponding pixel-level segmentation result, where TP is
marked in red, FP is marked in blue, and FN is marked in
green.

V. CONCLUSION
In this paper, we propose a novel method of hard exu-
date segmentation based on an optimized U-Net architec-
ture. Firstly, we generate sample patches based on the SLIC
superpixel algorithm and distinguish them into hard exudate
patches and non-exudate backgrounds. Then, we fed them
to our network, where the U-Net backbone is improved
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by utilizing both residual connections and inception mod-
ules. At last, we splice the neighboring prediction results of
patches together to complete images for the final segmenta-
tion results. The proposed method is evaluated on the public
dataset IDRiD with a series of comparative experiments. The
experimental result in sensitivity, specificity, and accuracy
achieves 96.38%, 97.14%, and 97.95% respectively, which
demonstrates superior performance among current methods.
Future work could be extended by applying attention gates
into the network.
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